Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (8): 4381-4393.DOI: 10.16085/j.issn.1000-6613.2025-0114
• Micro-mesoscale process and material modeling and simulation • Previous Articles Next Articles
LI Ka(
), XIA Yuxuan, WU Xiaoqin, YI Lan, LUO Hao(
)
Received:2025-01-20
Revised:2025-03-01
Online:2025-09-08
Published:2025-08-25
Contact:
LUO Hao
通讯作者:
罗浩
作者简介:李卡(2000—),女,硕士研究生,研究方向为CFD孔隙尺度反应器模拟。E-mail:lkk5452@163.com。
基金资助:CLC Number:
LI Ka, XIA Yuxuan, WU Xiaoqin, YI Lan, LUO Hao. Pore scale computational fluid dynamics (CFD) simulation of a double-layer porous medium combustion reactor[J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4381-4393.
李卡, 夏宇轩, 吴晓琴, 易兰, 罗浩. 双层多孔介质燃烧反应器的孔隙尺度计算流体动力学模拟[J]. 化工进展, 2025, 44(8): 4381-4393.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2025-0114
| 物性参数 | 氧化铝 | 高岭棉 |
|---|---|---|
| 密度/kg·m-3 | 3987 | 128 |
| 发射率 | 0.75 | 0.75 |
| 吸收系数/m-1 | 3.7 | 0 |
| 散射系数/m-1 | 50.88 | 0 |
| 物性参数 | 氧化铝 | 高岭棉 |
|---|---|---|
| 密度/kg·m-3 | 3987 | 128 |
| 发射率 | 0.75 | 0.75 |
| 吸收系数/m-1 | 3.7 | 0 |
| 散射系数/m-1 | 50.88 | 0 |
| 温度/K | 比热容/kJ·kg-1·K-1 | 热导率/W·m-1·K-1 |
|---|---|---|
| 293 | 0.755 | 33 |
| 773 | 1.165 | 11.4 |
| 1273 | 1.255 | 7.22 |
| 1473 | 1.285 | 6.67 |
| 1673 | 1.315 | 6.34 |
| 1773 | 1.330 | 6.23 |
| 温度/K | 比热容/kJ·kg-1·K-1 | 热导率/W·m-1·K-1 |
|---|---|---|
| 293 | 0.755 | 33 |
| 773 | 1.165 | 11.4 |
| 1273 | 1.255 | 7.22 |
| 1473 | 1.285 | 6.67 |
| 1673 | 1.315 | 6.34 |
| 1773 | 1.330 | 6.23 |
| 温度/K | 比热容/kJ·kg-1·K-1 | 热导率/W·m-1·K-1 |
|---|---|---|
| 533 | 0.871 | 0.06 |
| 811 | 0.871 | 0.12 |
| 1089 | 0.871 | 0.21 |
| 1366 | 0.871 | 0.3 |
| 温度/K | 比热容/kJ·kg-1·K-1 | 热导率/W·m-1·K-1 |
|---|---|---|
| 533 | 0.871 | 0.06 |
| 811 | 0.871 | 0.12 |
| 1089 | 0.871 | 0.21 |
| 1366 | 0.871 | 0.3 |
| 区域 | 连续性方程 | 动量方程 | 能量方程 | 组分输运方程 |
|---|---|---|---|---|
| 非多孔介质流体区域 | ||||
| 多孔介质区域 | ||||
| 固体区域 | — | — | — |
| 区域 | 连续性方程 | 动量方程 | 能量方程 | 组分输运方程 |
|---|---|---|---|---|
| 非多孔介质流体区域 | ||||
| 多孔介质区域 | ||||
| 固体区域 | — | — | — |
| 编号 | 反应 | 指前因子 | 温度指数 | 活化能/J·kmol-1 | 反应级数 |
|---|---|---|---|---|---|
| S1 | 5.012×1011 | 0 | 2×108 | [CH4]0.7[O2]0.8 | |
| S2 | 2.239×1012 | 0 | 1.7×108 | [CO][O2]0.5 | |
| S3 | 5×108 | 0 | 1.7×108 | [CO2] |
| 编号 | 反应 | 指前因子 | 温度指数 | 活化能/J·kmol-1 | 反应级数 |
|---|---|---|---|---|---|
| S1 | 5.012×1011 | 0 | 2×108 | [CH4]0.7[O2]0.8 | |
| S2 | 2.239×1012 | 0 | 1.7×108 | [CO][O2]0.5 | |
| S3 | 5×108 | 0 | 1.7×108 | [CO2] |
| CH4 | N2 | O2 | CO2 |
|---|---|---|---|
| 0.0369 | 0.7361 | 0.2264 | 0.0006 |
| CH4 | N2 | O2 | CO2 |
|---|---|---|---|
| 0.0369 | 0.7361 | 0.2264 | 0.0006 |
| 阻力系数 | 3mm颗粒 | 6mm颗粒 | ||
|---|---|---|---|---|
| 黏性阻力/m-2 | 惯性阻力/m-1 | 黏性阻力/m-2 | 惯性阻力/m-1 | |
| 1 | 3.745×107 | 10937.5 | 7.322×106 | 4182 |
| 1/8 | 4681250 | 1367.2 | 915250 | 522.75 |
| 1/32 | 1170312.5 | 341.8 | 228812.5 | 130.6875 |
| 1/128 | 292578.12 | 82.45 | 57203.12 | 32.67 |
| 阻力系数 | 3mm颗粒 | 6mm颗粒 | ||
|---|---|---|---|---|
| 黏性阻力/m-2 | 惯性阻力/m-1 | 黏性阻力/m-2 | 惯性阻力/m-1 | |
| 1 | 3.745×107 | 10937.5 | 7.322×106 | 4182 |
| 1/8 | 4681250 | 1367.2 | 915250 | 522.75 |
| 1/32 | 1170312.5 | 341.8 | 228812.5 | 130.6875 |
| 1/128 | 292578.12 | 82.45 | 57203.12 | 32.67 |
| [1] | 缪雪龙, 黄震. 内燃机燃烧技术综述[J]. 现代车用动力, 2006(2): 6-11, 27. |
| MIAO Xuelong, HUANG Zhen. Review of combustion technology in internal combustion engine[J]. Modern Vehicle Power, 2006(2): 6-11, 27. | |
| [2] | 李苏辉, 张归华, 吴玉新. 面向未来燃气轮机的先进燃烧技术综述[J]. 清华大学学报(自然科学版), 2021, 61(12): 1423-1437. |
| LI Suhui, ZHANG Guihua, WU Yuxin. Advanced combustion technologies for future gas turbines[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(12): 1423-1437. | |
| [3] | 凌忠钱, 周昊, 孔俊俊. 多孔介质燃烧波传播中的“超焓” 特性[J]. 浙江大学学报(工学版), 2014, 48(4): 660-665. |
| LING Zhongqian, ZHOU Hao, KONG Junjun. Super-adiabatic characteristic of porous media combustion at different wave propagation direction[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(4): 660-665. | |
| [4] | 汪健生, 张辉鹏, 刘雪玲, 等. 多孔介质结构对储层内流动和换热特性的影响[J]. 化工进展, 2023, 42(8): 4212-4220. |
| WANG Jiansheng, ZHANG Huipeng, LIU Xueling, et al. Analysis of flow and heat transfer characteristics in porous media reservoir[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4212-4220. | |
| [5] | Abdul MUJEEBU M, ABDULLAH M Z, BAKAR M Z ABU, et al. Applications of porous media combustion technology—A review[J]. Applied Energy, 2009, 86(9): 1365-1375. |
| [6] | WOOD Susie, HARRIS Andrew T. Porous burners for lean-burn applications[J]. Progress in Energy and Combustion Science, 2008, 34(5): 667-684. |
| [7] | 黄冉思思, 程乐鸣, 邱坤赞, 等. 中、低热值预混气体在双层多孔介质中的贫燃特性[J]. 浙江大学学报(工学版), 2015, 49(9): 1783-1789. |
| HUANG Ransisi, CHENG Leming, QIU Kunzan, et al. Lean combustion of moderate/low calorific premixed gases in two-layer porous burner[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(9): 1783-1789. | |
| [8] | BUBNOVICH V, HENRÍQUEZ L, GNESDILOV N. Numerical study of the effect of the diameter of alumina balls on flame stabilization in a porous-medium burner[J]. Numerical Heat Transfer, Part A: Applications, 2007, 52(3): 275-295. |
| [9] | LIANG Xiong, LI Yawei, HE Zhu, et al. Design of three-layered struts in SiC reticulated porous ceramics for porous burner[J]. Ceramics International, 2019, 45(7): 8571-8576. |
| [10] | SAMOILENKO Mykhailo, SEERS Patrice, TERRIAULT Patrick, et al. Design, manufacture and testing of porous materials with ordered and random porosity: Application to porous medium burners[J]. Applied Thermal Engineering, 2019, 158: 113724. |
| [11] | WANG Guanqing, TANG Pengbo, LI Yuan, et al. Flame front stability of low calorific fuel gas combustion with preheated air in a porous burner[J]. Energy, 2019, 170: 1279-1288. |
| [12] | LIU Yang, DENG Yangbo, SHI Junrui, et al. Experimental investigation on flame stability and emissions of lean premixed methane-air combustion in a developed divergent porous burner[J]. Journal of Cleaner Production, 2023, 405: 137070. |
| [13] | 李宁, 李金科, 董金善. 乙烯裂解炉多孔介质燃烧器的研究与开发[J]. 化工进展, 2023, 42(S1): 73-83. |
| LI Ning, LI Jinke, DONG Jinshan. Research and development of porous medium burner in ethylene cracking furnace[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 73-83. | |
| [14] | SHI Junrui, CHEN Zhongshan, LI Houping, et al. Pore-scale study of thermal nonequilibrium in a two-layer burner formed by staggered arrangement of particles[J]. Applied Thermal Engineering, 2020, 176: 115376. |
| [15] | SHI Junrui, Jinsheng LYU, HE Fang, et al. 3D numerical study on syngas production in a structured packed bed with connected pellets[J]. International Journal of Hydrogen Energy, 2020, 45(56): 32579-32588. |
| [16] | Jinsheng LYU, SHI Junrui, MAO Mingming, et al. Three-dimensional pore-scale simulation of flow and thermal non-equilibrium for premixed gas combustion in a random packed bed burner[J]. Energies, 2021, 14(21): 6939. |
| [17] | LI Qingqing, LI Jun, SHI Junrui. Fully-resolved 3D premixed H2/air flames in a micro-combustor partially filled with porous media: Effects of detailed pore structures[J]. Proceedings of the Combustion Institute, 2023, 39(4): 5571-5580. |
| [18] | LIU Yang, DENG Yangbo, SHI Junrui, et al. Pore-level numerical simulation of methane-air combustion in a simplified two-layer porous burner[J]. Chinese Journal of Chemical Engineering, 2021, 34: 87-96. |
| [19] | GAO Huaibin, QU Zhiguo, HE Yaling, et al. Experimental study of combustion in a double-layer burner packed with alumina pellets of different diameters[J]. Applied Energy, 2012, 100: 295-302. |
| [20] | SHI Junrui, MAO Mingming, LI Houping, et al. A pore level study of syngas production in two-layer burner formed by staggered arrangement of particles[J]. International Journal of Hydrogen Energy, 2020, 45(3): 2331-2340. |
| [21] | SHI Junrui, KONG Xiangjin, Jinsheng LYU, et al. The stability limit of extremely low calorific gas combustion in a cone-shape two-section burner with the preheaters[J]. International Communications in Heat and Mass Transfer, 2023, 140: 106524. |
| [22] | Morgan Thermal Ceramics. Kaowool® Blanket: Datasheet Code US 5-14-205[J/OL]. Morgan Advanced Materials, (2018-07) [2024-12-06]. . |
| [23] | DIXON Anthony G, NIJEMEISLAND Michiel, STITT E Hugh. Systematic mesh development for 3D CFD simulation of fixed beds: Contact points study[J]. Computers & Chemical Engineering, 2013, 48: 135-153. |
| [24] | ZEIDAN D, BÄHR P, FARBER P, et al. Numerical investigation of a mixture two-phase flow model in two-dimensional space[J]. Computers & Fluids, 2019, 181: 90-106. |
| [25] | MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. |
| [26] | HEADLEY Alexander J, HILEMAN Michael B, ROBBINS Aron S, et al. Thermal conductivity measurements and modeling of ceramic fiber insulation materials[J]. International Journal of Heat and Mass Transfer, 2019, 129: 1287-1294. |
| [27] | ERGUN Sabri, ORNING A A. Fluid flow through randomly packed columns and fluidized beds[J]. Industrial & Engineering Chemistry, 1949, 41(6): 1179-1184. |
| [1] | LONG Huilong, TANG Haoran, MA Yuan, QIN Yunfeng, BAO Yihui, ZHANG Zengfu. Numerical calculation method of typical hydrate phase diagram [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4871-4878. |
| [2] | DAI Guilong, WANG Xiaoyu, HUANGFU Jiangfei, GONG Lingzhu. Convection heat transfer characteristics of pore-scale Laguerre Voronoi open-cell foam [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4394-4407. |
| [3] | SHEN Xiankun, JIA Zhiyong, LAN Xiaocheng, WANG Tiefeng. Progress on CFD-PBM coupled model for slurry reactors [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4408-4418. |
| [4] | LI Zeng, ZHAO Yunpeng, LI Yuhui, LIU Nan, ZHU Chunmeng, SHI Xiaogang, GAO Jinsen, LAN Xingying. Abnormal diagnosis of catalyst loss for FCC disengager based on CFD simulation [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4430-4442. |
| [5] | LI Haodong, SHEN Shengqiang, CHEN Liang. Numerical simulation on ammonia-hydrogen combustion exhaust heat utilization coupling ammonia cracking process for hydrogen production [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4443-4453. |
| [6] | WANG Zhaolin, ZHANG Zhigang, ZHOU Jing, GAO Chen, PENG Kechen, JIANG Mindi, XI Xi, XU Shengli, LIU Hong. Flow and heat transfer characteristics based on Gyroid triply periodic minimal surface heat exchange components [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4454-4462. |
| [7] | XU Wenjun, ZHANG Jianbo, GUO Yanxia, LI Huiquan, LI Shaopeng, REN Yiling. Effects of anchor frame impeller structure on flow field in stirred tank during gasification slag activation [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4463-4477. |
| [8] | ZHANG Jianwei, YIN Miaomiao, DONG Xin, FENG Ying. Numerical simulation of mixing characteristics in an impinging stream reactor based on oscillating jets [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4488-4499. |
| [9] | WANG Yabin, ZHAO Bidan, XU Fan, LAN Bin, WANG Junwu. Full-loop simulation of gas-solid flow in CFB unit using mesoscience-based structural model [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4500-4512. |
| [10] | WANG Lanxin, LI Fei, QIAN Yanan, TIAN Yujie, SHEN Jun, WANG Wei. Numerical simulation of coal pyrolysis with different moisture content in fixed-bed reactor [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4513-4525. |
| [11] | AN Shu, MA Yongli, FENG Lei, ZHANG Zihao, LIU Mingyan. CFD simulation of process of water-based foaming through net foam generator [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4545-4555. |
| [12] | LU Yucheng, HUANG Tao, LUO Yajun, LIU Jiahui, GONG Feiyan, YAN Chaoyu, LIU Xiaoxing. CFD modeling of gas-liquid-solid mixing characteristics in stirred tank for water-suspension granulation [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4556-4566. |
| [13] | TANG Jian, CUI Wangwang, CHEN Jiakun, WANG Tianzheng, QIAO Junfei. Full lifecycle prediction model construction for dioxins in municipal solid waste incineration process: Method of coupling numerical simulation and fuzzy forest regression [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4628-4647. |
| [14] | ZHAI Yuhang, CONG Lixin, HAN Bing, WANG Qilin, ZOU Huichuan. Formation mechanism of large-scale hydrogen cloud deflagration pressure waves and determination of disaster effects [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4709-4719. |
| [15] | CHEN Sheng, LIU Zhongwei, LYU Rongrong, MIAO Chao, ZHOU Siya, JIANG Jingjing, CHEN Rui, HUANG Ganghua, HE Meng, ZHU Liyun. Simulation of multi-field interactive damage caused by acid gas condensation erosion in high-sulfur natural gas desulfurization purification units [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4754-4771. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |