Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (3): 1776-1780.DOI: 10.16085/j.issn.1000-6613.2024-1620

• Perspective • Previous Articles    

Strategies for combustion kinetics of afterburning in rocket engine exhaust plumes

JIN Zhihao1(), WANG Yunfan1,2, TIAN Zhenyu1,2()   

  1. 1.Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2024-11-18 Revised:2024-12-03 Online:2025-04-15 Published:2025-03-25
  • Contact: TIAN Zhenyu

火箭发动机尾焰复燃反应动力学分析策略

金志浩1(), 王云帆1,2, 田振玉1,2()   

  1. 1.中国科学院工程热物理研究所,北京 100190
    2.中国科学院大学,北京 100049
  • 通讯作者: 田振玉
  • 作者简介:金志浩(1993—),男,助理研究员,研究方向为燃烧反应动力学。E-mail:jinzhihao@iet.cn
  • 基金资助:
    国家自然科学基金(52325604);国家重点研发计划(2022YFB4003900)

Abstract:

Afterburning in rocket engine exhaust plumes significantly impacts flight stability, increase the difficulty of thermal management and reduce the stealth characteristics of rocket engines. The lack of pressure-dependent characteristics in afterburning reaction kinetics models has led to significant discrepancies in the predictions of exhaust temperature, CO concentration and spectral radiation intensity across different reaction kinetics models. Therefore, the development of high-precision combustion kinetics is crucial for predicting the combustion characteristics of afterburning. Laminar premixed flames, characterized by their simple structure, could avoid the influences of turbulence on the combustion process, making them particularly suitable for combustion kinetic studies of afterburning in rocket engines exhaust plumes. Flame-sampling molecular-beam mass spectrometry (MBMS) could perform laminar premixed flame experiments within a pressure range of 2—100kPa, reproducing working conditions of rocket engines from ground level to altitudes of exceeding 10000 meters. Moreover, the concentration of combustion intermediates, including short-lived radicals, can be detected by MBMS. This method could support the development of high-precision combustion kinetics for afterburning in rocket engine exhaust plumes across wide range of pressures, thereby providing theoretical backing for enhancing the stable operation of rocket engines and improving the stealth performance of missile systems.

Key words: rocket engine, afterburning in rocket engine exhaust plumes, combustion kinetics, molecular-beam mas spectrometry, laminar premixed flame

摘要:

火箭发动机尾焰复燃会影响飞行稳定性、增加热管理难度以及降低军用火箭发动机的隐身特性。文中提出现有尾焰复燃反应动力学模型中缺乏对压力特性的研究,导致不同反应动力学模型对火箭高空飞行条件下的尾焰复燃温度、CO浓度和光谱辐射强度的预测结果有较大差异。因此,发展高精度的燃烧动力学模型对预测尾焰复燃特性至关重要。文章总结:层流预混火焰结构简单,能避免湍流对燃烧过程的影响,非常适用于火箭发动机尾焰复燃反应动力学的研究。分子束取样结合飞行时间质谱(MBMS)装置可开展2~100kPa压力范围内的层流预混火焰实验研究,可模拟火箭发动机在不同海拔处的工作环境压力,并能够探测包括短寿命自由基在内的多种燃烧产物的摩尔浓度分布,有助于发展宽压力范围内高精度尾焰复燃反应动力学模型,为提高火箭发动机的稳定安全运行及弹体隐身性能提供理论支撑。

关键词: 火箭发动机, 尾焰复燃, 燃烧反应动力学, 飞行时间质谱, 层流预混火焰

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd