Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (3): 1677-1688.DOI: 10.16085/j.issn.1000-6613.2021-2272
• Chemical processes integration and optimization • Previous Articles
ZHANG Yuli1(), YE Mao2, XIAO Rui3, GE Lichao1
Received:
2021-11-08
Revised:
2022-01-19
Online:
2022-03-28
Published:
2022-03-23
Contact:
ZHANG Yuli
通讯作者:
张玉黎
作者简介:
张玉黎(1988—),女,博士,讲师,研究方向为储能、流化床反应器。E-mail:基金资助:
CLC Number:
ZHANG Yuli, YE Mao, XIAO Rui, GE Lichao. Integration and optimization of a waste incineration power plant-power to gas hybrid system for SNG production[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1677-1688.
张玉黎, 叶茂, 肖睿, 葛立超. 垃圾焚烧发电耦合电转气制备合成天然气工艺集成与优化[J]. 化工进展, 2022, 41(3): 1677-1688.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2272
参数 | 数值 |
---|---|
入炉垃圾量/t·d-1 | 500 |
过量空气系数 | 1.7 |
一次风温度/℃ | 220 |
二次风温度/℃ | 160 |
排烟温度(省煤器出口)/℃ | 190 |
C燃尽率[ | 96.0 |
给水温度/℃ | 130 |
汽轮机排气压力/MPa | 0.007 |
凝汽器压力/MPa | 0.005 |
主蒸汽压力/MPa | 4.0 |
主蒸汽温度/℃ | 400 |
风机效率/% | 80.0 |
泵效率/% | 80.0 |
汽轮机效率/% | 80.0 |
发电机效率/% | 99.0 |
机械效率/% | 99.0 |
参数 | 数值 |
---|---|
入炉垃圾量/t·d-1 | 500 |
过量空气系数 | 1.7 |
一次风温度/℃ | 220 |
二次风温度/℃ | 160 |
排烟温度(省煤器出口)/℃ | 190 |
C燃尽率[ | 96.0 |
给水温度/℃ | 130 |
汽轮机排气压力/MPa | 0.007 |
凝汽器压力/MPa | 0.005 |
主蒸汽压力/MPa | 4.0 |
主蒸汽温度/℃ | 400 |
风机效率/% | 80.0 |
泵效率/% | 80.0 |
汽轮机效率/% | 80.0 |
发电机效率/% | 99.0 |
机械效率/% | 99.0 |
参数 | 数值 |
---|---|
水分/% | 46.50 |
灰分/% | 20.00 |
固定碳/% | 8.00 |
挥发分/% | 25.50 |
C/% | 20.23 |
H/% | 2.88 |
O/% | 9.48 |
N/% | 0.47 |
S/% | 0.02 |
Cl/% | 0.42 |
收到基低位热值/kJ·kg-1 | 7000 |
参数 | 数值 |
---|---|
水分/% | 46.50 |
灰分/% | 20.00 |
固定碳/% | 8.00 |
挥发分/% | 25.50 |
C/% | 20.23 |
H/% | 2.88 |
O/% | 9.48 |
N/% | 0.47 |
S/% | 0.02 |
Cl/% | 0.42 |
收到基低位热值/kJ·kg-1 | 7000 |
序号 | 名称 | 流量/kg·s-1 | 压力/MPa | 温度/℃ | 序号 | 名称 | 流量/kg·s-1 | 压力/MPa | 温度/℃ |
---|---|---|---|---|---|---|---|---|---|
1 | 垃圾进料 | 5.79 | 0.101 | 25 | A4 | 过热器进口(5#,汽侧) | 13.43 | 4.500 | 257 |
2 | 一次风进料 | 20.51 | 0.101 | 25 | A5 | 空预器进口(2#,汽侧) | 0.58 | 4.500 | 257 |
3 | 一次风机出口 | 20.51 | 0.120 | 43 | A6 | 过热器出口(5#,汽侧) | 13.43 | 4.000 | 400 |
4 | 空预器出口(1#,风侧) | 20.51 | 0.113 | 170 | A7 | 汽轮机进口 | 13.43 | 3.900 | 395 |
5 | 空预器出口(2#,风侧) | 20.51 | 0.106 | 220 | A8 | 一次抽汽 | 1.42 | 1.300 | 271 |
6 | 二次风进料 | 8.55 | 0.101 | 25 | A8-1 | 空预器进口(1#,汽侧) | 1.03 | 1.300 | 271 |
7 | 二次风机出口 | 8.55 | 0.120 | 43 | A8-2 | 空预器进口(3#,汽侧) | 0.39 | 1.300 | 271 |
8 | 空预器出口(3#,风侧) | 8.55 | 0.106 | 160 | A9 | 二次抽汽 | 1.58 | 0.470 | 176 |
9 | 炉膛出口烟气 | 33.64 | 0.100 | 1050 | A10 | 三次抽汽 | 0.35 | 0.030 | 69 |
10 | 氨水 | 0.07 | 0.110 | 25 | A11 | 汽轮机排汽 | 10.09 | 0.007 | 39 |
11 | 脱硝后烟气 | 33.71 | 0.100 | 1045 | A12 | 凝汽器出口 | 10.43 | 0.005 | 33 |
12 | 省煤器出口(6#,烟侧) | 33.71 | 0.096 | 190 | A13 | 凝结水泵出口 | 10.43 | 0.470 | 33 |
13 | 烟气冷却器出口 | 33.71 | 0.096 | 150 | A14 | 低加出口(凝结水侧) | 10.43 | 0.370 | 50 |
14 | NaHCO3 | 0.15 | 0.110 | 25 | A15 | 低加出口(汽侧) | 0.35 | 0.003 | 69 |
15 | 脱硫后烟气 | 33.73 | 0.094 | 150 | A16 | 除氧器出口 | 14.01 | 0.270 | 130 |
A1 | 给水 | 14.01 | 5.000 | 130 | A17 | 空预器出口(1#,汽侧) | 1.03 | 1.100 | 86 |
A2 | 省煤器出口(6#,水侧) | 14.01 | 4.500 | 257 | A18 | 空预器出口(2#,汽侧) | 0.58 | 4.300 | 224 |
A3 | 蒸发面出口(4#,汽侧) | 14.01 | 4.500 | 257 | A19 | 空预器出口(3#,汽侧) | 0.39 | 1.100 | 77 |
序号 | 名称 | 流量/kg·s-1 | 压力/MPa | 温度/℃ | 序号 | 名称 | 流量/kg·s-1 | 压力/MPa | 温度/℃ |
---|---|---|---|---|---|---|---|---|---|
1 | 垃圾进料 | 5.79 | 0.101 | 25 | A4 | 过热器进口(5#,汽侧) | 13.43 | 4.500 | 257 |
2 | 一次风进料 | 20.51 | 0.101 | 25 | A5 | 空预器进口(2#,汽侧) | 0.58 | 4.500 | 257 |
3 | 一次风机出口 | 20.51 | 0.120 | 43 | A6 | 过热器出口(5#,汽侧) | 13.43 | 4.000 | 400 |
4 | 空预器出口(1#,风侧) | 20.51 | 0.113 | 170 | A7 | 汽轮机进口 | 13.43 | 3.900 | 395 |
5 | 空预器出口(2#,风侧) | 20.51 | 0.106 | 220 | A8 | 一次抽汽 | 1.42 | 1.300 | 271 |
6 | 二次风进料 | 8.55 | 0.101 | 25 | A8-1 | 空预器进口(1#,汽侧) | 1.03 | 1.300 | 271 |
7 | 二次风机出口 | 8.55 | 0.120 | 43 | A8-2 | 空预器进口(3#,汽侧) | 0.39 | 1.300 | 271 |
8 | 空预器出口(3#,风侧) | 8.55 | 0.106 | 160 | A9 | 二次抽汽 | 1.58 | 0.470 | 176 |
9 | 炉膛出口烟气 | 33.64 | 0.100 | 1050 | A10 | 三次抽汽 | 0.35 | 0.030 | 69 |
10 | 氨水 | 0.07 | 0.110 | 25 | A11 | 汽轮机排汽 | 10.09 | 0.007 | 39 |
11 | 脱硝后烟气 | 33.71 | 0.100 | 1045 | A12 | 凝汽器出口 | 10.43 | 0.005 | 33 |
12 | 省煤器出口(6#,烟侧) | 33.71 | 0.096 | 190 | A13 | 凝结水泵出口 | 10.43 | 0.470 | 33 |
13 | 烟气冷却器出口 | 33.71 | 0.096 | 150 | A14 | 低加出口(凝结水侧) | 10.43 | 0.370 | 50 |
14 | NaHCO3 | 0.15 | 0.110 | 25 | A15 | 低加出口(汽侧) | 0.35 | 0.003 | 69 |
15 | 脱硫后烟气 | 33.73 | 0.094 | 150 | A16 | 除氧器出口 | 14.01 | 0.270 | 130 |
A1 | 给水 | 14.01 | 5.000 | 130 | A17 | 空预器出口(1#,汽侧) | 1.03 | 1.100 | 86 |
A2 | 省煤器出口(6#,水侧) | 14.01 | 4.500 | 257 | A18 | 空预器出口(2#,汽侧) | 0.58 | 4.300 | 224 |
A3 | 蒸发面出口(4#,汽侧) | 14.01 | 4.500 | 257 | A19 | 空预器出口(3#,汽侧) | 0.39 | 1.100 | 77 |
成分 | 质量流量/t·d-1 | |
---|---|---|
烟气干循环 | 烟气湿循环 | |
O2 | 24.81 | 58.90 |
N2 | 2.37 | 2.36 |
H2O | 10.83 | 11.77 |
CO2 | 358.67 | 358.67 |
成分 | 质量流量/t·d-1 | |
---|---|---|
烟气干循环 | 烟气湿循环 | |
O2 | 24.81 | 58.90 |
N2 | 2.37 | 2.36 |
H2O | 10.83 | 11.77 |
CO2 | 358.67 | 358.67 |
名称 | 脱氧反应器进口烟气 | 脱氧反应器进口氢气 | 脱氧反应器出口 | 固定床反应器进口 | 固定床反应器出口 | 流化床反应器进口 | 流化床反应器出口 |
---|---|---|---|---|---|---|---|
物流序号 | 1 | 2 | 4 | 6 | 7 | 14 | 15 |
温度/℃ | 144 | 80 | 901 | 305 | 640 | 300 | 330 |
压力/MPa | 2.2 | 2.2 | 2.2 | 2.1 | 2.0 | 1.7 | 1.7 |
CH4/% | 0 | 0 | 0 | 31.30 | 45.71 | 57.31 | 79.42 |
H2/% | 0 | 100 | 3.62 | 52.72 | 26.09 | 32.71 | 2.25 |
CO2/% | 89.83 | 0 | 79.77 | 11.80 | 4.51 | 5.65 | 0.52 |
CO/% | 0 | 0 | 0 | 1.82 | 2.65 | 3.33 | 微量 |
H2O/% | 0.57 | 0 | 15.79 | 1.90 | 20.49 | 0.32 | 16.98 |
N2+其他/% | 0.93 | 0 | 0.82 | 0.73 | 0.55 | 0.69 | 0.83 |
O2/% | 8.55 | 0 | 0 | 0 | 0 | 0 | 0 |
名称 | 脱氧反应器进口烟气 | 脱氧反应器进口氢气 | 脱氧反应器出口 | 固定床反应器进口 | 固定床反应器出口 | 流化床反应器进口 | 流化床反应器出口 |
---|---|---|---|---|---|---|---|
物流序号 | 1 | 2 | 4 | 6 | 7 | 14 | 15 |
温度/℃ | 144 | 80 | 901 | 305 | 640 | 300 | 330 |
压力/MPa | 2.2 | 2.2 | 2.2 | 2.1 | 2.0 | 1.7 | 1.7 |
CH4/% | 0 | 0 | 0 | 31.30 | 45.71 | 57.31 | 79.42 |
H2/% | 0 | 100 | 3.62 | 52.72 | 26.09 | 32.71 | 2.25 |
CO2/% | 89.83 | 0 | 79.77 | 11.80 | 4.51 | 5.65 | 0.52 |
CO/% | 0 | 0 | 0 | 1.82 | 2.65 | 3.33 | 微量 |
H2O/% | 0.57 | 0 | 15.79 | 1.90 | 20.49 | 0.32 | 16.98 |
N2+其他/% | 0.93 | 0 | 0.82 | 0.73 | 0.55 | 0.69 | 0.83 |
O2/% | 8.55 | 0 | 0 | 0 | 0 | 0 | 0 |
名称 | 脱氧反应器进口烟气 | 脱氧反应器进口氢气 | 脱氧反应器出口 | 固定床反应器进口 | 固定床反应器出口 | 流化床反应器进口 | 流化床反应器出口 |
---|---|---|---|---|---|---|---|
物流序号 | 1 | 2 | 4 | 6 | 7 | 14 | 15 |
温度/℃ | 144 | 80 | 1558 | 285 | 640 | 300 | 330 |
压力/MPa | 2.2 | 2.2 | 2.2 | 2.1 | 2.0 | 1.7 | 1.7 |
CH4/% | 0 | 0 | 0 | 26.79 | 40.90 | 53.72 | 77.28 |
H2/% | 0 | 100 | 5.06 | 54.41 | 27.10 | 35.6 | 2.34 |
CO2/% | 80.35 | 0 | 64.57 | 12.34 | 4.86 | 6.38 | 0.55 |
CO/% | 0 | 0 | 0.00 | 1.66 | 2.53 | 3.32 | 微量 |
H2O/% | 0.67 | 0 | 29.70 | 4.37 | 24.11 | 0.32 | 19.03 |
N2+其他/% | 0.83 | 0 | 0.67 | 0.42 | 0.50 | 0.66 | 0.81 |
O2/% | 18.15 | 0 | 0 | 0 | 0 | 0 | 0 |
名称 | 脱氧反应器进口烟气 | 脱氧反应器进口氢气 | 脱氧反应器出口 | 固定床反应器进口 | 固定床反应器出口 | 流化床反应器进口 | 流化床反应器出口 |
---|---|---|---|---|---|---|---|
物流序号 | 1 | 2 | 4 | 6 | 7 | 14 | 15 |
温度/℃ | 144 | 80 | 1558 | 285 | 640 | 300 | 330 |
压力/MPa | 2.2 | 2.2 | 2.2 | 2.1 | 2.0 | 1.7 | 1.7 |
CH4/% | 0 | 0 | 0 | 26.79 | 40.90 | 53.72 | 77.28 |
H2/% | 0 | 100 | 5.06 | 54.41 | 27.10 | 35.6 | 2.34 |
CO2/% | 80.35 | 0 | 64.57 | 12.34 | 4.86 | 6.38 | 0.55 |
CO/% | 0 | 0 | 0.00 | 1.66 | 2.53 | 3.32 | 微量 |
H2O/% | 0.67 | 0 | 29.70 | 4.37 | 24.11 | 0.32 | 19.03 |
N2+其他/% | 0.83 | 0 | 0.67 | 0.42 | 0.50 | 0.66 | 0.81 |
O2/% | 18.15 | 0 | 0 | 0 | 0 | 0 | 0 |
名称 | 烟气干循环 | 烟气湿循环 | DB65/T 3664—2014 煤制天然气技术指标 |
---|---|---|---|
CH4/% | 95.54 | 95.32 | ≥95.0 |
H2/% | 2.70 | 2.88 | ≤4.0 |
CO2/% | 0.63 | 0.67 | ≤2.0 |
CO/% | 3.10×10-3 | 3.07×10-3 | ≤0.5 |
高位热值/MJ·m-3(标准状况) | 38.39 | 38.32 | ≥31.4 |
名称 | 烟气干循环 | 烟气湿循环 | DB65/T 3664—2014 煤制天然气技术指标 |
---|---|---|---|
CH4/% | 95.54 | 95.32 | ≥95.0 |
H2/% | 2.70 | 2.88 | ≤4.0 |
CO2/% | 0.63 | 0.67 | ≤2.0 |
CO/% | 3.10×10-3 | 3.07×10-3 | ≤0.5 |
高位热值/MJ·m-3(标准状况) | 38.39 | 38.32 | ≥31.4 |
序号 | 流量/kg·s-1 | 压强 /MPa | 温度 /℃ | 序号 | 流量/kg·s-1 | 压强 /MPa | 温度 /℃ | 序号 | 流量/kg·s-1 | 压强 /MPa | 温度 /℃ | 序号 | 流量/kg·s-1 | 压强 /MPa | 温度 /℃ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 5.79 | 0.101 | 25 | 19 | 24.28 | 0.093 | 100 | A13 | 17.59 | 2.400 | 400 | B7 | 13.27 | 2.000 | 640 |
2 | 4.05 | 0.112 | 80 | 20 | 24.28 | 1.120 | 119 | A14 | 17.59 | 2.300 | 395 | B8 | 13.27 | 1.950 | 492 |
3 | 28.34 | 0.108 | 113 | A1 | 19.04 | 11.200 | 132 | A15 | 2.15 | 0.470 | 227 | B9 | 13.27 | 1.900 | 330 |
4 | 28.34 | 0.106 | 220 | A2 | 14.92 | 11.200 | 132 | A16 | 0.49 | 0.030 | 69 | B10 | 13.27 | 1.850 | 138 |
5 | 20.00 | 0.106 | 220 | A3 | 4.12 | 11.200 | 132 | A17 | 14.95 | 0.007 | 39 | B11 | 13.27 | 1.800 | 35 |
6 | 8.34 | 0.106 | 220 | A3-1 | 3.11 | 11.200 | 132 | A18 | 15.44 | 0.005 | 33 | B12 | 9.92 | 1.750 | 35 |
7 | 32.92 | 0.100 | 1050 | A3-2 | 1.01 | 11.200 | 132 | A19 | 15.44 | 0.470 | 33 | B13 | 8.00 | 1.750 | 35 |
8 | 0.01 | 0.100 | 160 | A4 | 14.92 | 10.700 | 316 | A20 | 15.44 | 0.270 | 50 | B14 | 1.92 | 1.750 | 35 |
9 | 32.92 | 0.100 | 1050 | A5 | 14.92 | 10.700 | 316 | A21 | 0.49 | 0.030 | 69 | B15 | 1.92 | 1.700 | 300 |
10 | 32.92 | 0.096 | 190 | A6 | 17.59 | 10.700 | 316 | A22 | 19.04 | 0.270 | 130 | B16 | 1.92 | 1.700 | 330 |
11 | 32.92 | 0.096 | 150 | A7 | 1.44 | 10.700 | 316 | A23 | 1.44 | 10.400 | 148 | B17 | 1.92 | 1.650 | 116 |
12 | 0.15 | 0.101 | 25 | A8 | 4.12 | 10.700 | 316 | B1 | 4.48 | 2.200 | 144 | B18 | 1.92 | 1.600 | 35 |
13 | 32.94 | 0.094 | 150 | A8-1 | 3.11 | 10.700 | 316 | B2 | 0.04 | 2.200 | 80 | B19 | 1.57 | 1.550 | 35 |
14 | 32.94 | 0.094 | 112 | A8-2 | 1.01 | 10.700 | 316 | B3 | 0.75 | 2.200 | 80 | B20 | 1.57 | 8.000 | 35 |
15 | 32.94 | 0.094 | 40 | A9 | 17.59 | 10.500 | 379 | B4 | 4.52 | 2.200 | 901 | B21 | 8.00 | 2.250 | 60 |
16 | 28.89 | 0.094 | 40 | A10 | 17.59 | 10.000 | 510 | B5 | 4.52 | 2.150 | 405 | B22 | 8.75 | 2.200 | 66 |
17 | 4.59 | 0.094 | 40 | A11 | 17.59 | 9.900 | 505 | B6 | 13.27 | 2.100 | 305 | B23 | 8.75 | 2.150 | 290 |
18 | 24.28 | 0.094 | 40 | A12 | 17.59 | 2.500 | 327 |
序号 | 流量/kg·s-1 | 压强 /MPa | 温度 /℃ | 序号 | 流量/kg·s-1 | 压强 /MPa | 温度 /℃ | 序号 | 流量/kg·s-1 | 压强 /MPa | 温度 /℃ | 序号 | 流量/kg·s-1 | 压强 /MPa | 温度 /℃ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 5.79 | 0.101 | 25 | 19 | 24.28 | 0.093 | 100 | A13 | 17.59 | 2.400 | 400 | B7 | 13.27 | 2.000 | 640 |
2 | 4.05 | 0.112 | 80 | 20 | 24.28 | 1.120 | 119 | A14 | 17.59 | 2.300 | 395 | B8 | 13.27 | 1.950 | 492 |
3 | 28.34 | 0.108 | 113 | A1 | 19.04 | 11.200 | 132 | A15 | 2.15 | 0.470 | 227 | B9 | 13.27 | 1.900 | 330 |
4 | 28.34 | 0.106 | 220 | A2 | 14.92 | 11.200 | 132 | A16 | 0.49 | 0.030 | 69 | B10 | 13.27 | 1.850 | 138 |
5 | 20.00 | 0.106 | 220 | A3 | 4.12 | 11.200 | 132 | A17 | 14.95 | 0.007 | 39 | B11 | 13.27 | 1.800 | 35 |
6 | 8.34 | 0.106 | 220 | A3-1 | 3.11 | 11.200 | 132 | A18 | 15.44 | 0.005 | 33 | B12 | 9.92 | 1.750 | 35 |
7 | 32.92 | 0.100 | 1050 | A3-2 | 1.01 | 11.200 | 132 | A19 | 15.44 | 0.470 | 33 | B13 | 8.00 | 1.750 | 35 |
8 | 0.01 | 0.100 | 160 | A4 | 14.92 | 10.700 | 316 | A20 | 15.44 | 0.270 | 50 | B14 | 1.92 | 1.750 | 35 |
9 | 32.92 | 0.100 | 1050 | A5 | 14.92 | 10.700 | 316 | A21 | 0.49 | 0.030 | 69 | B15 | 1.92 | 1.700 | 300 |
10 | 32.92 | 0.096 | 190 | A6 | 17.59 | 10.700 | 316 | A22 | 19.04 | 0.270 | 130 | B16 | 1.92 | 1.700 | 330 |
11 | 32.92 | 0.096 | 150 | A7 | 1.44 | 10.700 | 316 | A23 | 1.44 | 10.400 | 148 | B17 | 1.92 | 1.650 | 116 |
12 | 0.15 | 0.101 | 25 | A8 | 4.12 | 10.700 | 316 | B1 | 4.48 | 2.200 | 144 | B18 | 1.92 | 1.600 | 35 |
13 | 32.94 | 0.094 | 150 | A8-1 | 3.11 | 10.700 | 316 | B2 | 0.04 | 2.200 | 80 | B19 | 1.57 | 1.550 | 35 |
14 | 32.94 | 0.094 | 112 | A8-2 | 1.01 | 10.700 | 316 | B3 | 0.75 | 2.200 | 80 | B20 | 1.57 | 8.000 | 35 |
15 | 32.94 | 0.094 | 40 | A9 | 17.59 | 10.500 | 379 | B4 | 4.52 | 2.200 | 901 | B21 | 8.00 | 2.250 | 60 |
16 | 28.89 | 0.094 | 40 | A10 | 17.59 | 10.000 | 510 | B5 | 4.52 | 2.150 | 405 | B22 | 8.75 | 2.200 | 66 |
17 | 4.59 | 0.094 | 40 | A11 | 17.59 | 9.900 | 505 | B6 | 13.27 | 2.100 | 305 | B23 | 8.75 | 2.150 | 290 |
18 | 24.28 | 0.094 | 40 | A12 | 17.59 | 2.500 | 327 |
1 | DING Yin, ZHAO Jun, LIU Jiawei, et al. A review of China's municipal solid waste (MSW) and comparison with international regions: management and technologies in treatment and resource utilization[J]. Journal of Cleaner Production, 2021, 293: 126144. |
2 | GU Binxian, JIANG Suqin, WANG Haikun, et al. Characterization, quantification and management of China's municipal solid waste in spatiotemporal distributions: a review[J]. Waste Management, 2017, 61: 67-77. |
3 | CHENG Hefa, HU Yuanan. Municipal solid waste (MSW) as a renewable source of energy: current and future practices in China[J]. Bioresource Technology, 2010, 101(11): 3816-3824. |
4 | KHAN S, ANJUM R, RAZA S T, et al. Technologies for municipal solid waste management: current status, challenges, and future perspectives[J]. Chemosphere, 2022, 288: 132403. |
5 | NEUWAHL F, CUSANO G, BENAVIDES J G, et al. Best available techniques (BAT) reference document for waste incineration[R]. Publications Office of the European Union: Luxembourg, 2019. |
6 | CHRISTENSEN T H, BISINELLA V. Climate change impacts of introducing carbon capture and utilisation (CCU) in waste incineration[J]. Waste Management, 2021, 126: 754-770. |
7 | LEE S H, THEMELIS N J, CASTALDI M J. High-temperature corrosion in waste-to-energy boilers[J]. Journal of Thermal Spray Technology, 2007, 16(1): 104-110. |
8 | PHONGPHIPHAT A, RYU C, YANG Y B, et al. Investigation into high-temperature corrosion in a large-scale municipal waste-to-energy plant[J]. Corrosion Science, 2010, 52(12): 3861-3874. |
9 | LOMBARDI L, CARNEVALE E, CORTI A. A review of technologies and performances of thermal treatment systems for energy recovery from waste[J]. Waste Management, 2015, 37: 26-44. |
10 | GÖTZ M, LEFEBVRE J, MÖRS F, et al. Renewable power-to-gas: a technological and economic review[J]. Renewable Energy, 2016, 85: 1371-1390. |
11 | ZHANG Xingping, ZHANG Youzhong. Environment-friendly and economical scheduling optimization for integrated energy system considering power-to-gas technology and carbon capture power plant[J]. Journal of Cleaner Production, 2020, 276: 123348. |
12 | ZHANG Xiaojin, BAUER C, MUTEL C L, et al. Life cycle assessment of power-to-gas: approaches, system variations and their environmental implications[J]. Applied Energy, 2017, 190: 326-338. |
13 | BAILERA M, LISBONA P, ROMEO L M. Power to gas-oxyfuel boiler hybrid systems[J]. International Journal of Hydrogen Energy, 2015, 40(32): 10168-10175. |
14 | BAILERA M, LISBONA P, ROMEO L M, et al. Power to gas-biomass oxycombustion hybrid system: energy integration and potential applications[J]. Applied Energy, 2016, 167: 221-229. |
15 | BAILERA M, LISBONA P, PEÑA B, et al. Energy storage[M]. Cham: Springer International Publishing, 2020: 40. |
16 | RISPOLI A L, VERDONE N, VILARDI G. Green fuel production by coupling plastic waste oxy-combustion and PtG technologies: economic, energy, exergy and CO2-cycle analysis[J]. Fuel Processing Technology, 2021, 221: 106922. |
17 | RÖNSCH S, SCHNEIDER J, MATTHISCHKE S, et al. Review on methanation—From fundamentals to current projects[J]. Fuel, 2016, 166: 276-296. |
18 | BOGALE W, VIGANÒ F. A preliminary comparative performance evaluation of highly efficient waste-to-energy plants[J]. Energy Procedia, 2014, 45: 1315-1324. |
19 | CHEN Heng, WU Yunyun, ZENG Yuchuan, et al. Performance analysis of a solar-aided waste-to-energy system based on steam reheating[J]. Applied Thermal Engineering, 2021, 185: 116445. |
20 | KOYTSOUMPA E I, KARELLAS S. Equilibrium and kinetic aspects for catalytic methanation focusing on CO2 derived substitute natural gas (SNG)[J]. Renewable and Sustainable Energy Reviews, 2018, 94: 536-550. |
21 | ZHOU X, LIU H, FU L, et al. Experimental study of natural gas combustion flue gas waste heat recovery system based on direct contact heat transfer and absorption heat pump[C]//Proceedings of ASME 2013 7th International Conference on Energy Sustainability Collocated With the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology, Minneapolis, Minnesota, USA. 2013. |
22 | 陈琪华, 何育恒, 李茂东, 等. 垃圾焚烧发电锅炉蒸汽空气预热器经济性分析及热力系统优化[J]. 工业锅炉, 2019(4): 19-20, 28. |
CHEN Qihua, HE Yuheng, LI Maodong, et al. Economic analysis and thermodynamic optimization of steam-air preheater on waste incineration boiler[J]. Industrial Boilers, 2019(4): 19-20, 28. | |
23 | CHEN Heng, ZHANG Meiyan, WU Yunyun, et al. Design and performance evaluation of a new waste incineration power system integrated with a supercritical CO2 power cycle and a coal-fired power plant[J]. Energy Conversion and Management, 2020, 210: 112715. |
24 | DING Guangchao, HE Boshu, CAO Yang, et al. Process simulation and optimization of municipal solid waste fired power plant with oxygen/carbon dioxide combustion for near zero carbon dioxide emission[J]. Energy Conversion and Management, 2018, 157: 157-168. |
25 | XIA Zihong, SHAN Peng, CHEN Caixia, et al. A two-fluid model simulation of an industrial moving grate waste incinerator[J]. Waste Management, 2020, 104: 183-191. |
26 | 韩中合, 韩旭, 李鹏. 汽轮机内湿汽损失定量评估研究进展[J]. 热力发电, 2016, 45(2): 1-6. |
HAN Zhonghe, HAN Xu, LI Peng. Progress of quantitative evaluation of wetness losses in steam turbine[J]. Thermal Power Generation, 2016, 45(2): 1-6. | |
27 | BUTTLER A, SPLIETHOFF H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2440-2454. |
[1] | ZHANG Dong, LIU Pengfei, LIU Chunyang, HOU Gang, HUI Bo, AN Zhoujian. Performance analysis of solar PV/T photovoltaic energy storage direct drive CHP system [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2895-2903. |
[2] | MA Yuan, XIAO Qingyue, YUE Junrong, CUI Yanbin, LIU Jiao, XU Guangwen. CO xco-methanation over a Ni-based catalyst supported on CeO2-Al2O3 composite [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2421-2428. |
[3] | ZHANG Wei, WANG Rui, MIAO Ping, TIAN Ge. Application research progress of renewable power-to-methane [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1257-1269. |
[4] | JI Zike, BAO Cheng. Research progress of selective CO methanation [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 120-132. |
[5] | WANG Guodong, GUO Yafei, LI Jiayuan, YAO Ruixuan, SUN Jian, ZHAO Chuanwen. CO2 adsorption and methanation performance of nickel-based catalysts modified with alkali/alkaline-earth metals [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6925-6933. |
[6] | Wanfu GONG,Binghai YAN. The new methanation process of VESTA [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 112-118. |
[7] | Yiqing SUN, Baosheng JIN, Xinxin DONG, Wenjie ZHANG, Jinde WANG. CO x methanation over nickel-based catalysts supported on ZrO2-Al2O3 composite [J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3176-3184. |
[8] | Chunqi LI. Preparation of a novel catalyst of La2O3-ZrO2-Ni /Al2O3 and its performance in syngas methanation [J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2776-2783. |
[9] | YUE Yongqiang, LIU Yongzhuo, CHANG Guozhang, GUO Qingjie. Influence of pyrolysis atmosphere and temperature on “one step” methanation activity of lignite semi-coke [J]. Chemical Industry and Engineering Progress, 2017, 36(10): 3690-3696. |
[10] | YANG Xia, QIN Shaodong, LI Jiabo, SUN Shouli. Effect of preparation method of ZrO2 support on catalytic performance of MoO3/ZrO2 for sulfur-resistant methanation [J]. Chemical Industry and Engineering Progress, 2017, 36(04): 1288-1293. |
[11] | LI Chunqi. Simulation analysis of the loop system of syngas methanation based on kinetics model [J]. Chemical Industry and Engineering Progree, 2017, 36(01): 146-155. |
[12] | YANG Xia, QIN Shaodong, LI Jiabo, SUN Shouli. Effect of ZrO2 on the catalytic performance of MoO3/Al2O3 catalyst for sulfur-resistant methanation [J]. Chemical Industry and Engineering Progree, 2016, 35(S2): 179-182. |
[13] | ZHANG Xu, WANG Zizong, CHEN Jianfeng. Thermodynamic analysis of coal-based syngas methanation deactivation and anti-inactivation on nickel-based catalyst [J]. Chemical Industry and Engineering Progress, 2016, 35(11): 3511-3518. |
[14] | CUI Kaikai, ZHOU Guilin, XIE Hongmei. Research progress in CO2 methanation catalysts [J]. Chemical Industry and Engineering Progree, 2015, 34(3): 724-730,737. |
[15] | LI Anxue, LI Chunqi, ZUO Yubang, MEI Changsong, YU Mingcheng, KOU Zhisheng, LIU Xuewu, TANG Junli. Research development syngas methanation technology [J]. Chemical Industry and Engineering Progree, 2015, 34(11): 3898-3905. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |