Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (5): 2546-2554.DOI: 10.16085/j.issn.1000-6613.2021-1211
• Materials science and technology • Previous Articles Next Articles
HUANG Ming1(), ZU Yunqiu1, GAO Kang1, WEI Wei2(
), ZHANG Na1, ZHU Huaping3, LIU Chuntai1
Received:
2021-06-08
Revised:
2021-08-21
Online:
2022-05-24
Published:
2022-05-05
Contact:
WEI Wei
黄明1(), 祖韵秋1, 高亢1, 韦韡2(
), 张娜1, 朱华平3, 刘春太1
通讯作者:
韦韡
作者简介:
黄明(1978—),男,副教授,研究方向为高分子及其复合材料成型与模拟。E-mail:基金资助:
CLC Number:
HUANG Ming, ZU Yunqiu, GAO Kang, WEI Wei, ZHANG Na, ZHU Huaping, LIU Chuntai. VARTM simulation and high temperature mechanical properties of large tow CF/EP automobile floor[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2546-2554.
黄明, 祖韵秋, 高亢, 韦韡, 张娜, 朱华平, 刘春太. 大丝束CF/EP汽车地板VARTM模拟与高温力学性能[J]. 化工进展, 2022, 41(5): 2546-2554.
t/s | Sx /m | Sx2/10-3m2 | t/s | Sx /m | Sx2/10-3m2 |
---|---|---|---|---|---|
0 | 0 | 0 | 580 | 0.09 | 8.1 |
6 | 0.01 | 0.1 | 720 | 0.10 | 10 |
22 | 0.02 | 0.4 | 890 | 0.11 | 12.1 |
53 | 0.03 | 0.9 | 1070 | 0.12 | 14.4 |
93 | 0.04 | 1.6 | 1281 | 0.13 | 16.9 |
151 | 0.05 | 2.5 | 1485 | 0.14 | 19.6 |
234 | 0.06 | 3.6 | 1790 | 0.15 | 22.5 |
330 | 0.07 | 4.9 | 2030 | 0.16 | 15.6 |
449 | 0.08 | 6.4 | 2390 | 0.17 | 28.9 |
t/s | Sx /m | Sx2/10-3m2 | t/s | Sx /m | Sx2/10-3m2 |
---|---|---|---|---|---|
0 | 0 | 0 | 580 | 0.09 | 8.1 |
6 | 0.01 | 0.1 | 720 | 0.10 | 10 |
22 | 0.02 | 0.4 | 890 | 0.11 | 12.1 |
53 | 0.03 | 0.9 | 1070 | 0.12 | 14.4 |
93 | 0.04 | 1.6 | 1281 | 0.13 | 16.9 |
151 | 0.05 | 2.5 | 1485 | 0.14 | 19.6 |
234 | 0.06 | 3.6 | 1790 | 0.15 | 22.5 |
330 | 0.07 | 4.9 | 2030 | 0.16 | 15.6 |
449 | 0.08 | 6.4 | 2390 | 0.17 | 28.9 |
参数 | 设置值 |
---|---|
重力方向 | +z |
树脂黏度/Pa·s | 0.35 |
树脂密度/kg·m-3 | 1100 |
增强体类型 | 碳纤维 |
渗透率Kx 、Ky (K1、K2)/m2 | 1.152×10-11 |
孔隙率/% | 60 |
铺层角度 | 0°/90° |
进胶压力/MPa | 0.1 |
抽气口压力/MPa | 0.02 |
参数 | 设置值 |
---|---|
重力方向 | +z |
树脂黏度/Pa·s | 0.35 |
树脂密度/kg·m-3 | 1100 |
增强体类型 | 碳纤维 |
渗透率Kx 、Ky (K1、K2)/m2 | 1.152×10-11 |
孔隙率/% | 60 |
铺层角度 | 0°/90° |
进胶压力/MPa | 0.1 |
抽气口压力/MPa | 0.02 |
1 | DANIYAN I A, MPOFU K, ADEODU A O, et al. Development of carbon fibre reinforced polymer matrix composites and optimization of the process parameters for railcar applications[J]. Materials Today: Proceedings, 2021, 38: 628-634. |
2 | Large tow carbon fibre benefits sporting goods[J]. Reinforced Plastics, 1999, 43(3): 38-41. |
3 | 周嫄娜. 大小丝束碳纤维性能评价与研究[D]. 上海: 东华大学, 2016. |
ZHOU Yuanna. Evaluation and research of different sizes tow of carbon fiber properties[D]. Shanghai: Donghua University, 2016. | |
4 | 徐爱武, 梁燕, 蒋玲玲. 大丝束碳纤维发展现状及我国技术瓶颈和发展建议[J]. 合成纤维, 2020, 49(6): 19-23. |
XU Aiwu, LIANG Yan, JIANG Lingling. Development status of large tow carbon fiber and its technical bottleneck and development proposals in China[J]. Synthetic Fiber in China, 2020, 49(6): 19-23. | |
5 | 吉用秋, 俞成涛, 邱睿, 等. 大丝束碳纤维产业发展现状及面临的问题[J]. 合成纤维工业, 2019, 42(3): 64-68. |
JI Yongqiu, YU Chengtao, QIU Rui, et al. Development status and problems of large tow carbon fiber industry[J]. China Synthetic Fiber Industry, 2019, 42(3): 64-68. | |
6 | HIREMATH N, YOUNG S, GHOSSEIN H, et al. Low cost textile-grade carbon-fiber epoxy composites for automotive and wind energy applications[J]. Composites Part B: Engineering, 2020, 198: 108156. |
7 | 刘强, 赵龙, 黄峰, 等. 基于PAM-RTM软件对VARI工艺流道模拟研究[C]//第十四届全国复合材料学术会议. 湖北宜昌, 2006: 345-349. |
LIU Qiang, ZHAO Long, HUANG Feng, et al. Simulation of flow channel in VARI process based on PAM-RTM software[C]//The 14th National Conference on Composite Materials. Yichang, Hubei, 2006: 345-349. | |
8 | 胡亚丽, 张续柱, 杨朝明, 等. 耐高温绝缘GFRP管的真空辅助树脂传递成型工艺研究[J]. 高分子材料科学与工程, 2002, 18(4): 198-200. |
HU Yali, ZHANG Xuzhu, YANG Zhaoming, et al. Study on vacuum assisted resin transfer molding for high-temperature resisting and insulating GFRP tube[J]. Polymeric Materials Science & Engineering, 2002, 18(4): 198-200. | |
9 | TAMAKUWALA V R. Manufacturing of fiber reinforced polymer by using VARTM process: a review[J]. Materials Today: Proceedings, 2021, 44: 987-993. |
10 | SEBA JOEMON R, TOJO J, GEORGE ABRAHAM P, et al. Numerical investigation of VARTM process using finite volume method[J]. Materials Today: Proceedings, 2021, 46: 590-593. |
11 | 邱婧婧, 段跃新, 梁志勇. RTM工艺参数对树脂充模过程影响的模拟与实验研究[J]. 复合材料学报, 2004, 21(6): 70-74. |
QIU Jingjing, DUAN Yuexin, LIANG Zhiyong. Computer simulation and actual experiments of RTM mold-filling process affected by processing parameters[J]. Acta Materiae Compositae Sinica, 2004, 21(6): 70-74. | |
12 | 孙玉敏, 段跃新, 李丹, 等. 风机叶片RTM工艺模拟分析及其优化[J]. 复合材料学报, 2005, 22(4): 23-29. |
SUN Yumin, DUAN Yuexin, LI Dan, et al. Computer simulation analysis and optimization for wind turbine blade[J]. Acta Materiae Compositae Sinica, 2005, 22(4): 23-29. | |
13 | 刘刚, 罗楚养, 李雪芹, 等. 复合材料厚壁连杆RTM成型工艺模拟及制造验证[J]. 复合材料学报, 2012, 29(4): 105-112. |
LIU Gang, LUO Chuyang, LI Xueqin, et al. Process simulation and manufacture testing of composite thick-wall drag brace via RTM technology[J]. Acta Materiae Compositae Sinica, 2012, 29(4): 105-112. | |
14 | GAJJAR T, SHAH D B, JOSHI S J, et al. Carbon fiber permeability characterization using VARTM process[J]. Materials Today: Proceedings, 2021, 44: 1560-1563. |
15 | 李嘉禄, 吴晓青, 冯驰. RTM中纤维渗透率预测的研究进展[J]. 复合材料学报, 2006, 23(6): 1-8. |
LI Jialu, WU Xiaoqing, FENG Chi. Research progress on the permeability prediction of fiber in RTM[J]. Acta Materiae Compositae Sinica, 2006, 23(6): 1-8. | |
16 | 周云飞, 方荀, 王文琪, 等. RTM中纤维结构对树脂浸渍影响的数值模拟[J]. 华东理工大学学报(自然科学版), 2017, 43(2): 162-170. |
ZHOU Yunfei, FANG Xun, WANG Wenqi, et al. Numerical simulation of the influence of fibrous structure on resin filling in RTM process[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2017, 43(2): 162-170. | |
17 | GOLESTANIAN H. Preform permeability variation with porosity of fiberglass and carbon mats[J]. Journal of Materials Science, 2008, 43(20): 6676-6681. |
18 | LUO Y W, VERPOEST I, HOES K, et al. Permeability measurement of textile reinforcements with several test fluids[J]. Composites Part A: Applied Science and Manufacturing, 2001, 32(10): 1497-1504. |
19 | BICKERTON S, SOZER E M, GRAHAM P J, et al. Fabric structure and mold curvature effects on preform permeability and mold filling in the RTM process. Part I. Experiments[J]. Composites Part A: Applied Science and Manufacturing, 2000, 31(5): 423-438. |
20 | KIM J I, HWANG Y T, CHOI K H, et al. Prediction of the vacuum assisted resin transfer molding(VARTM) process considering the directional permeability of sheared woven fabric[J]. Composite Structures, 2019, 211: 236-243. |
21 | WEITZENBÖCK J R, SHENOI R A, WILSON P A. Radial flow permeability measurement. Part A: Theory[J]. Composites Part A: Applied Science and Manufacturing, 1999, 30(6): 781-796. |
22 | HOES K, DINESCU D, SOL H, et al. New set-up for measurement of permeability properties of fibrous reinforcements for RTM[J]. Composites Part A: Applied Science and Manufacturing, 2002, 33(7): 959-969. |
23 | HAN K K, LEE C W, RICE B P. Measurements of the permeability of fiber preforms and applications[J]. Composites Science and Technology, 2000, 60(12/13): 2435-2441. |
24 | ZHOU F P, KUENTZER N, SIMACEK P, et al. Analytic characterization of the permeability of dual-scale fibrous porous media[J]. Composites Science and Technology, 2006, 66(15): 2795-2803. |
25 | BINÉTRUY C, HILAIRE B, PABIOT J. The interactions between flows occurring inside and outside fabric tows during RTM[J]. Composites Science and Technology, 1997, 57(5): 587-596. |
[1] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[2] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[3] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[4] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[5] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[6] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[7] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[8] | ZHAO Xi, MA Haoran, LI Ping, HUANG Ailing. Simulation analysis and optimization design of mixing performance of staggered impact micromixer [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4559-4572. |
[9] | YE Zhendong, LIU Han, LYU Jing, ZHANG Yaning, LIU Hongzhi. Optimization of thermochemical energy storage reactor based on calcium and magnesium binary salt hydrates [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4307-4314. |
[10] | YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi. Performance prediction of variable-width microfluidic concentration gradient chips by deep learning [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393. |
[11] | SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun. Numerical simulation of combustion of flame retardant epoxy resin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419. |
[12] | WANG Shuo, ZHANG Yaxin, ZHU Botao. Prediction of erosion life of coal water slurry pipeline based on grey prediction model [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3431-3442. |
[13] | ZHOU Longda, ZHAO Lixin, XU Baorui, ZHANG Shuang, LIU Lin. Advances in electrostatic-cyclonic coupling enhanced multiphase media separation research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3443-3456. |
[14] | ZHANG Chenyu, WANG Ning, XU Hongtao, LUO Zhuqing. Performance evaluation of the multiple layer latent heat thermal energy storage unit combined with nanoparticle for heat transfer enhancement [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2332-2342. |
[15] | LU Xingfu, DAI Bo, YANG Shiliang. Super-quadric discrete element method investigation of mixing behaviors of cylindrical particles in a rotating drum [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2252-2261. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 182
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 294
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |