1 |
潘硕, 王琴, 詹达富, 等. 乳化沥青粉改性水泥砂浆性能及微观结构研究[J]. 硅酸盐通报, 2019, 38(8): 2622-2630.
|
|
PAN Shuo, WANG Qin, ZHAN Dafu,et al. Properties and microstructure of emulsified asphalt powder modified cement mortar[J] .Bulletin of the Chinese Ceramic Society, 2019, 38(8): 2622-2630.
|
2 |
邱碧, 丁铸, 张松. PTB乳液对水泥砂浆力学性能和抗侵蚀性能的影响[J]. 中国建材科技, 2021, 30(1): 57-59.
|
|
QIU Bi, DING Zhu, ZHANG Song. Effect of PTB emulsion on mechanical properties and corrosion resistance of cement mortar[J]. China Building Materials Science & Technology, 2021, 30(1): 57-59.
|
3 |
胡慧晓. 水泥基纤维增韧材料的性能与加筋增韧机理研究[D]. 舟山:浙江海洋大学, 2019.
|
|
HU Huixiao. Study on properties and reinforcement and toughening mechanism of cement-based fiber toughened materials[D]. Zhoushan: Zhejiang Ocean University, 2019.
|
4 |
李悦, 何赫. 聚合物改性水泥砂浆的研究进展[J]. 功能材料, 2016, 47(7): 7038-7045.
|
|
LI Yue, HE He. Research progress of polymer-modified cement mortar[J]. Journal of Functional Materials, 2016, 47(7): 7038-7045.
|
5 |
孟博旭, 许金余, 顾超, 等. 苯丙乳液和VAE乳液改性水泥砂浆力学性能的试验研究[J]. 建筑科学, 2019, 35(1): 88-94.
|
|
MENG Boxu, XU Jinyu, GU Chao, et al. Experimental study on effect of poly-asphalt ratio on mechanical properties of styreneacrylate emulsion and VAE-Modified cement mortar[J].Building Science, 2019, 35(1): 88-94.
|
6 |
谢永江, 郑新国, 李书明, 等. 温度对水泥乳化沥青砂浆韧性的影响[J]. 建筑材料学报, 2013, 16(6): 962-967.
|
|
XIE Yongjiang, ZHENG Xinguo, LI Shuming, et al. Influence of temperature on toughness of emulsified asphalt cement mortar[J]. Journal of Building Materials, 2013, 16(6):962-967.
|
7 |
王超, 邓德华, 元强. 沥灰比对水泥乳化沥青砂浆断裂韧性的影响[J]. 硅酸盐学报, 2016, 44(5): 627-633.
|
|
WANG Chao, DENG Dehua, YUAN Qiang. Influence of mass ratio of asphalt to cement on fracture toughness of emulsified asphalt cement mortar[J]. Journal of the Chinese Ceramic Society, 2016, 44(5): 627-633.
|
8 |
LIU Jing, ZENG Xinguo, LI Shuming, et al. Effect of the stabilizer on bubble stability and homogeneity of cement emulsified asphalt mortar in slab ballastless track[J]. Construction and Building Materials, 2015, 96: 135-146.
|
9 |
朱晓斌, 洪锦祥, 李炜. 水泥沥青砂浆中水泥-乳化沥青经时吸附行为[J]. 建筑材料学报, 2018, 21(2): 260-267.
|
|
ZHU Xiaobin, HONG Jinxiang, LI Wei. Adsorption behavior over time between cement and asphalt emulsion in cement-asphalt mortar[J]. Journal of Building Materials, 2018, 21(2): 260-267.
|
10 |
POULIOT N, MARCHAND J, PIGEON M. Hydration mechanisms, microstructure, and mechanical properties of mortars prepared with mixed binder cement slurry-asphalt emulsion[J]. Journal of Materials in Civil Engineering, 2003, 15(1): 54-59.
|
11 |
李力, 熊出华, 咸淼. 乳化沥青改性水泥砂浆性能试验研究[J]. 中外公路, 2009, 29(1): 238-241.
|
|
LI Li, XIONG Chuhua, XIAN Miao. Experimental study on the performance of emulsified asphalt modified cement mortar[J]. Journal of China & Foreign Highway, 2009, 29(1): 238-241.
|
12 |
唐子珂. 乳化沥青掺量对CA砂浆工作性能和力学性能的影响研究[J]. 西部交通科技, 2017(8): 32-35.
|
|
TANG Zike. Study on the effect of emulsified asphalt content on work performance and mechanical properties of CA mortar[J]. Western China Communications Science & Technology, 2017(8): 32-35.
|
13 |
ZHENG X G, LIU J, ZENG Z, et al. Rheological behavior, segregation, microstructure, and construction quality of cement-emulsified asphalt mortar with associative thickener[J]. Journal of Materials in Civil Engineering, 2015, 27(11): 04015025.
|
14 |
MYERS D. Surfactant science and technology[M]. 2nd ed. New York: VCN, 1992.
|
15 |
WANG Qin, PAN Shuo, ZHAN Dafu, et al. A study of the transport properties of emulsified asphalt powder-modified cement mortar[J]. Construction and Building Materials, 2020, 248: 118650.
|
16 |
潘硕. 乳化沥青粉对水泥基材料性能影响研究[D]. 北京: 北京建筑大学, 2020.
|
|
PAN Shuo. Study on the influence of emulsified asphalt powder on the properties of cement-based materials[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2020.
|
17 |
李书明. 水泥乳化沥青砂浆韧性研究[D]. 北京: 中国铁道科学研究院, 2011.
|
|
LI Shuming. Research on the loughness of emulsified asphalt cement mortar[D]. Beijing: China Academy of Railway Sciences, 2011.
|
18 |
TAN Yiqiu, OUYANG Jian, Jianfu LYU, et al. Effect of emulsifier on cement hydration in cement asphalt mortar[J]. Construction and Building Materials, 2013, 47: 159-164.
|