Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (8): 4322-4330.DOI: 10.16085/j.issn.1000-6613.2024-2084

• Micro-mesoscale process and material modeling and simulation • Previous Articles    

Reaction molecular dynamics simulation of the thermal decomposition and reduction system of trichlorosilane in a hydrogen atmosphere

LI Yanping1,2,3(), YANG Tao1,2,3, WANG Hongxun1,2, ZHANG Cheng1,2, WEN Guosheng1,2,3, HAN Zhicheng1,2, LAN Gongjia1,2, YAN Dazhou1,2,3()   

  1. 1.China ENFI Engineering Corporation, Beijing 100038, China
    2.National Engineering Research Center of Silicon-Based Materials Manufacturing Technology, Luoyang 471023, Henan, China
    3.China Silicon Corporation Ltd. , Luoyang 471023, Henan, China
  • Received:2024-12-23 Revised:2025-02-11 Online:2025-09-08 Published:2025-08-25
  • Contact: YAN Dazhou

三氯氢硅在氢气氛中的热分解及还原体系的反应分子动力学模拟

李艳平1,2,3(), 杨涛1,2,3, 王洪勋1,2, 张城1,2, 温国胜1,2,3, 韩治成1,2, 蓝公家1,2, 严大洲1,2,3()   

  1. 1.中国恩菲工程技术有限公司,北京 100038
    2.硅基材料制备技术国家工程研究中心,河南 洛阳 471023
    3.洛阳中硅高科技有限公司,河南 洛阳 471023
  • 通讯作者: 严大洲
  • 作者简介:李艳平(1988—),女,博士,研究方向为硅基材料化学反应的模拟仿真。E-mail:liyp@enfi.com.cn
  • 基金资助:
    国家重点研发计划(2023YFC3904703)

Abstract:

This paper focuses on conducting microscopic-level reaction molecular dynamics simulations of the thermal decomposition and reduction system of trichlorosilane in a hydrogen atmosphere involved in the chemical vapor deposition process of polysilicon production. It qualitatively and quantitatively investigates the influence of the quantity ratio of reactants H2 and hydrogen radicals H·on the microscopic action mechanism of the reaction process. Additionally, it comparatively analyzes the dynamic evolution and main transformation paths of reactants SiHCl3, H2, and H·, as well as intermediates HCl, SiH2Cl2, and SiH4 in different reaction systems, providing fundamental theoretical support for the process improvement of the chemical vapor deposition process of polysilicon. The simulation results indicate that the reactivity of H· in the reaction system is significantly higher than that of H2. The introduction of H· can noticeably accelerate the thermal decomposition and reduction processes of SiHCl3 molecules in a hydrogen atmosphere. Specifically, the larger the quantity ratio of H· to H2 added to the initial reaction system, the greater the number of SiHCl3 molecules that are transformed when reaching reaction equilibrium. The production amount of intermediate HCl molecules is positively correlated with the quantity of H· added to the initial reaction system. An appropriate amount of H· can prompt SiHCl3 molecules to form monohydrogenated species, while excessive H· promotes the formation of polyhydrogenated species. When the reaction temperature of the actual reaction system is set at 1000K and the quantity ratio of SiHCl3 to H2 is set at 1∶1, it is conducive to the formation of the byproduct SiH2Cl2. To obtain the intermediate SiH4 at a relatively lower reaction temperature (1000K), the quantity ratio of SiHCl3 to H2 needs to be at least greater than 1∶1. Increasing the content of H2 in the reaction system is beneficial for enhancing the yield of the intermediate SiH4.

Key words: trichlorosilane, thermal decomposition and reduction system in gas, hydrogen radicals, reaction molecular dynamics simulations, dynamic evolution

摘要:

针对多晶硅生产工艺中的化学气相沉积过程涉及的三氯氢硅在氢气氛中的热分解及还原体系开展微观层面的反应分子动力学模拟,定性和定量地探究了反应物H2与氢自由基(H·)的数量配比对反应过程的微观作用机制的影响,并比较分析了不同的反应体系中反应物SiHCl3与H2及H·、中间产物HCl与SiH2Cl2及SiH4的动态演化情况及其主要的转化路径,为多晶硅化学气相沉积过程的工艺改进提供了基础的理论支撑。模拟结果表明,反应体系中H·的活泼性明显大于H2,H·的引入可以明显加快SiHCl3分子在氢气氛中的热分解与还原过程,具体表现为加入初始反应体系的H·与H2数量比越大,达到反应平衡时被转化的SiHCl3分子越多;中间产物HCl分子的生成量与加入初始反应体系的H·的数量正相关;适量的H·可以促使SiHCl3分子形成一氢代物,而过量的H·促使SiHCl3分子形成多氢取代物,当实际反应体系的反应温度设置为1000K且SiHCl3与H2数量配比设置为1∶1时,有利于副产物SiH2Cl2的形成;为了在相对较低的反应温度(1000K)下得到中间产物SiH4,SiHCl3与H2的数量配比至少需要大于1∶1,增加反应体系中H2的含量,有利于提高中间产物SiH4的产量。

关键词: 三氯氢硅, 气相热分解与还原, 氢自由基, 反应分子动力学模拟, 动态演化

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd