Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (8): 4657-4668.DOI: 10.16085/j.issn.1000-6613.2024-1669
• Process systems modeling and simulation • Previous Articles
YANG Jiacong(
), CHENG Guangxu(
), JIA Tonghua, JIANG Zhao
Received:2024-10-17
Revised:2025-02-12
Online:2025-09-08
Published:2025-08-25
Contact:
CHENG Guangxu
通讯作者:
程光旭
作者简介:杨嘉聪(2000—),男,博士研究生,研究方向为能源化工节能技术。E-mail:yjc18571341687@stu.xjtu.edu.cn。
基金资助:CLC Number:
YANG Jiacong, CHENG Guangxu, JIA Tonghua, JIANG Zhao. Simulation and techno-economic analysis of new efficient coupling processes between coal to methanol and green hydrogen[J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4657-4668.
杨嘉聪, 程光旭, 贾彤华, 姜召. 煤制甲醇与绿氢高效耦合新工艺模拟及技术经济分析[J]. 化工进展, 2025, 44(8): 4657-4668.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1669
| 工业分析 | 质量分数/% | 元素分析 | 质量分数/% | 硫分析 | 质量分数/% |
|---|---|---|---|---|---|
| 水分 | 7.67 | C | 73.67 | 硫化矿硫 | 30 |
| 固定碳(FC) | 56.33 | H | 6.41 | 硫酸盐硫 | 30 |
| 挥发分(VM) | 34.66 | N | 1.15 | 有机硫 | 40 |
| 灰分(ASH) | 9.01 | S | 0.36 | ||
| O | 9.4 |
| 工业分析 | 质量分数/% | 元素分析 | 质量分数/% | 硫分析 | 质量分数/% |
|---|---|---|---|---|---|
| 水分 | 7.67 | C | 73.67 | 硫化矿硫 | 30 |
| 固定碳(FC) | 56.33 | H | 6.41 | 硫酸盐硫 | 30 |
| 挥发分(VM) | 34.66 | N | 1.15 | 有机硫 | 40 |
| 灰分(ASH) | 9.01 | S | 0.36 | ||
| O | 9.4 |
| 工段 | 设备 | 塔板数 | 进料塔板 | 操作压力/kPa |
|---|---|---|---|---|
| 低温甲醇洗 | T2-101 | 15 | 14 | 2830 |
| T2-102 | 3 | 3 | 2810 | |
| T2-103 | 10 | 10 | 2800 | |
| T2-104 | 8 | 8 | 2780 | |
| T2-201 | 40 | 1 | 180 | |
| T2-202 | 15 | 10 | 210 | |
甲醇精馏 (传统工艺) | T2-3 | 12 | 7 | 100 |
| T2-4 | 15 | 1 | 119 | |
| T2-5 | 15 | 10 | 180 | |
| T2-6 | 24 | 20 | 600 | |
| T2-7 | 27 | 20 | 102 | |
| 新工艺Ⅰ | T3-1 | 10 | 7 | 180 |
| T3-2 | 25 | 21 | 600 | |
| T3-3 | 30 | 23 | 102 | |
| 新工艺Ⅱ | T4-1 | 11 | 6 | 180 |
| T4-2 | 22 | 13 | 600 | |
| T4-3 | 20 | 10 | 102 |
| 工段 | 设备 | 塔板数 | 进料塔板 | 操作压力/kPa |
|---|---|---|---|---|
| 低温甲醇洗 | T2-101 | 15 | 14 | 2830 |
| T2-102 | 3 | 3 | 2810 | |
| T2-103 | 10 | 10 | 2800 | |
| T2-104 | 8 | 8 | 2780 | |
| T2-201 | 40 | 1 | 180 | |
| T2-202 | 15 | 10 | 210 | |
甲醇精馏 (传统工艺) | T2-3 | 12 | 7 | 100 |
| T2-4 | 15 | 1 | 119 | |
| T2-5 | 15 | 10 | 180 | |
| T2-6 | 24 | 20 | 600 | |
| T2-7 | 27 | 20 | 102 | |
| 新工艺Ⅰ | T3-1 | 10 | 7 | 180 |
| T3-2 | 25 | 21 | 600 | |
| T3-3 | 30 | 23 | 102 | |
| 新工艺Ⅱ | T4-1 | 11 | 6 | 180 |
| T4-2 | 22 | 13 | 600 | |
| T4-3 | 20 | 10 | 102 |
| 项目 | 摩尔分数/% | 温度/℃ | |||
|---|---|---|---|---|---|
| H2 | CO2 | CO | CH4 | ||
| 模拟结果(干基) | 33.19 | 19.89 | 46.25 | 0.01 | 1300 |
| 文献结果(干基) | 34.09 | 20.14 | 45.31 | 0.02 | 1300 |
| 生产数据(干基) | 34.14 | 20.25 | 45.53 | 0.07 | 1314 |
| 项目 | 摩尔分数/% | 温度/℃ | |||
|---|---|---|---|---|---|
| H2 | CO2 | CO | CH4 | ||
| 模拟结果(干基) | 33.19 | 19.89 | 46.25 | 0.01 | 1300 |
| 文献结果(干基) | 34.09 | 20.14 | 45.31 | 0.02 | 1300 |
| 生产数据(干基) | 34.14 | 20.25 | 45.53 | 0.07 | 1314 |
| 流程 | 摩尔分数/% | |||||||
|---|---|---|---|---|---|---|---|---|
| H2 | CO2 | CO | N2 | H2O | COS | H2S | CH4 | |
| 气化后 | 23.56 | 14.12 | 32.83 | 0.37 | 29.02 | 45.16×10-4 | 854.84×10-4 | 0.01 |
| 变换后 | 38.61 | 29.16 | 17.79 | 0.37 | 13.97 | 45.16×10-4 | 854.84×10-4 | 0.01 |
| 净化后 | 66.91 | 1.68 | 30.73 | 0.63 | 0 | 0.01×10-4 | 0.05×10-4 | 0.02 |
| 流程 | 摩尔分数/% | |||||||
|---|---|---|---|---|---|---|---|---|
| H2 | CO2 | CO | N2 | H2O | COS | H2S | CH4 | |
| 气化后 | 23.56 | 14.12 | 32.83 | 0.37 | 29.02 | 45.16×10-4 | 854.84×10-4 | 0.01 |
| 变换后 | 38.61 | 29.16 | 17.79 | 0.37 | 13.97 | 45.16×10-4 | 854.84×10-4 | 0.01 |
| 净化后 | 66.91 | 1.68 | 30.73 | 0.63 | 0 | 0.01×10-4 | 0.05×10-4 | 0.02 |
| 流股 | 组分摩尔分数/% | 摩尔流量 /kmol·h-1 | 质量流量 /kg·h-1 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| H2 | CO | CO2 | H2O | N2 | CH4 | H2S | COS | CH3OH | |||
| gasin | 38.61 | 17.79 | 29.16 | 13.97 | 0.37 | 0.01 | 854.84×10-4 | 45.16×10-4 | 0 | 6435.63 | 136747.37 |
| WG2-1 | 24.00 | 29.73 | 45.23 | 0 | 0.96 | 0.04 | 297.26×10-4 | 2.74×10-4 | 0.01 | 9.77 | 283.45 |
| WG2-2 | 0.02 | 0.10 | 99.27 | 0 | 0.60 | 0 | 1.42×10-4 | 1.40×10-4 | 0.01 | 1692.25 | 74270.72 |
| WG2-3 | 22.04 | 6.15 | 32.88 | 0 | 11.23 | 1.61 | 598.52×10-4 | 1.48×10-4 | 26.02 | 29.80 | 846.60 |
| WL2-1 | 0 | 0 | 0 | 100.00 | 0 | 0 | 0 | 0 | 0 | 898.95 | 16196.88 |
| WL2-2 | 0 | 0 | 0 | 100.00 | 0 | 0 | 0 | 0 | 0 | 1.50 | 27.02 |
| WL2-3 | 0 | 0 | 0 | 99.67 | 0 | 0 | 0 | 0 | 0.33 | 48.90 | 883.22 |
| WL2-4 | 0 | 0 | 0 | 51.19 | 0 | 0 | 0 | 0 | 48.81 | 3.16 | 78.78 |
| N2 | 0 | 0 | 0 | 0 | 100.00 | 0 | 0 | 0 | 0 | 10 | 280.13 |
| RE-S | 0 | 0 | 79.48 | 0 | 0.04 | 0 | 3.17 | 0.17 | 17.14 | 163.49 | 6812.07 |
| RE-H | 67.10 | 9.35 | 2.33 | 0 | 20.64 | 0.27 | 6.29×10-4 | 0.37×10-4 | 0.31 | 97.93 | 1069.57 |
| CH3OH | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100.00 | 1170.44 | 37502.80 |
| 流股 | 组分摩尔分数/% | 摩尔流量 /kmol·h-1 | 质量流量 /kg·h-1 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| H2 | CO | CO2 | H2O | N2 | CH4 | H2S | COS | CH3OH | |||
| gasin | 38.61 | 17.79 | 29.16 | 13.97 | 0.37 | 0.01 | 854.84×10-4 | 45.16×10-4 | 0 | 6435.63 | 136747.37 |
| WG2-1 | 24.00 | 29.73 | 45.23 | 0 | 0.96 | 0.04 | 297.26×10-4 | 2.74×10-4 | 0.01 | 9.77 | 283.45 |
| WG2-2 | 0.02 | 0.10 | 99.27 | 0 | 0.60 | 0 | 1.42×10-4 | 1.40×10-4 | 0.01 | 1692.25 | 74270.72 |
| WG2-3 | 22.04 | 6.15 | 32.88 | 0 | 11.23 | 1.61 | 598.52×10-4 | 1.48×10-4 | 26.02 | 29.80 | 846.60 |
| WL2-1 | 0 | 0 | 0 | 100.00 | 0 | 0 | 0 | 0 | 0 | 898.95 | 16196.88 |
| WL2-2 | 0 | 0 | 0 | 100.00 | 0 | 0 | 0 | 0 | 0 | 1.50 | 27.02 |
| WL2-3 | 0 | 0 | 0 | 99.67 | 0 | 0 | 0 | 0 | 0.33 | 48.90 | 883.22 |
| WL2-4 | 0 | 0 | 0 | 51.19 | 0 | 0 | 0 | 0 | 48.81 | 3.16 | 78.78 |
| N2 | 0 | 0 | 0 | 0 | 100.00 | 0 | 0 | 0 | 0 | 10 | 280.13 |
| RE-S | 0 | 0 | 79.48 | 0 | 0.04 | 0 | 3.17 | 0.17 | 17.14 | 163.49 | 6812.07 |
| RE-H | 67.10 | 9.35 | 2.33 | 0 | 20.64 | 0.27 | 6.29×10-4 | 0.37×10-4 | 0.31 | 97.93 | 1069.57 |
| CH3OH | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100.00 | 1170.44 | 37502.80 |
| 流股 | 组分摩尔分数/% | 摩尔流量 /kmol·h-1 | 质量流量 /kg·h-1 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| H2 | CO | CO2 | H2O | N2 | CH4 | H2S | COS | CH3OH | |||
| H2 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4698.26 | 9471.13 |
| CO2 | 0.02 | 0.10 | 99.27 | 0 | 0.60 | 0 | 1.42×10-4 | 1.40×10-4 | 0.01 | 1692.25 | 74270.72 |
| RE-H | 72.44 | 1.98 | 23.86 | 0.04 | 1.52 | 0 | 2.61×10-4 | 0.16×10-4 | 0.16 | 660.591 | 8588.21 |
| WG3-1 | 6.56 | 0.30 | 92.93 | 0 | 0.18 | 0.01 | 188.29×10-4 | 11.71×10-4 | 0 | 118.791 | 4891.22 |
| WL3-1 | 0 | 0 | 0 | 99.99 | 0 | 0 | 0 | 0 | 0.01 | 1334.74 | 24048.24 |
| WL3-2 | 0 | 0 | 0 | 84.53 | 0 | 0 | 0 | 0 | 15.47 | 91.11 | 1839.02 |
| CH3OH | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100.00 | 1384.66 | 44366.22 |
| 流股 | 组分摩尔分数/% | 摩尔流量 /kmol·h-1 | 质量流量 /kg·h-1 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| H2 | CO | CO2 | H2O | N2 | CH4 | H2S | COS | CH3OH | |||
| H2 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4698.26 | 9471.13 |
| CO2 | 0.02 | 0.10 | 99.27 | 0 | 0.60 | 0 | 1.42×10-4 | 1.40×10-4 | 0.01 | 1692.25 | 74270.72 |
| RE-H | 72.44 | 1.98 | 23.86 | 0.04 | 1.52 | 0 | 2.61×10-4 | 0.16×10-4 | 0.16 | 660.591 | 8588.21 |
| WG3-1 | 6.56 | 0.30 | 92.93 | 0 | 0.18 | 0.01 | 188.29×10-4 | 11.71×10-4 | 0 | 118.791 | 4891.22 |
| WL3-1 | 0 | 0 | 0 | 99.99 | 0 | 0 | 0 | 0 | 0.01 | 1334.74 | 24048.24 |
| WL3-2 | 0 | 0 | 0 | 84.53 | 0 | 0 | 0 | 0 | 15.47 | 91.11 | 1839.02 |
| CH3OH | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100.00 | 1384.66 | 44366.22 |
| 流股 | 组分摩尔分数/% | 摩尔流量 /kmol·h-1 | 质量流量 /kg·h-1 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| H2 | CO | CO2 | H2O | N2 | CH4 | H2S | COS | C2H6 | C3H8 | CH3OH | |||
| CO2 | 0.02 | 0.10 | 99.27 | 0 | 0.60 | 0 | 1.42×10-4 | 1.40×10-4 | 0 | 0 | 0.01 | 799.36 | 35082.89 |
| CH4 | 0 | 0 | 0 | 0 | 4.64 | 94.70 | 0 | 0 | 0.55 | 0.11 | 0 | 761.78 | 12729.67 |
| H2 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1581.75 | 3188.61 |
| WL4-1 | 0 | 0 | 0 | 100.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 35.81 | 645.27 |
| WL4-2 | 0 | 0 | 0 | 100.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 30.34 | 546.69 |
| WL4-3 | 0 | 0 | 0 | 94.62 | 0 | 0 | 0 | 0 | 0 | 0 | 5.38 | 3.26 | 61.29 |
| RE-H | 45.16 | 22.72 | 5.19 | 0 | 16.10 | 10.53 | 2.92×10-4 | 0 | 0 | 0 | 0.30 | 227.92 | 3613.37 |
| WG4-1 | 8.54 | 8.65 | 42.03 | 0 | 5.08 | 35.68 | 0.02 | 1.13×10-4 | 0 | 0 | 0 | 62.36 | 1761.64 |
| CH3OH | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 99.99 | 1384.40 | 44358.73 |
| 流股 | 组分摩尔分数/% | 摩尔流量 /kmol·h-1 | 质量流量 /kg·h-1 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| H2 | CO | CO2 | H2O | N2 | CH4 | H2S | COS | C2H6 | C3H8 | CH3OH | |||
| CO2 | 0.02 | 0.10 | 99.27 | 0 | 0.60 | 0 | 1.42×10-4 | 1.40×10-4 | 0 | 0 | 0.01 | 799.36 | 35082.89 |
| CH4 | 0 | 0 | 0 | 0 | 4.64 | 94.70 | 0 | 0 | 0.55 | 0.11 | 0 | 761.78 | 12729.67 |
| H2 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1581.75 | 3188.61 |
| WL4-1 | 0 | 0 | 0 | 100.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 35.81 | 645.27 |
| WL4-2 | 0 | 0 | 0 | 100.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 30.34 | 546.69 |
| WL4-3 | 0 | 0 | 0 | 94.62 | 0 | 0 | 0 | 0 | 0 | 0 | 5.38 | 3.26 | 61.29 |
| RE-H | 45.16 | 22.72 | 5.19 | 0 | 16.10 | 10.53 | 2.92×10-4 | 0 | 0 | 0 | 0.30 | 227.92 | 3613.37 |
| WG4-1 | 8.54 | 8.65 | 42.03 | 0 | 5.08 | 35.68 | 0.02 | 1.13×10-4 | 0 | 0 | 0 | 62.36 | 1761.64 |
| CH3OH | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 99.99 | 1384.40 | 44358.73 |
| 参数 | 传统3×105t煤制甲醇 | 绿氢高效耦合新工艺Ⅰ | 绿氢高效耦合新工艺Ⅱ |
|---|---|---|---|
| 甲醇产量/t | 3×105 | 6.549×105 | 6.549×105 |
| 原料煤消耗量/t | 4.269×105 | 4.269×105 | 4.269×105 |
| 直接CO2排放量/t | 6.431×105 | 1.459×105 | 3.770×105 |
| 生产每吨甲醇耗煤量/t·t-1 | 1.42 | 0.65 | 0.65 |
| 单位甲醇碳排放强度/t·t-1 | 5.92 | 2.20 | 2.58 |
| 绿氢消耗量(标准状况)/m³·h-1 | 0 | 105241 | 35431 |
| 碳元素利用率/% | 38.74 | 84.56 | 67.60 |
| 参数 | 传统3×105t煤制甲醇 | 绿氢高效耦合新工艺Ⅰ | 绿氢高效耦合新工艺Ⅱ |
|---|---|---|---|
| 甲醇产量/t | 3×105 | 6.549×105 | 6.549×105 |
| 原料煤消耗量/t | 4.269×105 | 4.269×105 | 4.269×105 |
| 直接CO2排放量/t | 6.431×105 | 1.459×105 | 3.770×105 |
| 生产每吨甲醇耗煤量/t·t-1 | 1.42 | 0.65 | 0.65 |
| 单位甲醇碳排放强度/t·t-1 | 5.92 | 2.20 | 2.58 |
| 绿氢消耗量(标准状况)/m³·h-1 | 0 | 105241 | 35431 |
| 碳元素利用率/% | 38.74 | 84.56 | 67.60 |
| 投资组成 | 本文基准/% |
|---|---|
| 直接费用 | 67 |
| 设备费用 | 30 |
| 安装费用 | 8 |
| 仪表和控制费用 | 5 |
| 管道费用 | 5 |
| 电器费用 | 6 |
| 厂房及铺设费用 | 12 |
| 土地费用 | 1 |
| 间接费用 | 33 |
| 工程设计和监督 | 11 |
| 施工费和包工费 | 15 |
| 不可预见费用 | 7 |
| 流动资金 | 15 |
| 总投资 | 115 |
| 投资组成 | 本文基准/% |
|---|---|
| 直接费用 | 67 |
| 设备费用 | 30 |
| 安装费用 | 8 |
| 仪表和控制费用 | 5 |
| 管道费用 | 5 |
| 电器费用 | 6 |
| 厂房及铺设费用 | 12 |
| 土地费用 | 1 |
| 间接费用 | 33 |
| 工程设计和监督 | 11 |
| 施工费和包工费 | 15 |
| 不可预见费用 | 7 |
| 流动资金 | 15 |
| 总投资 | 115 |
| 单元 | 基准物 | 基准规模 | n | γ | 基准投资/CNY |
|---|---|---|---|---|---|
| 空气分离(AUS) | 供氧量 | 21.3kg/s | 0.50 | 0.50 | 283×106 |
| 煤预处理(CPP) | 日给煤量 | 27.4kg/s | 0.67 | 0.65 | 180×106 |
| 煤气化(CG) | 日给煤量 | 39.2kg/s | 0.67 | 0.80 | 484×106 |
| 水煤气变换(WGS) | 进料热值 | 1450MW | 0.67 | 0.65 | 244×106 |
| 酸性气体净化脱硫(AGR-S) | 硫输出量 | 29.3mol/s | 0.67 | 0.65 | 275×106 |
| 酸性气体净化脱碳(AGR-C) | CO2脱除量 | 2064.4mol/s | 0.67 | 0.65 | 203×106 |
| 甲醇合成(MS) | 进料气量 | 10810mol/s | 0.67 | 0.65 | 142×106 |
| 甲醇精馏(MD) | 甲醇进料量 | 3.66kg/s | 0.67 | 0.65 | 12×106 |
| 二氧化碳加氢(CH) | 进料气量 | 15kg/s | 0.65 | 0.65 | 101×106 |
| 甲烷干重整(DRM) | 进料气量 | 555.6mol/s | 0.67 | 0.65 | 214×106 |
| 单元 | 基准物 | 基准规模 | n | γ | 基准投资/CNY |
|---|---|---|---|---|---|
| 空气分离(AUS) | 供氧量 | 21.3kg/s | 0.50 | 0.50 | 283×106 |
| 煤预处理(CPP) | 日给煤量 | 27.4kg/s | 0.67 | 0.65 | 180×106 |
| 煤气化(CG) | 日给煤量 | 39.2kg/s | 0.67 | 0.80 | 484×106 |
| 水煤气变换(WGS) | 进料热值 | 1450MW | 0.67 | 0.65 | 244×106 |
| 酸性气体净化脱硫(AGR-S) | 硫输出量 | 29.3mol/s | 0.67 | 0.65 | 275×106 |
| 酸性气体净化脱碳(AGR-C) | CO2脱除量 | 2064.4mol/s | 0.67 | 0.65 | 203×106 |
| 甲醇合成(MS) | 进料气量 | 10810mol/s | 0.67 | 0.65 | 142×106 |
| 甲醇精馏(MD) | 甲醇进料量 | 3.66kg/s | 0.67 | 0.65 | 12×106 |
| 二氧化碳加氢(CH) | 进料气量 | 15kg/s | 0.65 | 0.65 | 101×106 |
| 甲烷干重整(DRM) | 进料气量 | 555.6mol/s | 0.67 | 0.65 | 214×106 |
| [1] | 李晔, 冯伟扬. 国内外甲醇行业发展现状分析[J]. 化学工业, 2024, 42(2): 15-21. |
| LI Ye, FENG Weiyang. Development situation analysis of methanol industry[J]. Chemical Industry, 2024, 42(2): 15-21. | |
| [2] | QIN Zhen, ZHAI Guofu, WU Xiaomei, et al. Carbon footprint evaluation of coal-to-methanol chain with the hierarchical attribution management and life cycle assessment[J]. Energy Conversion and Management, 2016, 124: 168-179. |
| [3] | 林海周, 罗志斌, 裴爱国, 等. 二氧化碳与氢合成甲醇技术和产业化进展[J]. 南方能源建设, 2020, 7(2): 14-19. |
| LIN Haizhou, LUO Zhibin, PEI Aiguo, et al. Technology and industrialization progress on methanol synthesis from carbon dioxide and hydrogen[J]. Southern Energy Construction, 2020, 7(2): 14-19. | |
| [4] | 陶加. 大连物化所二氧化碳加氢制甲醇中试[N/OL]. 中国化工报, 2019-07-10(2B)[2024-10-17]. . |
| TAO Jia. Dalian Institute of Chemical Physics achieves CO2 hydrogenation to methanol pilot plant[N/OL]. China Chemical Industry News, 2019-07-10(2B)[2024-10-17]. . | |
| [5] | 全球首套规模化太阳燃料合成示范项目试车成功[J]. 能源化工, 2020, 41(1): 21. |
| The world’s first large-scale liquid solar fuel synthesis demonstration project has been successfully tested in the new area[J]. Energy Chemical Industry, 2020, 41(1): 21. | |
| [6] | 田井清. 甲烷干重整催化剂的设计及其在工业尾气转化中的应用研究[D]. 上海: 华东师范大学, 2020. |
| TIAN Jingqing. Design of methane dry reforming catalyst and its application in industrial tail gas conversion[D]. Shanghai: East China Normal University, 2020. | |
| [7] | 余长春, 李然家, 周红军, 等. CH4/CO2干重整转化制合成气及其应用研究[C]//第二届中国石油石化节能减排技术交流大会论文集. 2015: 137-145. |
| YU Changchun, LI Ranjia, ZHOU Hongjun, et al. Study on dry reforming of CH4 and CO2 to syngas and its application[C]//Proceedings of the 2th China Petroleum and Petrochemical Technology Exchange Conference on Energy Conservation and Emission Reduction. 2015: 137-145. | |
| [8] | YANG Xiao, YANG Zhuwei, LI Linsen, et al. Improving the anti-coking ability in the Ni-M(M = Ce, Zr, Co)@SiO2 yolk-shell catalysts for dry reforming of methane[J]. Fuel, 2024, 368: 131541. |
| [9] | 曾纪龙. 大型煤制甲醇的气化和合成工艺选择[J]. 煤化工, 2005, 33(5): 5-9. |
| ZENG Jilong. Selection of gasification and synthesis processes for large scale coal-to-methanol plant[J]. Coal Chemical Industry, 2005, 33(5): 5-9. | |
| [10] | 陈倩, 李士雨, 李金来, 等. 水煤浆气化过程的计算机模拟[J]. 计算机与应用化学, 2012, 29(12): 1425-1428. |
| CHEN Qian, LI Shiyu, LI Jinlai, et al. Simulation of water-coal slurry gasification process[J]. Computers and Applied Chemistry, 2012, 29(12): 1425-1428. | |
| [11] | KISS Anton A, PRAGT J J, VOS H J, et al. Novel efficient process for methanol synthesis by CO2 hydrogenation[J]. Chemical Engineering Journal, 2016, 284: 260-269. |
| [12] | 刘玮, 万燕鸣, 熊亚林, 等. 碳中和目标下电解水制氢关键技术及价格平准化分析[J]. 电工技术学报, 2022, 37(11): 2888-2896. |
| LIU Wei, WAN Yanming, XIONG Yalin, et al. Key technology of water electrolysis and levelized cost of hydrogen analysis under carbon neutral vision[J]. Transactions of China Electrotechnical Society, 2022, 37(11): 2888-2896. | |
| [13] | FISHER F, TROPSCH H. Conversion of methane into hydrogen and carbon monoxide[J]. Brennst-Chem, 1928, 3(9): 39-46. |
| [14] | BODROV N M, APELBAUM L O, TEMKIN M I. Kinetics of the reactions of methane with steam on the surface of nickel at 400—600℃[J]. Kinetics and Catalysis, 1968, 9(5): 1065-1071. |
| [15] | 钱慧琳, 冉金玲, 何安帮, 等. 二氧化碳-甲烷干气重整反应及其积炭控制的热力学分析[J]. 低碳化学与化工, 2023, 48(5): 55-61. |
| QIAN Huilin, RAN Jinling, HE Anbang, et al. Thermodynamic analysis of carbon dioxide-methane dry reforming and its carbon deposition control[J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(5): 55-61. | |
| [16] | 国家市场监督管理总局, 国家标准化管理委员会. 综合能耗计算通则: [S]. 北京: 中国标准出版社, 2020. |
| State Market Regulatory Administration, Standardization Administration of the People’s Republic of China. General rules for calculation of the comprehensive energy consumption: [S]. Beijing: Standards Press of China, 2020. | |
| [17] | ZHANG Jingpeng, LI Zhengwen, ZHANG Zhihe, et al. Techno-economic analysis of integrating a CO2 hydrogenation-to-methanol unit with a coal-to-methanol process for CO2 reduction[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(49): 18062-18070. |
| [18] | 吕伟, 胡雅萍, 曹效军, 等. 煤化工项目碳排放环境影响评价案例分析与研究[J]. 中国科技纵横, 2023, 1(1): 47-52. |
| LU Wei, HU Yaping, CAO Xiaojun, et al. Case study on environmental impact assessment of carbon emission from coal chemical projects[J]. China Science & Technology Overview, 2023, 1(1): 47-52. | |
| [19] | 杨庆, 许思敏, 张大伟, 等. 石油与煤路线制乙二醇过程的技术经济分析[J]. 化工学报, 2020, 71(5): 2164-2172. |
| YANG Qing, XU Simin, ZHANG Dawei, et al. Techno-economic analysis of oil and coal to ethylene glycol processes[J]. CIESC Journal, 2020, 71(5): 2164-2172. | |
| [20] | LI Guang, CHANG Yuxue, LIU Tao, et al. Hydrogen element flow and economic analyses of a coal direct chemical looping hydrogen generation process[J]. Energy, 2020, 206: 118243. |
| [21] | ZHOU Li, HU Shanying, CHEN Dingjiang, et al. Study on systems based on coal and natural gas for producing dimethyl ether[J]. Industrial & Engineering Chemistry Research, 2009, 48(8): 4101-4108. |
| [22] | YANG Siyu, YANG Qingchun, LI Hengchong, et al. An integrated framework for modeling, synthesis, analysis, and optimization of coal gasification-based energy and chemical processes[J]. Industrial & Engineering Chemistry Research, 2012, 51(48): 15763-15777. |
| [23] | 季东, 王健, 王可, 等. 不同CO2捕集技术的CO2耦合绿氢制甲醇工艺研究[J]. 化工学报, 2022, 73(10): 4565-4575. |
| JI Dong, WANG Jian, WANG Ke, et al. Process research of methanol production by CO2 coupled green hydrogen with different CO2 capture technologies[J]. CIESC Journal, 2022, 73(10): 4565-4575. | |
| [24] | 朱超, 田地, 张浩杰, 等. 二氧化碳加氢制甲醇与电解制甲醇系统技术经济性分析[J]. 天然气化工(C1化学与化工), 2023, 48(1): 117-124. |
| ZHU Chao, TIAN Di, ZHANG Haojie, et al. System techno-economic analysis of CO2 hydrogenation to methanol and electrolysis to methanol[J]. Natural Gas Chemical Industry, 2023, 48(1): 117-124. | |
| [25] | REZAEI Ebrahim, DZURYK Stephen. Techno-economic comparison of reverse water gas shift reaction to steam and dry methane reforming reactions for syngas production[J]. Chemical Engineering Research and Design, 2019, 144: 354-369. |
| [26] | 雷昕儒, 孙喆. 煤化学链气化制甲醇工艺模拟与技术经济分析[J]. 天然气化工(C1化学与化工), 2021, 46(1): 99-106. |
| LEI Xinru, SUN Zhe. Process simulation and techno-economic analysis of methanol production via coal chemical looping gasification[J]. Natural Gas Chemical Industry, 2021, 46(1): 99-106. | |
| [27] | 潘楠, 杨晓丽. 国际碳税政策实践发展与经验借鉴[J]. 金融经济, 2024 (1): 77-85. |
| PAN Nan, YANG Xiaoli. Practical development and experience of international carbon tax policy[J]. Finance Economy, 2024 (1): 77-85. |
| [1] | YANG Sen, XUE Zijie, WANG Yufei, ZHAO Liang, XU Chunming. Low carbon transformation and research status of chemical industry based on green hydrogen [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3288-3304. |
| [2] | SUN Zhongshun, LIU Gen, CHENG Chunyu, LI Meixin, YANG Xiantan, WU Zhiqiang, YANG Bolun. Research progress on thermochemical conversion of biomass to green hydrogen [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2667-2682. |
| [3] | GAO Jiangang, JIANG Yapeng, BAO Baoqing, WANG Shuqi, CUI Shuming. Green methanol and green ammonia synthesis by green hydrogen [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1987-1997. |
| [4] | HUANG Sheng, YANG Zhenli, LI Zhenyu. Analysis of optimization path of developing China's hydrogen industry [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 882-893. |
| [5] | XIANG Hongwei, YANG Yong, LI Yongwang. Transformation and development of coal chemical industry under the goal of carbon neutralization [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1399-1408. |
| [6] | WANG Jijie, HAN Zhe, CHEN Siyu, TANG Chizhou, SHA Feng, TANG Shan, YAO Tingting, LI Can. Liquid sunshine methanol [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1309-1317. |
| [7] | ZHOU Ying, LI Yeqing, ZHOU Hongjun, XU Chunming. Exploration of bio-energy in promoting rural revitalization in China [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 6195-6199. |
| [8] | ZHANG Yue,LI Jing,YAN Shenghu,LIU Jianwu,SHEN Jiefa. Effect of Ce loading in CuO-ZnO-Al2O3/HZSM-5 on catalytic performance of dimethyl ether synthesis from carbon dioxide [J]. Chemical Industry and Engineering Progree, 2011, 30(3): 542-. |
| [9] |
ZHANG Luxiang,ZHANG Yongchun,CHEN Shaoyun.
Recent advances and characteristics of methanol and dimethyl ether synthesis from carbon dioxide hydrogenation [J]. Chemical Industry and Engineering Progree, 2010, 29(6): 1041-. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |