1 |
SCHMID A, DORDICK J S, HAUER B, et al. Industrial biocatalysis today and tomorrow[J]. Nature, 2001, 409(6817): 258-268.
|
2 |
SCHOEMAKER H E, MINK D, WUBBOLTS M G. Dispelling the myths——Biocatalysis in industrial synthesis[J]. Science, 2003, 299(5613): 1694-1697.
|
3 |
LIN J F, ZHAO B H, CAO Y, et al. Rationally designed Fe-MCM-41 by protein size to enhance lipase immobilization, catalytic efficiency and performance[J]. Applied Catalysis A: General, 2014, 478: 175-185.
|
4 |
MAGNER E. Immobilisation of enzymes on mesoporous silicate materials[J]. Chemical Society Reviews, 2013, 42(15): 6213.
|
5 |
HWANG E T, GU M B. Enzyme stabilization by nano/microsized hybrid materials[J]. Engineering in Life Sciences, 2013, 13(1): 49-61.
|
6 |
HARTMANN M, JUNG D. Biocatalysis with enzymes immobilized on mesoporous hosts: the status quo and future trends[J]. J. Mater. Chem., 2010, 20(5): 844-857.
|
7 |
WANG M F, QI W, SU R X, et al. Advances in carrier-bound and carrier-free immobilized nanobiocatalysts[J]. Chemical Engineering Science, 2015, 135: 21-32.
|
8 |
BERNAL C, SIERRA L, MESA M. Improvement of thermal stability of β-galactosidase from Bacillus circulans by multipoint covalent immobilization in hierarchical macro-mesoporous silica[J]. Journal of Molecular Catalysis B: Enzymatic, 2012, 84: 166-172.
|
9 |
YANG M Z, GUAN Y P, YANG Y, et al. Peroxidase-like activity of amino-functionalized magnetic nanoparticles and their applications in immunoassay[J]. Journal of Colloid and Interface Science, 2013, 405: 291-295.
|
10 |
JO S M, JIANG S, GRAF R, et al. Aqueous core and hollow silica nanocapsules for confined enzyme modules[J]. Nanoscale, 2020, 12(47): 24266-24272.
|
11 |
ZHAO Z, FU J L, DHAKAL S, et al. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion[J]. Nature Communications, 2016, 7: 10619.
|
12 |
MONG THU T T, KRASAEKOOPT W. Encapsulation of protease from Aspergillus oryzae and lipase from Thermomyces lanuginoseus using alginate and different copolymer types[J]. Agriculture and Natural Resources, 2016, 50(3): 155-161.
|
13 |
BOLIVAR J M, WILSON L, FERRAROTTI S A, et al. Improvement of the stability of alcohol dehydrogenase by covalent immobilization on glyoxyl-agarose[J]. Journal of Biotechnology, 2006, 125(1): 85-94.
|
14 |
AVNIR D, CORADIN T, LEV O, et al. Recent bio-applications of sol-gel materials[J]. Journal of Materials Chemistry, 2006, 16(11): 1013-1030.
|
15 |
CHEN Z J, LI P H, ANDERSON R, et al. Balancing volumetric and gravimetric uptake in highly porous materials for clean energy[J]. Science, 2020, 368(6488): 297-303.
|
16 |
GKANIATSOU E, SICARD C, RICOUX R, et al. Metal-organic frameworks: a novel host platform for enzymatic catalysis and detection[J]. Materials Horizons, 2017, 4(1): 55-63.
|
17 |
LIN R B, XIANG S C, ZHOU W, et al. Microporous metal-organic framework materials for gas separation[J]. Chem., 2020, 6(2): 337-363.
|
18 |
TCHALALA M R, BHATT P M, CHAPPANDA K N, et al. Fluorinated MOF platform for selective removal and sensing of SO2 from flue gas and air[J]. Nature Communications, 2019, 10: 1328.
|
19 |
CHEN K J, MADDEN D G, MUKHERJEE S, et al. Synergistic sorbent separation for one-step ethylene purification from a four-component mixture[J]. Science, 2019, 366(6462): 241-246.
|
20 |
FENG D W, LIU T F, SU J, et al. Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation[J]. Nature Communications, 2015, 6(1): 1-8.
|
21 |
LIANG K, RICCO R, DOHERTY C M, et al. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules[J]. Nature Communications, 2015, 6: 7240.
|
22 |
HUANG S M, KOU X X, SHEN J, et al. “Armor-plating” enzymes with metal-organic frameworks (MOFs)[J]. Angewandte Chemie International Edition, 2020, 59(23): 8786-8798.
|
23 |
WU X L, GE J, YANG C, et al. Facile synthesis of multiple enzyme-containing metal-organic frameworks in a biomolecule-friendly environment[J]. Chemical Communications, 2015, 51(69): 13408-13411.
|
24 |
RAFIEI S, TANGESTANINEJAD S, HORCAJADA P, et al. Efficient biodiesel production using a lipase@ZIF-67 nanobioreactor[J]. Chemical Engineering Journal, 2018, 334: 1233-1241.
|
25 |
QI L, LUO Z G, LU X X. Biomimetic mineralization inducing lipase-metal-organic framework nanocomposite for pickering interfacial biocatalytic system[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 7127-7139.
|
26 |
MOHAMMAD M, RAZMJOU A, LIANG K, et al. Metal-organic-framework-based enzymatic microfluidic biosensor via surface patterning and biomineralization[J]. ACS Applied Materials & Interfaces, 2019, 11(2): 1807-1820.
|
27 |
CHEN T T, YI J T, ZHAO Y Y, et al. Biomineralized metal-organic framework nanoparticles enable intracellular delivery and endo-lysosomal release of native active proteins[J]. Journal of the American Chemical Society, 2018, 140(31): 9912-9920.
|
28 |
苏瑶瑶, 李平凡, 汪伟, 等. 微流控液滴模板法可控构建功能微颗粒材料[J]. 化工学报, 2021, 72(1): 42-60.
|
|
SU Yaoyao, LI Pingfan, WANG Wei, et al. Controllable fabrication of functional microparticle materials from microfluidic droplet templates[J]. CIESC Journal, 2021, 72(1): 42-60.
|
29 |
汪伟, 苏瑶瑶, 刘壮, 等. 微流控法可控构建微尺度功能材料[J]. 化工进展, 2019, 38(1): 421-433.
|
|
WANG Wei, SU Yaoyao, LIU Zhuang, et al. Controllable microfluidic fabrication of microscale functional materials[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 421-433.
|