Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (6): 3199-3208.DOI: 10.16085/j.issn.1000-6613.2023-0743
• Materials science and technology • Previous Articles
LIU Jingdu1(), YU Guanlong1,2, LONG Zhiqi3, ZHOU Lu1,2, BAO Purui1, TENG Junyi1, DU Chunyan1,2()
Received:
2023-05-06
Revised:
2023-09-17
Online:
2024-07-02
Published:
2024-06-15
Contact:
DU Chunyan
刘京都1(), 余关龙1,2, 龙志奇3, 周璐1,2, 包璞瑞1, 滕骏毅1, 杜春艳1,2()
通讯作者:
杜春艳
作者简介:
刘京都(1999—),男,硕士研究生,研究方向为水处理新材料。E-mail:1582804854@qq.com。
基金资助:
CLC Number:
LIU Jingdu, YU Guanlong, LONG Zhiqi, ZHOU Lu, BAO Purui, TENG Junyi, DU Chunyan. Preparation of nano-spherical LaAlO3 and its fluoride removal performance under acidic environment[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3199-3208.
刘京都, 余关龙, 龙志奇, 周璐, 包璞瑞, 滕骏毅, 杜春艳. 纳米球状LaAlO3的制备及其在酸性条件下的除氟性能[J]. 化工进展, 2024, 43(6): 3199-3208.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0743
沉淀物质 | Ksp | 开始沉淀pH | 完全沉淀pH |
---|---|---|---|
Al(OH)3 | 1.3×10-33 | 3.42 | 4.70 |
La(OH)3 | 2.67×10-30 | 4.52 | 5.81 |
La2(CO3)3 | 1.1×10-30 | 7.51 | 8.80 |
LaCO3OH | — | >7.51 | — |
沉淀物质 | Ksp | 开始沉淀pH | 完全沉淀pH |
---|---|---|---|
Al(OH)3 | 1.3×10-33 | 3.42 | 4.70 |
La(OH)3 | 2.67×10-30 | 4.52 | 5.81 |
La2(CO3)3 | 1.1×10-30 | 7.51 | 8.80 |
LaCO3OH | — | >7.51 | — |
pH | 晶粒粒径/nm | 比表面积/m2·g-1 | 孔径/nm | 晶粒特征 |
---|---|---|---|---|
5 | 240 | 9.352 | 3.408 | 密集 |
6 | 220 | 13.540 | 3.072 | 疏松 |
9 | 300 | 3.761 | 3.840 | 结块 |
pH | 晶粒粒径/nm | 比表面积/m2·g-1 | 孔径/nm | 晶粒特征 |
---|---|---|---|---|
5 | 240 | 9.352 | 3.408 | 密集 |
6 | 220 | 13.540 | 3.072 | 疏松 |
9 | 300 | 3.761 | 3.840 | 结块 |
准一级动力学模型 | 准二级动力学模型 | Elovich模型 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C0/mg·L-1 | k1/min-1 | R2 | C0/mg·L-1 | K2/g·mg-1·min-1 | qe/mg·g-1 | R2 | C0/mg·L-1 | α/mg·g-1·min-1 | β/g·mg-1 | R2 | ||||||
10 | 0.3291 | 0.9108 | 10 | 0.1555 | 4.25 | 0.9904 | 10 | 58871.4042 | 2.17 | 0.8583 | ||||||
200 | 0.3615 | 0.9771 | 200 | 0.0082 | 66.34 | 0.9995 | 200 | 119606.6163 | 0.04 | 0.8618 | ||||||
内扩散模型 | 外扩散模型 | |||||||||||||||
C0/mg·L-1 | Kid/mg·g-1·min-0.5 | C | R2 | C0/mg·L-1 | Kp/min-1 | R2 | ||||||||||
10 | 0.4614 | 1.9674 | 0.5208 | 10 | 0.0051 | 0.5639 | ||||||||||
200 | 9.2286 | 23.0950 | 0.5234 | 200 | 0.0026 | 0.5113 |
准一级动力学模型 | 准二级动力学模型 | Elovich模型 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C0/mg·L-1 | k1/min-1 | R2 | C0/mg·L-1 | K2/g·mg-1·min-1 | qe/mg·g-1 | R2 | C0/mg·L-1 | α/mg·g-1·min-1 | β/g·mg-1 | R2 | ||||||
10 | 0.3291 | 0.9108 | 10 | 0.1555 | 4.25 | 0.9904 | 10 | 58871.4042 | 2.17 | 0.8583 | ||||||
200 | 0.3615 | 0.9771 | 200 | 0.0082 | 66.34 | 0.9995 | 200 | 119606.6163 | 0.04 | 0.8618 | ||||||
内扩散模型 | 外扩散模型 | |||||||||||||||
C0/mg·L-1 | Kid/mg·g-1·min-0.5 | C | R2 | C0/mg·L-1 | Kp/min-1 | R2 | ||||||||||
10 | 0.4614 | 1.9674 | 0.5208 | 10 | 0.0051 | 0.5639 | ||||||||||
200 | 9.2286 | 23.0950 | 0.5234 | 200 | 0.0026 | 0.5113 |
温度 /℃ | Langmuir | Freundlich | Temkin | |||||||
---|---|---|---|---|---|---|---|---|---|---|
R2 | qm/mg·g-1 | b/L·mg-1 | R2 | KF/mg1-(1/n)·L1/n ·g-1 | n | R2 | BT/J·mol-1 | KT/L·mg-1 | ||
30 | 0.994 | 85.21 | 0.052 | 0.968 | 8.116 | 1.939 | 0.9688 | 14.94 | 0.9734 | |
40 | 0.991 | 75.74 | 0.050 | 0.966 | 7.225 | 1.973 | 0.9844 | 14.12 | 0.8125 | |
50 | 0.991 | 69.43 | 0.039 | 0.973 | 8.008 | 2.281 | 0.9779 | 12.53 | 0.6995 |
温度 /℃ | Langmuir | Freundlich | Temkin | |||||||
---|---|---|---|---|---|---|---|---|---|---|
R2 | qm/mg·g-1 | b/L·mg-1 | R2 | KF/mg1-(1/n)·L1/n ·g-1 | n | R2 | BT/J·mol-1 | KT/L·mg-1 | ||
30 | 0.994 | 85.21 | 0.052 | 0.968 | 8.116 | 1.939 | 0.9688 | 14.94 | 0.9734 | |
40 | 0.991 | 75.74 | 0.050 | 0.966 | 7.225 | 1.973 | 0.9844 | 14.12 | 0.8125 | |
50 | 0.991 | 69.43 | 0.039 | 0.973 | 8.008 | 2.281 | 0.9779 | 12.53 | 0.6995 |
吸附剂 | pH | 吸附剂剂量/g·L-1 | 吸附容量/mg·g-1 | 参考文献 |
---|---|---|---|---|
LaAlO3 | 3 | 2 | 66.50 | 本实验 |
Mg-Al-Ce | 6 | 5 | 26.12 | [ |
La/MA | 6 | 2 | 26.45 | [ |
Ce-Fe | 5.5 | 0.5 | 60.97 | [ |
TiO2-ZrO2 | 5 | 0.5 | 27.80 | [ |
吸附剂 | pH | 吸附剂剂量/g·L-1 | 吸附容量/mg·g-1 | 参考文献 |
---|---|---|---|---|
LaAlO3 | 3 | 2 | 66.50 | 本实验 |
Mg-Al-Ce | 6 | 5 | 26.12 | [ |
La/MA | 6 | 2 | 26.45 | [ |
Ce-Fe | 5.5 | 0.5 | 60.97 | [ |
TiO2-ZrO2 | 5 | 0.5 | 27.80 | [ |
1 | LACSON Carl Francis Z, LU Mingchun, HUANG Yaohui. Fluoride-containing water: A global perspective and a pursuit to sustainable water defluoridation management—An overview[J]. Journal of Cleaner Production, 2021, 280: 124236. |
2 | PETERS RUDOLPH, SHORTHOUSE M. Fluoride metabolism in plants[J]. Nature, 1964, 202(4927): 21-22. |
3 | HE Junyong, YANG Ya, WU Zijian, et al. Review of fluoride removal from water environment by adsorption[J]. Journal of Environmental Chemical Engineering, 2020, 8(6): 104516. |
4 | HE Xiaodong, LI Peiyue, JI Yujie, et al. Groundwater arsenic and fluoride and associated arsenicosis and fluorosis in China: Occurrence, distribution and management[J]. Exposure and Health, 2020, 12(3): 355-368. |
5 | 张广瑞, 任彬, 李海松. 煤化工废水除氟及尾水脱氮除磷性能[J]. 中国环境科学, 2023, 43(4): 1655-1662. |
ZHANG Guangrui, REN Bin, LI Haisong. Defluorination of coal chemical wastewater and nitrogen and phosphorus removal performance of tailwater[J]. China Environmental Science, 2023, 43(4): 1655-1662. | |
6 | 杨为森, 刘毅飞, 史丰硕, 等. 电纺La2O3-CeO2纳米纤维的除氟性能[J]. 复合材料学报, 2023, 40(6): 3385-3395. |
YANG Weisen, LIU Yifei, SHI Fengshuo, et al. Defluoridation performance of electrospun La2O3-CeO2 nanofibers[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3385-3395. | |
7 | CHEN Xin, WAN Caixia, YU Rui, et al. A novel carboxylated polyacrylonitrile nanofibrous membrane with high adsorption capacity for fluoride removal from water[J]. Journal of Hazardous Materials, 2021, 411: 125113. |
8 | 武鑫霞, 曹占平, 苏婷, 等. Ce改性金属有机骨架材料对氟的吸附[J]. 复合材料学报, 2020, 37(10): 2636-2644. |
WU Xinxia, CAO Zhanping, SU Ting, et al. Adsorption of Ce modified metal organic framework to fluorine[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2636-2644. | |
9 | LI Xilin, YU Xiaowan, LIU Ling, et al. Preparation, characterization serpentine-loaded hydroxyapatite and its simultaneous removal performance for fluoride, iron and manganese[J]. RSC Advances, 2021, 11(27): 16201-16215. |
10 | MUKHERJEE Arnab, ADAK Mrinal K, DHAK Prasanta, et al. A simple chemical method for the synthesis of Cu2+ engrafted MgAl2O4 nanoparticles: Efficient fluoride adsorbents, photocatalyst and latent fingerprint detection[J]. Journal of Environmental Sciences, 2020, 88: 301-315. |
11 | 魏永, 李贤建, 罗政博, 等. 氧化铝改性活性炭纤维电吸附除氟效能及机理[J]. 中国环境科学, 2023, 43(8): 3974-3982. |
WEI Yong, LI Xianjian, LUO Zhengbo, et al. Efficiency and mechanism of fluoride removal by electroadsorption of alumina modified activated carbon fiber[J]. China Environmental Science, 2023, 43(8): 3974-3982. | |
12 | GITARI Wilson M, IZUAGIE Anthony A, GUMBO Jabulani R. Synthesis, characterization and batch assessment of groundwater fluoride removal capacity of trimetal Mg/Ce/Mn oxide-modified diatomaceous earth[J]. Arabian Journal of Chemistry, 2020, 13(1): 1-16. |
13 | ZHANG Bo, LIU Chengjun, LI Chunlong, et al. A novel approach for recovery of rare earths and niobium from Bayan Obo tailings[J]. Minerals Engineering, 2014, 65: 17-23. |
14 | AOUDJ S, KHELIFA A, DROUICHE N, et al. Removal of fluoride and turbidity from semiconductor industry wastewater by combined coagulation and electroflotation[J]. Desalination and Water Treatment, 2016, 57(39): 18398-18405. |
15 | HUANG Lei, YANG Zhihui, LEI Dongxue, et al. Experimental and modeling studies for adsorbing different species of fluoride using lanthanum-aluminum perovskite[J]. Chemosphere, 2021, 263: 128089. |
16 | LI W, ZHUO M W, SHI J L. Synthesizing nano LaAlO3 powders via co-precipitation method[J]. Materials Letters, 2004, 58(3/4): 365-368. |
17 | KUO Chia-Liang, WANG Chengli, CHEN Teyuan, et al. Low temperature synthesis of nanocrystalline lanthanum monoaluminate powders by chemical coprecipitation[J]. Journal of Alloys and Compounds, 2007, 440(1/2): 367-374. |
18 | BRYLEWSKI Tomasz, BUĆKO Mirosław M. Low-temperature synthesis of lanthanum monoaluminate powders using the co-precipitation-calcination technique[J]. Ceramics International, 2013, 39(5): 5667-5674. |
19 | HARON Wankassama, WISITSORAAT Anurat, WONGNAWA Sumpun. Nanostructured perovskite oxides-LaMO3 (M=Al, Co, Fe) prepared by co-precipitation method and their ethanol-sensing characteristics[J]. Ceramics International, 2017, 43(6): 5032-5040. |
20 | 宋立. 高分散性纳米YAG荧光粉的制备及性能研究[D]. 南京: 东南大学, 2018. |
SONG Li. Preparation and properties of high dispersion nano-YAG phosphor[D].Nanjing: Southeast University, 2018. | |
21 | Yujin SIM, YOO Jihoon, Jeong-Myeong HA, et al. Oxidative coupling of methane over LaAlO3 perovskite catalysts prepared by a co-precipitation method: Effect of co-precipitation pH value[J]. Journal of Energy Chemistry, 2019, 35: 1-8. |
22 | WALTON Prof Richard I. Frontispiece: Perovskite oxides prepared by hydrothermal and solvothermal synthesis: A review of crystallisation, chemistry, and compositions[J]. Chemistry-A European Journal, 2020, 26(42): 9041-9069. |
23 | ZHANG Lianjie, CUI Meisheng, WANG Hao, et al. Effects of co-precipitation temperature on structure and properties of La and Y doped cerium zirconium mixed oxides[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(2): 618-628. |
24 | GAYER K H, THOMPSON L C, ZAJICEK O T. The solubility of aluminum hydroxide in acidic and basic media at 25℃[J]. Canadian Journal of Chemistry, 1958, 36(9): 1268-1271. |
25 | LEE Gihoon, KANG Ji Yeon, YAN Ning, et al. Simple preparation method for Mg-Al hydrotalcites as base catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2016, 423: 347-355. |
26 | 刘文斌. Nd: YAG透明陶瓷的制备、显微结构及激光性能研究[D]. 上海: 上海交通大学, 2012. |
LIU Wenbin. Preparation, microstructure and laser properties of Nd: YAG transparent ceramics[D]. Shanghai: Shanghai Jiao Tong University, 2012. | |
27 | SOLANGI Imam Bakhsh, MEMON Shahabuddin, BHANGER M I. An excellent fluoride sorption behavior of modified amberlite resin[J]. Journal of Hazardous Materials, 2010, 176(1/2/3): 186-192. |
28 | ISLAM Mahamudur, MISHRA Prakash Chandra, PATEL Rajkishore. Fluoride adsorption from aqueous solution by a hybrid thorium phosphate composite[J]. Chemical Engineering Journal, 2011, 166(3): 978-985. |
29 | WANG Aihe, ZHOU Kanggen, CHEN Wei, et al. Adsorption of fluoride by the calcium alginate embedded with Mg-Al-Ce trimetal oxides[J]. Korean Journal of Chemical Engineering, 2018, 35(8): 1636-1641. |
30 | HE Yuxuan, ZHANG Liming, AN Xiao, et al. Enhanced fluoride removal from water by rare earth (La and Ce) modified alumina: Adsorption isotherms, kinetics, thermodynamics and mechanism[J]. Science of the Total Environment, 2019, 688: 184-198. |
31 | TANG Dandan, ZHANG Gaoke. Efficient removal of fluoride by hierarchical Ce-Fe bimetal oxides adsorbent: Thermodynamics, kinetics and mechanism[J]. Chemical Engineering Journal, 2016, 283: 721-729. |
32 | YU Yaqin, ZHOU Zhen, DING Zhaoxia, et al. Simultaneous arsenic and fluoride removal using{201}TiO2-ZrO2: Fabrication, characterization, and mechanism[J]. Journal of Hazardous Materials, 2019, 377: 267-273. |
[1] | ZHI Yuan, MA Jiliang, CHEN Xiaoping, LIU Daoyin, LIANG Cai. Decarbonization capability of supported Na-based CO2 adsorbents prepared by fluidized bed spray impregnation [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2961-2967. |
[2] | MIAO Yihe, WANG Yaozu, LIU Yuhang, ZHU Xuancan, LI Jia, YU Lijun. Research progress on the improving effect of additives on supported amine adsorbents for carbon capture [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2739-2759. |
[3] | DONG Xiaohan, TIAN Yue, SU Yi. Study on the preparation of composite adsorbent with titanium-containing blast furnace slag and chromium adsorption performance [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1552-1564. |
[4] | DAI Hongjing, MA Xuehu, WANG Sifang. Adsorption technology and materials for the treatment of low and intermediate level radioactive wastewater [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 529-540. |
[5] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[6] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
[7] | ZHANG Xuewei, HUANG Yaji, XU Yueyang, CHENG Haoqiang, ZHU Zhicheng, LI Jinlei, DING Xueyu, WANG Sheng, ZHANG Rongchu. Adsorption characteristics of SO3 from coal flue gas by alkaline adsorbent [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3855-3864. |
[8] | ZHAO Chongyang, ZHAO Lei, SHI Xiangwen, HUANG Jun, LI Zhiyao, SHEN Kai, ZHANG Yaping. Effect of O2/H2O/SO2 on the adsorption of PbCl2 by modified iron-rich attapulgite at high temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2190-2200. |
[9] | GUO Shuaishuai, CHEN Jinlu, JIN Liangchenglong, TAO Zui, CHEN Xiaoli, PENG Guowen. Research progress of porous aromatic frameworks based on uranium extraction from seawater [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1426-1436. |
[10] | YE Qinhui, CHEN Hong, YU Xin, WANG Kai, YU Luying, ZENG Kejia. Preparation and resource utilization of biogas residue biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6554-6566. |
[11] | GUO Yu, TONG Minxin, WU Hongmei. Preparation of amino-functionalized dialdehyde starch adsorbent for adsorption of Pb(Ⅱ) ions [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6589-6599. |
[12] | CUI Qian, WANG Annan, CHEN Zaiming, SUN Qiaoyi, WANG Baodeng, WANG Yongsheng, SUN Nannan, HU Jian, LI Jingfeng, XIONG Rihua. Preparation and performance optimization of liquefied residue-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6620-6630. |
[13] | WU Yue, LI Xiaoyu, TAO Chunhui, ZHANG Ying, LI Yinhui, ZHANG Wenxiang, Yang Bolun, MA Heping. Adsorptive separation of NF3 using ion-modified CON material [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 6076-6085. |
[14] | WANG Yuqing, DUAN Yufeng, WANG Rui, LIU Xiaoshuo, SHEN Zhen. Experimental and kinetics analysis of ethanol-hydrated calcium-based adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 6053-6063. |
[15] | KE Yuxin, ZHU Xiaoli, SI Shaocheng, ZHANG Ting, WANG Junqiang, ZHANG Ziye. Adsorbent derived from spent bleaching earth for the synergistic removal of tetracycline and copper in wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5981-5992. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |