Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (8): 4709-4719.DOI: 10.16085/j.issn.1000-6613.2025-0100
• Process systems modeling and simulation • Previous Articles
ZHAI Yuhang1,2(
), CONG Lixin2(
), HAN Bing1, WANG Qilin1, ZOU Huichuan2
Received:2025-01-15
Revised:2025-04-14
Online:2025-09-08
Published:2025-08-25
Contact:
CONG Lixin
翟宇航1,2(
), 丛立新2(
), 韩冰1, 王启林1, 邹慧传2
通讯作者:
丛立新
作者简介:翟宇航(2000—),男,硕士研究生,研究方向为流体力学。E-mail:2380319765@qq.com。
基金资助:CLC Number:
ZHAI Yuhang, CONG Lixin, HAN Bing, WANG Qilin, ZOU Huichuan. Formation mechanism of large-scale hydrogen cloud deflagration pressure waves and determination of disaster effects[J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4709-4719.
翟宇航, 丛立新, 韩冰, 王启林, 邹慧传. 大尺度氢气云爆燃压力波形成机制及灾害效应判定[J]. 化工进展, 2025, 44(8): 4709-4719.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2025-0100
| 参数 | 加氢机 | 背部建筑物 | 顶盖 | 支撑柱 |
|---|---|---|---|---|
| 长/m | 0.8 | 8 | 8 | 0.6 |
| 宽/m | 0.4 | 8 | 8 | 0.6 |
| 高/m | 1.8 | 5.4 | 0.4 | 5 |
| 参数 | 加氢机 | 背部建筑物 | 顶盖 | 支撑柱 |
|---|---|---|---|---|
| 长/m | 0.8 | 8 | 8 | 0.6 |
| 宽/m | 0.4 | 8 | 8 | 0.6 |
| 高/m | 1.8 | 5.4 | 0.4 | 5 |
| 空气组分质量分数 | 氢气云团组分质量分数 | 温度/K | 压力/Pa | 点火半径/m | 点火能量/J | 点火时间/s | ||
|---|---|---|---|---|---|---|---|---|
| O2 | H2 | O2 | H2 | |||||
| 0.23 | 0 | 0.2233 | 0.0283 | 300 | 101325 | 0.01 | 1 | 0.0001 |
| 空气组分质量分数 | 氢气云团组分质量分数 | 温度/K | 压力/Pa | 点火半径/m | 点火能量/J | 点火时间/s | ||
|---|---|---|---|---|---|---|---|---|
| O2 | H2 | O2 | H2 | |||||
| 0.23 | 0 | 0.2233 | 0.0283 | 300 | 101325 | 0.01 | 1 | 0.0001 |
| ΔP/kPa | 对建筑的破坏 | ΔP/kPa | 对人体的伤害 |
|---|---|---|---|
| 6~15 | 受压面门窗玻璃大部分破碎 | 20~30 | 轻微受损 |
| 15~50 | 窗框损坏,墙体出现裂缝 | 30~50 | 中度损伤 |
| 50~70 | 木建筑厂房房柱折断,房架松动 | 50~100 | 重度损伤 |
| 70~100 | 砖墙倒塌 | ||
| 100~200 | 防震钢筋混凝土破坏,小房屋倒塌 | >100 | 人员死亡 |
| 200~300 | 大型钢架结构破坏 |
| ΔP/kPa | 对建筑的破坏 | ΔP/kPa | 对人体的伤害 |
|---|---|---|---|
| 6~15 | 受压面门窗玻璃大部分破碎 | 20~30 | 轻微受损 |
| 15~50 | 窗框损坏,墙体出现裂缝 | 30~50 | 中度损伤 |
| 50~70 | 木建筑厂房房柱折断,房架松动 | 50~100 | 重度损伤 |
| 70~100 | 砖墙倒塌 | ||
| 100~200 | 防震钢筋混凝土破坏,小房屋倒塌 | >100 | 人员死亡 |
| 200~300 | 大型钢架结构破坏 |
| ΔP/kPa | 对建筑的破坏 | 背部约束破坏范围/m | 顶部约束破坏范围/m | 全约束破坏范围/m |
|---|---|---|---|---|
| 6~15 | 受压面门窗玻璃大部分破碎 | 20.7~28.66 | 20.79~29.21 | 21.73~29.62 |
| 15~50 | 窗框损坏,墙体出现裂缝 | 10.85~20.7 | 12.41~20.79 | 13.68~21.73 |
| 50~70 | 木建筑厂房房柱折断,房架松动 | 7.29~10.85 | 9.44~12.41 | 11.24~13.68 |
| 70~100 | 砖墙倒塌 | 2.7~7.29 | 7.09~9.44 | 8.29~11.24 |
| 100~200 | 防震钢筋混凝土破坏,小房屋倒塌 | 0~2.7 | 0~7.09 | 4.49~8.29,0~2.95 |
| 200~300 | 大型钢架结构破坏 | — | — | 2.95~4.49 |
| ΔP/kPa | 对建筑的破坏 | 背部约束破坏范围/m | 顶部约束破坏范围/m | 全约束破坏范围/m |
|---|---|---|---|---|
| 6~15 | 受压面门窗玻璃大部分破碎 | 20.7~28.66 | 20.79~29.21 | 21.73~29.62 |
| 15~50 | 窗框损坏,墙体出现裂缝 | 10.85~20.7 | 12.41~20.79 | 13.68~21.73 |
| 50~70 | 木建筑厂房房柱折断,房架松动 | 7.29~10.85 | 9.44~12.41 | 11.24~13.68 |
| 70~100 | 砖墙倒塌 | 2.7~7.29 | 7.09~9.44 | 8.29~11.24 |
| 100~200 | 防震钢筋混凝土破坏,小房屋倒塌 | 0~2.7 | 0~7.09 | 4.49~8.29,0~2.95 |
| 200~300 | 大型钢架结构破坏 | — | — | 2.95~4.49 |
| ΔP/kPa | 对人体造成的损伤 | 背部约束破坏范围/m | 顶部约束破坏范围/m | 全约束破坏范围/m |
|---|---|---|---|---|
| 20~30 | 轻微受损 | 15.29~18.54 | 16.03~18.78 | 17.04~19.75 |
| 30~50 | 中度损伤 | 10.85~15.29 | 12.41~20.79 | 13.68~17.04 |
| 50~100 | 重度损伤 | 2.7~10.85 | 7.09~12.41 | 8.29~13.68 |
| >100 | 人员死亡 | 0~2.7 | 0~7.09 | 0~8.29 |
| ΔP/kPa | 对人体造成的损伤 | 背部约束破坏范围/m | 顶部约束破坏范围/m | 全约束破坏范围/m |
|---|---|---|---|---|
| 20~30 | 轻微受损 | 15.29~18.54 | 16.03~18.78 | 17.04~19.75 |
| 30~50 | 中度损伤 | 10.85~15.29 | 12.41~20.79 | 13.68~17.04 |
| 50~100 | 重度损伤 | 2.7~10.85 | 7.09~12.41 | 8.29~13.68 |
| >100 | 人员死亡 | 0~2.7 | 0~7.09 | 0~8.29 |
| [1] | KAMRAN Muhammad, Marek TURZǏŃSKI. Exploring hydrogen energy systems: A comprehensive review of technologies, applications, prevailing trends, and associated challenges[J]. Journal of Energy storage, 2024,96(15): 112601. |
| [2] | 赵永志, 蒙波, 陈霖新, 等. 氢能源的利用现状分析[J]. 化工进展, 2015, 34(9): 3248-3255. |
| ZHAO Yongzhi, MENG Bo, CHEN Linxin, et al. Utilization status of hydrogen energy[J]. Chemical Industry and Engineering Progress, 2015, 34(9): 3248-3255. | |
| [3] | WANG Xueyan, ZOU Xiong, GAO Wei. Flammable gas leakage risk assessment for methanol to hydrogen refueling stations and liquid hydrogen refueling stations[J]. International Journal of Hydrogen Energy, 2024, 54: 1286-1294. |
| [4] | MORADI Ramin, GROTH Katrina M. Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis[J]. International Journal of Hydrogen Energy, 2019, 44(23): 12254-12269. |
| [5] | LI Hao, CAO Xuewen, LIU Yang, et al. Safety of hydrogen storage and transportation: An overview on mechanisms, techniques, and challenges[J]. Energy Reports, 2022, 8: 6258-6269. |
| [6] | 毕明树, 姚敏. 内置障碍物诱导下的开敞空间球形气云爆炸冲量的研究[J]. 含能材料, 2006, 14(1): 8-11. |
| BI Mingshu, YAO Min. Explosion impulse of spherical vapor cloud built-in barriers[J]. Chinese Journal of Energetic Materials, 2006, 14(1): 8-11. | |
| [7] | KIM Woo Kyung, MOGI Toshio, DOBASHI Ritsu. Flame acceleration in unconfined hydrogen/air deflagrations using infrared photography[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(6): 1501-1505. |
| [8] | LI Mingzhi, LIU Zhenyi, CHEN Lang, et al. Flame propagation characteristics and overpressure prediction of unconfined gas deflagration[J]. Fuel, 2021, 284: 119022. |
| [9] | 李艳超, 毕明树, 高伟. 耦合火焰自加速传播的氢气云爆炸超压预测[J]. 爆炸与冲击, 2021, 41(7): 33-38. |
| LI Yanchao, BI Mingshu, GAO Wei. Theoretical prediction of hydrogen cloud explosion overpressure considering self-accelerating flame propagation[J]. Explosion and Shock Waves, 2021, 41(7): 33-38. | |
| [10] | JIANG Yuting, LI Yanchao, ZHOU Yonghao, et al. Investigation on unconfined hydrogen cloud explosion with external turbulence[J]. International Journal of Hydrogen Energy, 2022, 47(13): 8658-8670. |
| [11] | ZBIKOWSKI M, MAKAROV D, MOLKOV V. LES model of large scale hydrogen-air planar detonations: Verification by the ZND theory[J]. International Journal of Hydrogen Energy, 2008, 33(18): 4884-4892. |
| [12] | ZHANG Qi, LI Dong. Comparison of the explosion characteristics of hydrogen, propane, and methane clouds at the stoichiometric concentrations[J]. International Journal of Hydrogen Energy, 2017, 42(21): 14794-14808. |
| [13] | 鲍麒, 方秦, 张亚栋, 等. 充气薄膜对开敞空间气体爆炸试验的影响分析[J]. 工程力学, 2017, 34(7): 232-240. |
| BAO Qi, FANG Qin, ZHANG Yadong, et al. The influence of film on the unconfined gas explosion tests[J]. Engineering Mechanics, 2017, 34(7): 232-240. | |
| [14] | 陈强峰, 王西明, 汤敏华, 等. 基于FLACS的掺氢燃气站场事故后果评估[J]. 消防科学与技术, 2022, 41(7): 937-941. |
| CHEN Qiangfeng, WANG Ximing, TANG Minhua, et al. Accident consequence assessment of hydrogen-doped gas station based on FLACS[J]. Fire Science and Technology, 2022, 41(7): 937-941. | |
| [15] | LI Yongjun, WANG Zhirong, SHI Xuemeng, et al. Safety analysis of hydrogen leakage accident with a mobile hydrogen refueling station[J]. Process Safety and Environmental Protection, 2023, 171: 619-629. |
| [16] | LÜBCKE H, SCHMIDT St, RUNG T, et al. Comparison of LES and RANS in bluff-body flows[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89(14/15): 1471-1485. |
| [17] | FELTEN F, FAUTRELLE Y, Y Du TERRAIL, et al. Numerical modelling of electromagnetically-driven turbulent flows using LES methods[J]. Applied Mathematical Modelling, 2004, 28(1): 15-27. |
| [18] | SHIH Tsan-Hsing, LIOU William W, SHABBIR Aamir, et al. A new k-ϵ eddy viscosity model for high Reynolds number turbulent flows[J]. Computers & Fluids, 1995, 24(3): 227-238. |
| [19] | DIMOTAKIS Paul E, DEBUSSY Francois D, KOOCHESFAHANI Manoochehr M. Particle streak velocity field measurements in a two-dimensional mixing layer[J]. The Physics of Fluids, 1981, 24(6): 995-999. |
| [20] | WILLERT C E, GHARIB M. Digital particle image velocimetry[J]. Experiments in Fluids, 1991, 10(4): 181-193. |
| [21] | YU Xing, YAN Wenjing, LIU Yi, et al. The flame mitigation effect of vertical barrier wall in hydrogen refueling stations[J]. Fuel, 2022, 315: 123265. |
| [22] | KIM Hyunjoon, Myungeun EOM, KIM Byung-In. Development of strategic hydrogen refueling station deployment plan for Korea[J]. International Journal of Hydrogen Energy, 2020, 45(38): 19900-19911. |
| [23] | WANG Fangnian, XIAO Jianjun, JORDAN Thomas. GASFLOW-MPI analysis on deflagration in full-scale hydrogen refueling station experiments: H2-air premixed cloud and high-pressure H2 jet[J]. International Journal of Hydrogen Energy, 2022, 47(32): 14725-14739. |
| [24] | 李少鹏, 陈国华, 赵杰, 等. 开敞空间可燃气云爆炸冲击波超压及灾害动力响应研究评述[J]. 中国安全生产科学技术, 2019, 15(11): 11-17. |
| LI Shaopeng, CHEN Guohua, ZHAO Jie, et al. Review of research on shock wave overpressure and disaster dynamic response of flammable vapor cloud explosion in unconfined space[J]. Journal of Safety Science and Technology, 2019, 15(11): 11-17. | |
| [25] | 李玉星, 尹渊博, 王雅真, 等. 甲烷爆炸对建筑物内外压力场分布的影响[J]. 化工学报, 2020, 71(11): 5337-5351. |
| LI Yuxing, YIN Yuanbo, WANG Yazhen, et al. Effect of methane explosion on distribution of pressure field inside and outside buildings[J]. CIESC Journal, 2020, 71(11): 5337-5351. |
| [1] | LI Yanping, YANG Tao, WANG Hongxun, ZHANG Cheng, WEN Guosheng, HAN Zhicheng, LAN Gongjia, YAN Dazhou. Reaction molecular dynamics simulation of the thermal decomposition and reduction system of trichlorosilane in a hydrogen atmosphere [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4322-4330. |
| [2] | LI Ka, XIA Yuxuan, WU Xiaoqin, YI Lan, LUO Hao. Pore scale computational fluid dynamics (CFD) simulation of a double-layer porous medium combustion reactor [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4381-4393. |
| [3] | DAI Guilong, WANG Xiaoyu, HUANGFU Jiangfei, GONG Lingzhu. Convection heat transfer characteristics of pore-scale Laguerre Voronoi open-cell foam [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4394-4407. |
| [4] | LI Zeng, ZHAO Yunpeng, LI Yuhui, LIU Nan, ZHU Chunmeng, SHI Xiaogang, GAO Jinsen, LAN Xingying. Abnormal diagnosis of catalyst loss for FCC disengager based on CFD simulation [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4430-4442. |
| [5] | LI Haodong, SHEN Shengqiang, CHEN Liang. Numerical simulation on ammonia-hydrogen combustion exhaust heat utilization coupling ammonia cracking process for hydrogen production [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4443-4453. |
| [6] | WANG Zhaolin, ZHANG Zhigang, ZHOU Jing, GAO Chen, PENG Kechen, JIANG Mindi, XI Xi, XU Shengli, LIU Hong. Flow and heat transfer characteristics based on Gyroid triply periodic minimal surface heat exchange components [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4454-4462. |
| [7] | ZHANG Jianwei, YIN Miaomiao, DONG Xin, FENG Ying. Numerical simulation of mixing characteristics in an impinging stream reactor based on oscillating jets [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4488-4499. |
| [8] | WANG Yabin, ZHAO Bidan, XU Fan, LAN Bin, WANG Junwu. Full-loop simulation of gas-solid flow in CFB unit using mesoscience-based structural model [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4500-4512. |
| [9] | WANG Lanxin, LI Fei, QIAN Yanan, TIAN Yujie, SHEN Jun, WANG Wei. Numerical simulation of coal pyrolysis with different moisture content in fixed-bed reactor [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4513-4525. |
| [10] | AN Shu, MA Yongli, FENG Lei, ZHANG Zihao, LIU Mingyan. CFD simulation of process of water-based foaming through net foam generator [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4545-4555. |
| [11] | TANG Jian, CUI Wangwang, CHEN Jiakun, WANG Tianzheng, QIAO Junfei. Full lifecycle prediction model construction for dioxins in municipal solid waste incineration process: Method of coupling numerical simulation and fuzzy forest regression [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4628-4647. |
| [12] | YANG Jiacong, CHENG Guangxu, JIA Tonghua, JIANG Zhao. Simulation and techno-economic analysis of new efficient coupling processes between coal to methanol and green hydrogen [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4657-4668. |
| [13] | HUANG Lingjun, ZHU Qingyu, ZHANG Yu, SUN Weiqi, DOU Dongyang, WANG Qili. Simultaneous optimization of hydrogen network with CO₂ hydrogenation to methanol process based on evolutionary response surface method [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4688-4700. |
| [14] | ZHANG Ruochen, WANG Jiarui, WANG Simin, ZHANG Zaoxiao. Dynamic collision behavior and energy dissipation mechanism of micron wet particles [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3718-3726. |
| [15] | SHI Qinchuan, WANG Shiyuan, LI Peiya, LU Shuhan, WANG Bo, WANG Jiahui, YANG Fusheng, WANG Bin, YANG Shengchun, FANG Tao. Research on the solubilities of hydrogen in liquid organic hydrogen carriers [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3816-3827. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |