Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (2): 1098-1108.DOI: 10.16085/j.issn.1000-6613.2023-0315
• Resources and environmental engineering • Previous Articles
YANG Jieyuan1(), ZHU Yichun1(), LAI Yafen1, ZHANG Chao1, TIAN Shuai2, XIE Ying1
Received:
2023-03-02
Revised:
2023-04-02
Online:
2024-03-07
Published:
2024-02-25
Contact:
ZHU Yichun
杨杰源1(), 朱易春1(), 赖雅芬1, 张超1, 田帅2, 谢颖1
通讯作者:
朱易春
作者简介:
杨杰源(1998—),男,硕士研究生,研究方向为污水生物处理技术。E-mail:1692065260@qq.com。
基金资助:
CLC Number:
YANG Jieyuan, ZHU Yichun, LAI Yafen, ZHANG Chao, TIAN Shuai, XIE Ying. Effect of low intensity ultrasound on operation performance of high load Anammox-EGSB reactor[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1098-1108.
杨杰源, 朱易春, 赖雅芬, 张超, 田帅, 谢颖. 低强度超声波对高负荷厌氧氨氧化EGSB反应器运行性能的影响[J]. 化工进展, 2024, 43(2): 1098-1108.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0315
阶段 | 运行时间 /d | 进水NH4+-N /mg·L-1 | 进水NO2⁻-N /mg·L-1 | 水力停留时间/h | NLR /kg N·m-3·d-1 |
---|---|---|---|---|---|
Ⅰ | 1~40 | 200 | 240 | 3.5 | 3.01 |
Ⅱ | 41~68 | 250 | 300 | 3.5 | 3.77 |
Ⅲ | 69~92 | 300 | 360 | 3.5 | 4.52 |
Ⅳ | 93~117 | 400 | 480 | 3.5 | 6.03 |
阶段 | 运行时间 /d | 进水NH4+-N /mg·L-1 | 进水NO2⁻-N /mg·L-1 | 水力停留时间/h | NLR /kg N·m-3·d-1 |
---|---|---|---|---|---|
Ⅰ | 1~40 | 200 | 240 | 3.5 | 3.01 |
Ⅱ | 41~68 | 250 | 300 | 3.5 | 3.77 |
Ⅲ | 69~92 | 300 | 360 | 3.5 | 4.52 |
Ⅳ | 93~117 | 400 | 480 | 3.5 | 6.03 |
污泥样品 | LB-PN | LB-PS | TB-PN | TB-PS | T-PN | T-PS |
---|---|---|---|---|---|---|
RC | 40.24±0.06 | 26.25±1.52 | 7.18±0.76 | 15.33±0.35 | 48.00±0.82 | 42.75±1.17 |
RU | 45.08±0.24 | 24.20±1.03 | 17.19±0.79 | 15.17±0.04 | 62.27±1.03 | 39.37±0.99 |
污泥样品 | LB-PN | LB-PS | TB-PN | TB-PS | T-PN | T-PS |
---|---|---|---|---|---|---|
RC | 40.24±0.06 | 26.25±1.52 | 7.18±0.76 | 15.33±0.35 | 48.00±0.82 | 42.75±1.17 |
RU | 45.08±0.24 | 24.20±1.03 | 17.19±0.79 | 15.17±0.04 | 62.27±1.03 | 39.37±0.99 |
污泥样品 | zeta电位/mV | 接触角/(°) |
---|---|---|
RC | -18.73±0.90 | 82.9 |
RU | -20.5±0.67 | 60.5 |
污泥样品 | zeta电位/mV | 接触角/(°) |
---|---|---|
RC | -18.73±0.90 | 82.9 |
RU | -20.5±0.67 | 60.5 |
污泥样品 | SeqNum | OTUs | Shannon | chao1 | Ace | Simpson | Shannoneven | Coverage |
---|---|---|---|---|---|---|---|---|
RC | 87201 | 197 | 2.439 | 201.58 | 201.222 | 0.285 | 0.462 | 0.9998 |
RU | 62883 | 171 | 1.531 | 177.00 | 177.240 | 0.557 | 0.298 | 0.9997 |
污泥样品 | SeqNum | OTUs | Shannon | chao1 | Ace | Simpson | Shannoneven | Coverage |
---|---|---|---|---|---|---|---|---|
RC | 87201 | 197 | 2.439 | 201.58 | 201.222 | 0.285 | 0.462 | 0.9998 |
RU | 62883 | 171 | 1.531 | 177.00 | 177.240 | 0.557 | 0.298 | 0.9997 |
1 | VAN DE GRAAF A A, MULDER Arnold, BRUIJN Peter, et al. Anaerobic ammonium oxidation is a biologically mediated process[J]. Applied and Environmental Microbiology, 1995, 61: 1246-1251. |
2 | LACKNER Susanne, GILBERT Eva M, VLAEMINCK Siegfried E, et al. Full-scale partial nitritation/Anammox experiences—An application survey[J]. Water Research, 2014, 55: 292-303. |
3 | STROUS M, HEIJNEN J J, KUENEN J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Applied Microbiology and Biotechnology, 1998, 50(5): 589-596. |
4 | WANG Shuai, HUANG Xiaoxiao, LIU Lijuan, et al. Understanding the mechanism in aggregation ability between aerobic and Anammox granular sludge from the perspective of exopolysaccharides[J]. Journal of Water Process Engineering, 2020, 38: 101629. |
5 | MA Jinyuan, YANG Meijuan, SHI Chuan, et al. Insight into the benefits of Anammox bacteria living as aggregates[J]. Bioresource Technology, 2020, 318: 124103. |
6 | WANG Xiaotong, YANG Hong, SU Yang, et al. Characteristics and mechanism of Anammox granular sludge with different granule size in high load and low rising velocity sewage treatment[J]. Bioresource Technology, 2020, 312: 123608. |
7 | CHEN Jianwei, JI Qixing, ZHENG Ping, et al. Floatation and control of granular sludge in a high-rate Anammox reactor[J]. Water Research, 2010, 44(11): 3321-3328. |
8 | WANG Tao, ZHANG Diandian, SUN Yating, et al. Using low frequency and intensity ultrasound to enhance start-up and operation performance of Anammox process inoculated with the conventional sludge[J]. Ultrasonics Sonochemistry, 2018, 42: 283-292. |
9 | ZHANG Wei, ZHOU Xin, CAO Xiwei, et al. Accelerating Anammox nitrogen removal in low intensity ultrasound-assisted ASBBR: Performance optimization, EPS characterization and microbial community analysis[J]. Science of the Total Environment, 2022, 817: 152989. |
10 | YUAN Luzi, WANG Tao, XING Fanghua, et al. Enhancement of Anammox performances in an ABR at normal temperature by the low-intensity ultrasonic irradiation[J]. Ultrasonics Sonochemistry, 2021, 73: 105468. |
11 | HAZRATI Sajjad, FARAHBAKHSH Mohsen, Artemi CERDÀ, et al. Functionalization of ultrasound enhanced sewage sludge-derived biochar: Physicochemical improvement and its effects on soil enzyme activities and heavy metals availability[J]. Chemosphere, 2021, 269: 128767. |
12 | PAWAR Shweta V, RATHOD Virendra K. Ultrasound assisted process intensification of uricase and alkaline protease enzyme co-production in Bacillus licheniformis [J]. Ultrasonics Sonochemistry, 2018, 45: 173-179. |
13 | DAI Chunhua, XIONG Feng, HE Ronghai, et al. Effects of low-intensity ultrasound on the growth, cell membrane permeability and ethanol tolerance of Saccharomyces cerevisiae [J]. Ultrasonics Sonochemistry, 2017, 36: 191-197. |
14 | STROUS M, VAN GERVEN E, KUENEN J G, et al. Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (Anammox) sludge[J]. Applied and Environmental Microbiology, 1997, 63: 2446-2448. |
15 | DUAN Xiumei, ZHOU Jiti, QIAO Sen, et al. Application of low intensity ultrasound to enhance the activity of Anammox microbial consortium for nitrogen removal[J]. Bioresource Technology, 2011, 102(5): 4290-4293. |
16 | WU Jiang, KONG Zhe, LUO Zibin, et al. A successful start-up of an anaerobic membrane bioreactor (AnMBR) coupled mainstream partial nitritation-Anammox (PN/A) system: A pilot-scale study on in-situ NOB elimination, AnAOB growth kinetics, and mainstream treatment performance[J]. Water Research, 2021, 207: 117783. |
17 | LIN Lan, ISHIDA Kyuto, ZHANG Yanlong, et al. Improving the biomass retention and system stability of the Anammox EGSB reactor by adding a calcium silicate hydrate functional material[J]. The Science of the Total Environment, 2023, 857(3): 159719. |
18 | KIMURA Yuya, ISAKA Kazuichi, KAZAMA Futaba, et al. Effects of nitrite inhibition on anaerobic ammonium oxidation[J]. Applied Microbiology and Biotechnology, 2010, 86(1): 359-365. |
19 | 王梦杰, 员建, 马华继, 等. 低强度超声波对膨胀活性污泥沉降性能及污泥减量的影响[J]. 化工进展, 2017, 36(3): 1134-1139. |
WANG Mengjie, YUAN Jian, MA Huaji, et al. Effects of low intensity ultrasonic treatment on settleability of bulking sludge and sludge reduction[J]. Chemical Industry and Engineering Progress, 2017, 36(3): 1134-1139. | |
20 | 李鑫, 朱易春, 连军锋, 等. 低强度超声波对ABR处理低浓度污水效果及污泥特性的影响[J]. 化工进展, 2021, 40(11): 6401-6408. |
LI Xin, ZHU Yichun, LIAN Junfeng, et al. Effect of low-intensity ultrasound on treatment of low-strength wastewater and sludge characteristics using ABR[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6401-6408. | |
21 | REINO Clara, CARRERA Julián. Low-strength wastewater treatment in an Anammox UASB reactor: Effect of the liquid upflow velocity[J]. Chemical Engineering Journal, 2017, 313: 217-225. |
22 | CHEN Chongjun, JIANG Ying, ZOU Xinyi, et al. Insight into the influence of particle sizes on characteristics and microbial community in the Anammox granular sludge[J]. Journal of Water Process Engineering, 2021, 39: 101883. |
23 | ZHU Guibing, WANG Shanyun, MA Bin, et al. Anammox granular sludge in low-ammonium sewage treatment: Not bigger size driving better performance[J]. Water Research, 2018, 142: 147-158. |
24 | YIN Cuiqin, MENG Fangang, CHEN Guanghao. Spectroscopic characterization of extracellular polymeric substances from a mixed culture dominated by ammonia-oxidizing bacteria[J]. Water Research, 2015, 68: 740-749. |
25 | FENG Cuijie, LOTTI Tommaso, CANZIANI Roberto, et al. Extracellular biopolymers recovered as raw biomaterials from waste granular sludge and potential applications: A critical review[J]. Science of the Total Environment, 2021, 753: 142051. |
26 | LIU Xiaomeng, SHENG Guoping, LUO Hongwei, et al. Contribution of extracellular polymeric substances (EPS) to the sludge aggregation[J]. Environmental Science & Technology, 2010, 44(11): 4355-4360. |
27 | HOU Xiaolin, LIU Sitong, ZHANG Zuotao. Role of extracellular polymeric substance in determining the high aggregation ability of Anammox sludge[J]. Water Research, 2015, 75: 51-62. |
28 | XU Dongdong, FAN Jiahui, CHEN Wenda, et al. Insights into the enhanced effect of low-intensity ultrasound on Anammox granular sludge by relieving the embolism[J]. Chemical Engineering Journal, 2022, 446: 137470. |
29 | CHEN Wen, WESTERHOFF Paul, LEENHEER Jerry A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710. |
30 | ZHANG Lei, NARITA Yuko, GAO Lin, et al. Maximum specific growth rate of Anammox bacteria revisited[J]. Water Research, 2017, 116: 296-303. |
31 | BOEDEKER Christian, Margarete SCHÜLER, REINTJES Greta, et al. Determining the bacterial cell biology of Planctomycetes[J]. Nature Communications, 2017, 8(1): 14853. |
32 | LAWSON Christopher E, WU Sha, BHATTACHARJEE Ananda S, et al. Metabolic network analysis reveals microbial community interactions in Anammox granules[J]. Nature Communications, 2017, 8: 15416. |
33 | ZHANG Zuotao, LIU Sitong. Insight into the overconsumption of ammonium by Anammox consortia under anaerobic conditions[J]. Journal of Applied Microbiology, 2014, 117(6): 1830-1838. |
34 | ZHANG Fangzhai, PENG Yongzhen, SUN Jinying, et al. Ultra-low energy consumption process (PN+Anammox) for enhanced nitrogen removal from decentralized sewage[J]. Chemical Engineering Journal, 2021, 426: 130769. |
35 | SU Junfeng, YANG Shu, HUANG Tinglin, et al. Enhancement of the denitrification in low C/N condition and its mechanism by a novel isolated Comamonas sp. YSF15 [J]. Environmental Pollution, 2020, 256: 113294. |
36 | YANG Yafei, XIAO Cancan, YU Qing, et al. Using Fe(Ⅱ)/Fe(Ⅲ) as catalyst to drive a novel Anammox process with no need of Anammox bacteria[J]. Water Research, 2021, 189: 116626. |
37 | XIE Beizhen, LIU Bojie, YI Yue, et al. Microbiological mechanism of the improved nitrogen and phosphorus removal by embedding microbial fuel cell in Anaerobic-Anoxic-Oxic wastewater treatment process[J]. Bioresource Technology, 2016, 207: 109-117. |
38 | DE ALMEIDA FERNANDES Luyara, PEREIRA Alyne Duarte, LEAL Cíntia Dutra, et al. Effect of temperature on microbial diversity and nitrogen removal performance of an Anammox reactor treating anaerobically pretreated municipal wastewater[J]. Bioresource Technology, 2018, 258: 208-219. |
39 | WILHELM Roland C, Charles PEPE-RANNEY, WEISENHORN Pamela, et al. Competitive exclusion and metabolic dependency among microorganisms structure the cellulose economy of an agricultural soil[J]. mBio, 2021, 12(1): e03099-e03020. |
[1] | SHI Tianxi, SHI Yonghui, WU Xinying, ZHANG Yihao, QIN Zhe, ZHAO Chunxia, LU Da. Effects of Fe2+ on the performance of Anammox EGSB reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5003-5010. |
[2] | CHEN Xiangyu, BIAN Chunlin, XIAO Benyi. Research progress on temperature phased anaerobic digestion technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4872-4881. |
[3] | LI Baixue, XIN Xin, ZHU Yumeng, LIU Qin, LIU Xin. Construction of sulfur autotrophic short-cut denitrification and anaerobic ammonium oxidation (SASD-A) coupling system and effect mechanisms of influent S/N ratio on denitrification process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3261-3271. |
[4] | LI Huahua, LI Yihang, JIN Beichen, LI Longxin, CHENG Shao’an. Research progress of Anammox bio-electrochemical coupling wastewater treatment system [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2678-2690. |
[5] | ZHU Zixuan, CHEN Junjiang, ZHANG Xingxing, LI Xiang, LIU Wenru, WU Peng. Research advances on novel wastewater biological nitrogen removal technology by partial denitrification coupled with Anammox [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2091-2100. |
[6] | HU Xuan, CHEN Ying. Effects of exposure of polyester fiber microplastics on activated sludge system performance and microbial community structure [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1051-1060. |
[7] | ZHANG Han, ZHANG Xiaojing, MA Bingbing, NAI Can, LIU Shuoshuo, MA Yongpeng, SONG Yali. Feasibility of starting anammox process with municipal waste sludge as seed sludge [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1080-1088. |
[8] | WANG Hao, DI Lu, WANG Fang, ZHANG Deli, YI Weiming, LI Yongjun, SHEN Xiuli. Organic matter conversion and methane production characteristics during anaerobic co-digestion of corn stover and aqueous phase derived from cellulose hydrothermal carbonization [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6666-6675. |
[9] | CHI Weili, YANG Hong. Pilot-scale nitrogen removal and optimization of anammox immobilized fillers in the treatment of rare earth tailings wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 506-516. |
[10] | XU Pei, JIA Xuan, WANG Yong, QI Xuejiao, ZHAO Yujiao, LI Mingxiao. Effect of flow field on the CO2 reduction performance and products of MEC biocathode [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3816-3823. |
[11] | CHEN Jiabo, ZHOU Xin, LI Xu. Rapid start-up and nitrogen removal performance of anammox process using activated sludge as an inoculation [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3900-3907. |
[12] | PAN Wenzheng, JI Zhiyong, WANG Jing, LI Shuming, HUANG Zhihui, GUO Xiaofu, LIU Jie, ZHAO Yingying, YUAN Junsheng. Research on the electricity production performance and degradation process of microbial fuel cell treating azo-dye saline wastewater [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3306-3313. |
[13] | GUO Zhihan, XU Yunxiang, LI Tianhao, HUANG Zichuan, LIU Wenru, SHEN Yaoliang. Research progress on long-term stable operation of aerobic granular sludge [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2686-2697. |
[14] | WANG Yuguang, ZHANG Xingxing, WANG Chaochao, XIA Yunkang, WANG Yao, ZHOU Cheng, WU Yiling, WU Peng, XU Lezhong. Achieving advanced nitrogen and phosphorus removal based on denitrifying phosphorus removal and partial denitrification Anammox process [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2191-2201. |
[15] | JING Shuangyi, LIU Chao, CAI Yiting, LI Weiping, YU Linghong, HOU Na. Enhancement of nitrification performance of MBBR at low temperature by magnetic carrier and its microbial community analysis [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2180-2190. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |