Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (2): 937-947.DOI: 10.16085/j.issn.1000-6613.2023-0281
• Chemical processes and equipment • Previous Articles Next Articles
ZHU Bingguo(), GONG Kaigang, PENG Bin
Received:
2023-02-28
Revised:
2023-05-22
Online:
2024-03-07
Published:
2024-02-25
Contact:
ZHU Bingguo
通讯作者:
朱兵国
作者简介:
朱兵国(1988—),男,博士,讲师,研究方向为超临界流体传热传质。E-mail:zhubg@lut.edu.cn。
基金资助:
CLC Number:
ZHU Bingguo, GONG Kaigang, PENG Bin. Heat transfer characteristics of supercritical CO2 with high mass flux in vertical tube[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 937-947.
朱兵国, 巩楷刚, 彭斌. 垂直管内高质量流速超临界CO2换热特性[J]. 化工进展, 2024, 43(2): 937-947.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0281
文献 | 公式 |
---|---|
Winterton等[ | |
Kim等[ | |
Gupta等[ | |
Kim等[ | |
Mokry等[ |
文献 | 公式 |
---|---|
Winterton等[ | |
Kim等[ | |
Gupta等[ | |
Kim等[ | |
Mokry等[ |
1 | XU Jinliang, LIU Chao, SUN Enhui, et al. Perspective of S-CO2 power cycles[J]. Energy, 2019, 186: 115831. |
2 | 师亚东, 李靓. 国际能源企业低碳化转型实践研究[J]. 中国能源, 2021, 43(3): 75-79. |
SHI Yadong, LI Liang. Study on the practice of low-carbon transformation of international energy enterprises[J]. Energy of China, 2021, 43(3): 75-79. | |
3 | 王哮江, 刘鹏, 李荣春, 等. “双碳”目标下先进发电技术研究进展及展望[J]. 热力发电, 2022, 51(1): 52-59. |
WANG Xiaojiang, LIU Peng, LI Rongchun, et al. Research progress and prospects of advanced power generation technology under the goal of carbon emission peak and carbon neutrality[J]. Thermal Power Generation, 2022, 51(1): 52-59. | |
4 | 张珍珍, 吕清泉, 张健美. “双碳”目标下分布式光伏发电技术的研究进展及展望[J]. 太阳能, 2023(1): 17-21. |
ZHANG Zhenzhen, Qingquan LYU, ZHANG Jianmei. Research progress and prospect of distributed pv power generation technology under the goal of emission peak and carbon neutrality[J]. Solar Energy, 2023(1): 17-21. | |
5 | 徐进良, 刘超, 孙恩慧, 等. 超临界二氧化碳动力循环研究进展及展望[J]. 热力发电, 2020, 49(10): 1-10. |
XU Jinliang, LIU Chao, SUN Enhui, et al. Review and perspective of supercritical carbon dioxide power cycles[J]. Thermal Power Generation, 2020, 49(10): 1-10. | |
6 | JIANG Peixue, ZHANG Yu, ZHAO Chenru, et al. Convection heat transfer of CO2 at supercritical pressures in a vertical mini tube at relatively low Reynolds numbers[J]. Experimental Thermal and Fluid Science, 2008, 32(8): 1628-1637. |
7 | JIANG Peixue, ZHANG Yu, SHI Runfu. Experimental and numerical investigation of convection heat transfer of CO2 at supercritical pressures in a vertical mini-tube[J]. International Journal of Heat and Mass Transfer, 2008, 51(11/12): 3052-3056. |
8 | 刘生晖, 黄彦平, 刘光旭, 等. 竖直圆管内超临界二氧化碳强迫对流传热实验研究[J]. 核动力工程, 2017, 38(1): 1-5. |
LIU Shenghui, HUANG Yanping, LIU Guangxu, et al. Investigation of correlation for forced convective heat transfer to supercritical carbon dioxide flowing in a vertical tube[J]. Nuclear Power Engineering, 2017, 38(1): 1-5. | |
9 | Oğuzhan GÖKKAYA, Efe ÖZTABAK, Hojin AHN. Experimental investigation on heat transfer characteristics of supercritical CO2 flowing upward and downward through a microtube at low Reynolds numbers[J]. Experimental Thermal and Fluid Science, 2022, 139: 110717. |
10 | GUO Jiangfeng, XIANG Mengru, ZHANG Haiyan, et al. Thermal-hydraulic characteristics of supercritical pressure CO2 in vertical tubes under cooling and heating conditions[J]. Energy, 2019, 170: 1067-1081. |
11 | 王珂, 谢金, 刘遵超, 等. 超临界二氧化碳在微细管内的换热特性[J]. 化工学报, 2014, 65(S1): 323-327. |
WANG Ke, XIE Jin, LIU Zunchao, et al. Heat transfer characteristics of supercritical carbon dioxide in a micro-capillary tube[J]. CIESC Journal, 2014, 65(S1): 323-327. | |
12 | KLINE Nathan, FEUERSTEIN Florian, TAVOULARIS Stavros. Onset of heat transfer deterioration in vertical pipe flows of CO2 at supercritical pressures[J]. International Journal of Heat and Mass Transfer, 2018, 118: 1056-1068. |
13 | 吴新明, 朱兵国, 张良, 等. 圆管内超临界CO2的阻力特性[J]. 化工学报, 2018, 69(12): 5024-5033. |
WU Xinming, ZHU Bingguo, ZHANG Liang, et al. Resistance characteristics of supercritical CO2 in circular tube[J]. CIESC Journal, 2018, 69(12): 5024-5033. | |
14 | 王乃心, 杨大章, 谢晶, 等. 超临界CO2对流换热特性试验研究进展[J]. 流体机械, 2020, 48(11): 73-79. |
WANG Naixin, YANG Dazhang, XIE Jing, et al. A review on experimental studies of convection heat transfer characteristic of supercritical CO2 [J]. Fluid Machinery, 2020, 48(11): 73-79. | |
15 | HUANG Dan, LI Wei. A brief review on the buoyancy criteria for supercritical fluids[J]. Applied Thermal Engineering, 2018, 131: 977-987. |
16 | HUANG Dan, WU Zan, SUNDEN Bengt, et al. A brief review on convection heat transfer of fluids at supercritical pressures in tubes and the recent progress[J]. Applied Energy, 2016, 162: 494-505. |
17 | 朱兵国. 超临界二氧化碳垂直管内对流换热研究[D]. 北京: 华北电力大学, 2020. |
ZHU Bingguo. Study on convective heat transfer in vertical tube of supercritical carbon dioxide[D]. Beijing: North China Electric Power University, 2020. | |
18 | LI Zhouhang, WU Yuxin, TANG Guoli, et al. Comparison between heat transfer to supercritical water in a smooth tube and in an internally ribbed tube[J]. International Journal of Heat and Mass Transfer, 2015, 84: 529-541. |
19 | WANG Kaizheng, XU Xiaoxiao, WU Yangyang, et al. Numerical investigation on heat transfer of supercritical CO2 in heated helically coiled tubes[J]. The Journal of Supercritical Fluids, 2015, 99: 112-120. |
20 | JIANG Peixue, LIU Bo, ZHAO Chenru, et al. Convection heat transfer of supercritical pressure carbon dioxide in a vertical micro tube from transition to turbulent flow regime[J]. International Journal of Heat and Mass Transfer, 2013, 56(1/2): 741-749. |
21 | 闫晨帅, 朱兵国, 张海松, 等. 超临界压力CO2在倾斜光管内换热特性数值分析[J]. 中国电机工程学报, 2020, 40(2): 583-592. |
YAN Chenshuai, ZHU Bingguo, ZHANG Haisong, et al. Numerical analysis on heat transfer characteristics of supercritical pressure CO2 in inclined smooth tube[J]. Proceedings of the CSEE, 2020, 40(2): 583-592. | |
22 | ZHU Bingguo, XU Jinliang, WU Xinming, et al. Supercritical “boiling” number, a new parameter to distinguish two regimes of carbon dioxide heat transfer in tubes[J]. International Journal of Thermal Sciences, 2019, 136: 254-266. |
23 | JACKSON J D. Fluid flow and convective heat transfer to fluids at supercritical pressure[J]. Nuclear Engineering and Design, 2013, 264: 24-40. |
24 | JACKSON J D, HALL W B. Influences of Buoyancy on heat transfer to fluids flowing in vertical tubes under turbulent conditions[J]. Turbulent Forced Convection in Channels and Bundles, 1979: 613-640. |
25 | MCELIGOT D M, COON C W, PERKINS H C. Relaminarization in tubes[J]. International Journal of Heat and Mass Transfer, 1970, 13(2): 431-433. |
26 | GONG Kaigang, ZHU Bingguo, PENG Bin, et al. Numerical investigation of heat transfer characteristics of scCO2 flowing in a vertically-upward tube with high mass flux[J]. Entropy, 2022, 24(1): 79. |
27 | WINTERTON R H. Where did the Dittus and Boelter equation come from?[J]. International Journal of Heat and Mass Transfer, 1998, 41(4/5): 809-810. |
28 | KIM D E, KIM M H. Experimental study of the effects of flow acceleration and buoyancy on heat transfer in a supercritical fluid flow in a circular tube[J]. Nuclear Engineering and Design, 2010, 240(10): 3336-3349. |
29 | GUPTA S, SALTANOV E, MOKRY S J, et al. Developing empirical heat-transfer correlations for supercritical CO2 flowing in vertical bare tubes[J]. Nuclear Engineering and Design, 2013, 261: 116-131. |
30 | KIM J K, JEON H K, LEE J S. Wall temperature measurement and heat transfer correlation of turbulent supercritical carbon dioxide flow in vertical circular/non-circular tubes[J]. Nuclear Engineering and Design, 2007, 237(15/16/17): 1795-1802. |
31 | MOKRY Sarah, PIORO Igor, FARAH Amjad, et al. Development of supercritical water heat-transfer correlation for vertical bare tubes[J]. Nuclear Engineering and Design, 2011, 241(4): 1126-1136. |
[1] | JIAN Yu, CHEN Baoming, GONG Hanyu. Enhanced heat transfer characteristics of phase change heat storage systems based on hierarchically structured skeletons [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 649-658. |
[2] | WANG Lei, CAO Xiongjin, LUO Kai, WANG Yan, FEI Hua. Pressure drop characteristics of supercritical CO2 in heating mini-channel with different flow directions [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 830-843. |
[3] | GAI Hongwei, ZHANG Chenjun, QU Jingying, SUN Huailu, TUO Yongxiao, WANG Bin, JIN Xu, ZHANG Xi, FENG Xiang, CHEN De. Research progress on catalytic dehydrogenation process intensification for liquid organic hydride carrier hydrogen storage [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 164-185. |
[4] | XIAO Hui, ZHANG Xianjun, LAN Zhike, WANG Suhao, WANG Sheng. Advances in flow and heat transfer research of liquid metal flowing across tube bundles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 10-20. |
[5] | ZHAO Chen, MIAO Tianze, ZHANG Chaoyang, HONG Fangjun, WANG Dahai. Heat transfer characteristics of ethylene glycol aqueous solution in slit channel under negative pressure [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 148-157. |
[6] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[7] | ZHANG Fan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Initializing distillation column simulation based on the improved constant heat transport model [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4550-4558. |
[8] | BU Zhicheng, JIAO Bo, LIN Haihua, SUN Hongyuan. Review on computational fluid dynamics (CFD) simulation and advances in pulsating heat pipes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4167-4181. |
[9] | WANG Jiansheng, ZHANG Huipeng, LIU Xueling, FU Yuguo, ZHU Jianxiao. Analysis of flow and heat transfer characteristics in porous media reservoir [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4212-4220. |
[10] | WANG Yungang, JIAO Jian, DENG Shifeng, ZHAO Qinxin, SHAO Huaishuang. Experimental analysis of condensation heat transfer and synergistic desulfurization [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4230-4237. |
[11] | GUO Wenjie, ZHAI Yuling, CHEN Wenzhe, SHEN Xin, XING Ming. Analysis of convective heat transfer and thermo-economic performance of Al2O3-CuO/water hybrid nanofluids [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2315-2324. |
[12] | LIU Houli, GU Zhonghao, YANG Kang, ZHANG Li. Effect of groove width on pool boiling heat transfer characteristics in 3D printing groove structure [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2282-2288. |
[13] | ZHANG Chenyu, WANG Ning, XU Hongtao, LUO Zhuqing. Performance evaluation of the multiple layer latent heat thermal energy storage unit combined with nanoparticle for heat transfer enhancement [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2332-2342. |
[14] | MA Runmei, YANG Haichao, LI Zhengda, LI Shuangxi, ZHAO Xiang, ZHANG Guoqing. Influence analysis of coating on deformation and frictional wear of mechanical seal end for high-speed bearing cavity [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1688-1697. |
[15] | SHANG Yu, XIAO Man, CUI Qiufang, TU Te, YAN Shuiping. Recovery characteristics of PVDF/BN-OH flat composite membrane for waste heat of hot stripped gas in CO2 capture process [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1618-1628. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |