Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (11): 6129-6139.DOI: 10.16085/j.issn.1000-6613.2023-0896
• Industrial catalysis • Previous Articles
CUI Weiyi1,2(), TAN Naidi2(), HUO Qilei3, LI Wei4
Received:
2023-05-30
Revised:
2023-08-03
Online:
2024-12-07
Published:
2024-11-15
Contact:
TAN Naidi
通讯作者:
谭乃迪
作者简介:
崔维怡(1977—),女,副教授,研究方向为环境催化。E-mail:cuiweiyi0119@163.com。
基金资助:
CLC Number:
CUI Weiyi, TAN Naidi, HUO Qilei, LI Wei. Research progress in catalytic oxidation of toluene over Mn-based catalysts[J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6129-6139.
崔维怡, 谭乃迪, 霍其雷, 李伟. 锰基催化剂催化氧化甲苯的研究进展[J]. 化工进展, 2024, 43(11): 6129-6139.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0896
1 | MELLOUKI A, WALLINGTON T J, CHEN J. Atmospheric chemistry of oxygenated volatile organic compounds: Impacts on air quality and climate[J]. Chemical Reviews, 2015, 115(10): 3984-4014. |
2 | HE Chi, CHENG Jie, ZHANG Xin, et al. Recent advances in the catalytic oxidation of volatile organic compounds: A review based on pollutant sorts and sources[J]. Chemical Reviews, 2019, 119 (7): 4471-4568. |
3 | Yue LYU, LI Caiting, DU Xueyu, et al. Catalytic removal of toluene over manganese oxide-based catalysts: A review[J]. Environmental Science and Pollution Research, 2020, 27(3): 2482-2501. |
4 | CHEN Jinfeng, ZHANG Xiaodong, SHI Xiaoyu, et al. Synergistic effects of octahedral TiO2-MIL-101(Cr) with two heterojunctions for enhancing visible-light photocatalytic degradation of liquid tetracycline and gaseous toluene[J]. Journal of Colloid and Interface Science, 2020, 579: 37-49. |
5 | YANG Cuiting, MIAO Guang, PI Yunhong, et al. Abatement of various types of VOCs by adsorption/ catalytic oxidation: A review[J]. Chemical Engineering Journal, 2019, 370: 1128-1153. |
6 | ZHANG Shihan, YOU Juping, KENNES C, et al. Current advances of VOCs degradation by bioelectrochemical systems: A review[J]. Chemical engineering journal, 2018, 334: 2625-2637. |
7 | KAMAL M S, RAZZAK S A, HOSSAIN M M. Catalytic oxidation of volatile organic compounds (VOCs)—A review[J]. Atmospheric Environment, 2016, 140: 117-134. |
8 | GUO Yunlong, WEN Meicheng, LI Guiying, et al. Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: a critical review[J]. Applied Catalysis B: Environmental, 2021, 281: 119447. |
9 | 秦媛. 锰基催化剂催化氧化甲苯性能及其氧物种循环过程的研究[D]. 大连: 大连理工大学, 2020. |
QIN Yuan. Study of the performance of toluene catalytic oxidation and the cycle of oxygen species over Mn-based catalysts[D]. Dalian: Dalian University of Technology, 2020. | |
10 | XU Haomiao, YAN Naiqiang, QU Zan, et al. Gaseous heterogeneous catalytic reactions over Mn-based oxides for environmental applications: A critical review[J]. Environmental Science & Technology, 2017, 51(16): 8879-8892. |
11 | GU Wenxiu, LI Chenqi, QIU Jianhao, et al. Facile fabrication of flower-like MnO2 hollow microspheres as high-performance catalysts for toluene oxidation[J]. Journal of Hazardous Materials, 2021, 408(15): 124458. |
12 | ZENG Xiaohong, CHENG Gao, LIU Qi, et al. Novel ordered mesoporous γ-MnO2 catalyst for high-performance catalytic oxidation of toluene and o-Xylene[J]. industrial & engineering chemistry research, 2019, 58(31): 13926-13934. |
13 | NGUYEN DINH Minh Tuan, NGUYEN Chinh Chien, TRUONG VU Tan Linh, et al. Tailoring porous structure, reducibility and Mn4+ fraction of ε-MnO2 microcubes for the complete oxidation of toluene[J]. Applied Catalysis A: General, 2020, 595: 117473. |
14 | PULLERI J K, SINGH S K, YEARWAR D, et al. Morphology dependent catalytic activity of Mn3O4 for complete oxidation of toluene and carbon monoxide[J]. Catalysis Letters, 2021, 151(1): 172-183. |
15 | ZHAO Baohuai, RAN Ran, WU Xiaodong, et al. Phase structures, morphologies, and NO catalytic oxidation activities of single-phase MnO2 catalysts[J]. Applied Catalysis A: General, 2016, 514: 24-34. |
16 | ZHOU Jing, QIN Lifan, XIAO Wei, et al. Oriented growth of layered MnO2 nanosheets over α-MnO2 nanotubes for enhanced room-temperature HCHO oxidation[J]. Applied Catalysis B: Environmental, 2017, 207: 233-243. |
17 | LI Kan, CHEN Chen, ZHANG Hongbo, et al. Effects of phase structure of MnO2 and morphology of δ-MnO2 on toluene catalytic oxidation[J]. Applied Surface Science, 2019, 496(1): 143662. |
18 | YANG Wenhao, SU Ziang, XU Zhenghao, et al. Comparative study of α-, β-, γ- and δ-MnO2 on toluene oxidation: Oxygen vacancies and reaction intermediates[J]. Applied Catalysis B: Environmental, 2020, 260: 118150. |
19 | HUANG Na, QU Zhenping, DONG Cui, et al. Superior performance of α@β-MnO2 for the toluene oxidation: Active interface and oxygen vacancy[J]. Applied Catalysis A: General, 2018, 560: 195-205. |
20 | MO Shengpeng, ZHANG Qi, LI Jiaqi, et al. Highly efficient mesoporous MnO2 catalysts for the total toluene oxidation: Oxygen-vacancy defect engineering and involved intermediates using in situ DRIFTS[J]. Applied Catalysis, B. Environmental, 2020, 264: 118464. |
21 | ZENG Jia, XIE Hongmei, LIU Zhao, et al. Oxygen vacancy induced MnO2 catalysts for efficient toluene catalytic oxidation[J]. Catalysis Science & Technology, 2021, 11(20): 6708-6723. |
22 | ZHANG Xiaodong, Xutian LYU, BI Fukun, et al. Highly efficient Mn2O3 catalysts derived from Mn-MOFs for toluene oxidation: The influence of MOFs precursors[J]. Molecular Catalysis, 2020, 482: 110701. |
23 | YANG Xueqin, YU Xiaolin, LIN Mengya, et al. Enhancement effect of acid treatment on Mn2O3 catalyst for toluene oxidation[J]. Catalysis Today, 2019, 327: 254-261. |
24 | Yue LYU, LI Caiting, DU Xueyu, et al. Catalytic oxidation of toluene over MnO2 catalysts with different Mn(Ⅱ)precursors and the study of reaction pathway[J]. Fuel, 2020, 262: 116610. |
25 | YANG Wenhao, PENG Yue, WANG Ya, et al. Controllable redox-induced in-situ growth of MnO2 over Mn2O3 for toluene oxidation: Active heterostructure interfaces[J]. Applied Catalysis B: Environmental, 2020, 278: 119279. |
26 | WANG Feng, DENG Jiang, IMPENG S, et al. Unraveling the effects of the coordination number of Mn over α-MnO2 catalysts for toluene oxidation[J]. Chemical Engineering Journal, 2020, 396: 125192. |
27 | CHEN Jin, CHEN Xi, CHEN Xi, et al. Homogeneous introduction of CeO y into MnO x -based catalyst for oxidation of aromatic VOCs[J]. Applied Catalysis B: Environmental, 2018, 224: 825-835. |
28 | ZHAO Lele, ZHANG Zhiping, LI Yushi, et al. Synthesis of Ce a MnO x hollow microsphere with hierarchical structure and its excellent catalytic performance for toluene combustion[J]. Applied Catalysis B: Environmental, 2019, 245: 502-512. |
29 | LUO Yongjin, LIN Daifeng, ZHENG Yingbin, et al. MnO2 nanoparticles encapsuled in spheres of Ce-Mn solid solution: Efficient catalyst and good water tolerance for low-temperature toluene oxidation[J]. Applied Surface Science, 2020, 504: 144481. |
30 | ZHANG Xiaodong, BI Fukun, ZHU Ziqiao, et al. The promoting effect of H2O on rod-like MnCeO x derived from MOFs for toluene oxidation: A combined experimental and theoretical investigation[J]. Applied Catalysis B: Environmental, 2021, 297: 120393. |
31 | LUO Yongjin, ZHENG Yingbin, ZUO Jiachang, et al. Insights into the high performance of Mn-Co oxides derived from metal organic frameworks for total toluene oxidation[J]. Journal of Hazardous Materials, 2018, 349: 119-127. |
32 | WANG Peifen, WANG Jing, AN Xiaowei, et al. Generation of abundant defects in Mn-Co mixed oxides by a facile agar-gel method for highly efficient catalysis of total toluene oxidation[J]. Applied Catalysis B: Environmental, 2021, 282: 119560. |
33 | DONG Cui, QU Zhenping, JIANG Xiao, et al. Tuning oxygen vacancy concentration of MnO2 through metal doping for improved toluene oxidation[J]. Journal of Hazardous Materials, 2020, 391: 122181. |
34 | XIONG Shangchao, HUANG Nan, PENG Yue, et al. Balance of activation and ring-breaking for toluene oxidation over CuO-MnO x bimetallic oxides[J]. Journal of Hazardous Materials, 2021, 415: 125637. |
35 | XU Yue, QU Zhenping, REN Yewei, et al. Enhancement of toluene oxidation performance over Cu-Mn composite oxides by regulating oxygen vacancy[J]. Applied Surface Science, 2021, 560: 149983. |
36 | LI Jianrong, ZHANG WanPeng, LI Chang, et al. Efficient catalytic degradation of toluene at a readily prepared Mn-Cu catalyst: Catalytic performance and reaction pathway[J]. Journal of Colloid and Interface Science, 2021, 591: 396-408. |
37 | LUO Mengmeng, CHENG Yan, PENG Xuzhe, et al. Copper modified manganese oxide with tunnel structure as efficient catalyst for low-temperature catalytic combustion of toluene[J]. Chemical Engineering Journal, 2019, 369: 758-765. |
38 | LI Mingyang, ZHANG Cheng, FAN Liman, et al. Enhanced catalytic oxidation of toluene over manganese oxide modified by lanthanum with a coral-like hierarchical structure nanosphere[J]. ACS Applied Materials & Interfaces, 2021, 13(8): 10089-10100. |
39 | CHEN Jie, CHEN Xi, XU Wenjian, et al. Hydrolysis driving redox reaction to synthesize Mn-Fe binary oxides as highly active catalysts for the removal of toluene[J]. Chemical Engineering Journal, 2017, 330: 281-293. |
40 | SOLTAN W BEN, SUN Jing, WANG Wenlong, et al. Discovering the key role of MnO2 and CeO2 particles in the Fe2O3 catalysts for enhancing the catalytic oxidation of VOC: Synergistic effect of the lattice oxygen species and surface-adsorbed oxygen[J]. Science of the Total Environment, 2022, 819: 152844. |
41 | LU Hanfeng, KONG Xianxian, HUANG Haifeng, et al. Cu-Mn-Ce ternary mixed-oxide catalysts for catalytic combustion of toluene[J]. Journal of Environmental Sciences, 2015, 32: 102-107. |
42 | GONG Pijun, FANG De, HE Feng, et al. In situ construction of MnO2@CeO2 catalyst with a cake-like hierarchical nanosheets structure for efficient toluene oxidation[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107665. |
43 | REN Quanming, MO Shengpeng, FAN Jie, et al. Enhancing catalytic toluene oxidation over MnO2@Co3O4 by constructing a coupled interface[J]. Chinese Journal of Catalysis, 2020, 41: 1873-1883. |
44 | ZHANG Qi, MO Shengpeng, LI Jiaqi, et al. In situ DRIFT spectroscopy insights into the reaction mechanism of CO and toluene co-oxidation over Pt-based catalysts[J]. Catalysis Science & Technology, 2019, 9(17): 4538-4551. |
45 | MO Shengpeng, ZHANG Qi, ZHANG Mingyuan, et al. Elucidating the special role of strong metal-support interactions in Pt/MnO2 catalysts for total toluene oxidation[J]. Nanoscale Horizons, 2019, 4(6): 1425-1433. |
46 | XIE Shaohua, DAI Hongxing, DENG Jiguang, et al. Preparation and high catalytic performance of Au/3DOM Mn2O3 for the oxidation of carbon monoxide and toluene[J]. Journal of Hazardous Materials, 2014, 279: 392-401. |
47 | LI Jiamin, QU Zhenping, QIN Yuan, et al. Effect of MnO2 morphology on the catalytic oxidation of toluene over Ag/MnO2 catalysts[J]. Applied Surface Science, 2016, 385(1): 234-240. |
48 | WANG Shihao, LIU Qi, ZHAO Ziqi, et al. Enhanced low-temperature activity of toluene oxidation over the rod-like MnO2/LaMnO3 perovskites with alkaline hydrothermal and acid-etching treatment[J]. Industrial & Engineering Chemistry Research, 2020, 59 (14): 6556-6564. |
49 | CHEN Xi, CHEN Xi, CAI Songcai, et al. MnO x /Cr2O3 composites prepared by pyrolysis of Cr-MOF precursors containing in situ assembly of MnO x as high stable catalyst for toluene oxidation[J]. Applied Surface Science, 2019, 475: 312-324. |
50 | ZHANG Chuanhui, WANG Chao, HUANG He, et al. Insights into the size and structural effects of zeolitic supports on gaseous toluene oxidation over MnO x /HZSM-5 catalysts[J]. Applied Surface Science, 2019, 486: 108-120. |
51 | REDDY K H P, KIM Beom-Sik, LAM Su Shiung, et al. Effective toluene oxidation under ozone over mesoporous MnO x /γ-Al2O3 catalyst prepared by solvent deficient method: Effect of Mn precursors on catalytic activity[J]. Environmental Research, 2021, 195: 110876. |
52 | YANG Jingsi, LI Luming, YANG Xiushan, et al. Enhanced catalytic performances of in situ-assembled LaMnO3/δ-MnO2 hetero-structures for toluene combustion[J]. Catalysis Today, 2019, 327: 19-27. |
53 | LIU Wei, XIANG Wenjie, GUAN Nana, et al. Enhanced catalytic performance for toluene purification over Co3O4/MnO2 catalyst through the construction of different Co3O4-MnO2 interface[J]. Separation and Purification Technology, 2021, 278: 119590. |
54 | LIU Wei, XIANG Wenjie, CHEN Xi, et al. A novel strategy to adjust the oxygen vacancy of CuO/MnO2 catalysts toward the catalytic oxidation of toluene[J]. Fuel, 2022, 312: 122975. |
55 | WANG Yazhou, XIE Shaohua, DENG Jiguang, et al. Morphologically controlled synthesis of porous spherical and cubic LaMnO3 with high activity for the catalytic removal of toluene[J]. ACS Applied Materials & Interfaces, 2014, 6(20): 17394-17401. |
56 | WANG Yuan, ARANDIYAN H, LIU Yuxi, et al. Template-free scalable synthesis of flower-like Co3 -x Mn x O4 spinel catalysts for toluene oxidation[J]. ChemCatChem, 2018, 10(16): 3429-3434. |
57 | DONG Cui, QU Zhenping, QIN Yuan, et al. Revealing the highly catalytic performance of spinel CoMn2O4 for toluene oxidation: Involvement and replenishment of oxygen species using in situ designed-TP techniques[J]. ACS Catalysis, 2019, 9(8): 6698-6710. |
58 | HOU Zhongyan, FENG Jie, LIN Tao, et al. The performance of manganese-based catalysts with Ce0.65Zr0.35O2 as support for catalytic oxidation of toluene[J]. Applied Surface Science, 2018, 434: 82-90. |
59 | QI Meijuan, LI Zhe, ZHANG Zhang, et al. Controllable synthesis of MnO2/iron mesh monolithic catalyst and its significant enhancement for toluene oxidation[J]. Chinese Chemical Letters, 2023, 34(2): 107437. |
60 | ZHOU Xiaoying, SHANG Yingnan, WEI Wei, et al. Effect of a mixed precursor over monolith MnO x /La-Al2O3 catalyst for toluene oxidation[J]. New Journal of Chemistry, 2020, 44(26): 10859-10869. |
61 | 项文杰. 锰基双金属催化剂催化氧化甲苯性能研究[D]. 沈阳: 沈阳化工大学, 2022. |
XIANG Wenjie. Study on catalytic oxidation of toluene with manganese-based bimetallic catalyst[D]. Shenyang: Shenyang University of Chemical Technology, 2022. | |
62 | GONG Pijun Gong, HE Feng, XIE Junlin, et al. Catalytic removal of toluene using MnO2-based catalysts: A review[J]. Chemosphere, 2023, 318: 137938. |
63 | CHEN Linzhu, LIU Yongjun, FANG Xue, et al. Simple strategy for the construction of oxygen vacancies on α-MnO2 catalyst to improve toluene catalytic oxidation[J]. Journal of Hazardous Materials, 2021, 409: 125020. |
64 | LI Renzhu, ZHANG Long, ZHU Simin, et al. Layered δ-MnO2 as an active catalyst for toluene catalytic combustion[J]. Applied Catalysis A: General, 2020, 602: 117715. |
65 | HUANG Jing, FANG Ruimei, SUN Yanjuan, et al. Efficient α-MnO2 with (2 1 0) facet exposed for catalytic oxidation of toluene at low temperature: A combined in-situ DRIFTS and theoretical investigation[J]. Chemosphere, 2021, 263: 128103. |
66 | YANG Wenhao, ZHAO Xiaoguang, WANG Ya, et al. Atomically dispersed Ag on δ-MnO2 via cation vacancy trapping for toluene catalytic oxidation[J]. Catalysis Science & Technology, 2022, 12(19): 5932-5941. |
67 | LI Luming, WAHAB Md Abdul, LI Hongmei, et al. Pt-Modulated CuMnO x nanosheets as catalysts for toluene oxidation[J]. ACS Applied Nano Materials, 2021, 4(7): 6637-6647. |
[1] | YANG Fang, ZOU Xianwu, ZHU Liming. Chemical composition, odor characterization and risk value analysis of odor compounds from fiberboards [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 615-626. |
[2] | LI Meixuan, CHENG Jianfeng, HUANG Guoyong, XU Shengming, YU Fengshan, WENG Yaqing, CAO Caifang, WEN Jiawei, WANG Junlian, WANG Chunxia, GU Bintao, ZHANG Yuanhua, LIU Bin, WANG Caiping, PAN Jianming, XU Zeliang, WANG Chong, WANG Ke. Synthesis and electrochemical mechanism of high voltage lithium nickel manganate cathode materials [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5086-5094. |
[3] | XIANG Rui, AI Bo, WU Gaosheng, LI Yuzhe, ZONG Rui, XU Baoyun, DU Lijun. Measurement and regression of solid-liquid binary equilibrium data for lithium battery additive FEC-VC system [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4246-4252. |
[4] | LONG Tao, ZHOU Feng, ZHANG Wei, WU Hong, WANG Jian, CHEN Lin. Synthesis and modification of deuterated methanol catalyst used in CO-CO2 system [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4411-4420. |
[5] | LI Kairui, GAO Zhaohua, LIU Tiantian, LI Jing, WEI Haisheng. Tuning the catalytic performance of Rh/FePO4 catalyst by reduction temperature for quinoline selective hydrogenation [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1342-1349. |
[6] | CHEN Yaoji, REN Chengyu, HU Daqing, LU Hanfeng, GE Chunliang, CUI Guokai. Carbon monoxide conversion via ionic liquids intensification [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 124-134. |
[7] | GAO Yufei, LU Jinfeng. Mechanism of heterogeneous catalytic ozone oxidation:A review [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 430-438. |
[8] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[9] | LIN Xiaopeng, XIAO Youhua, GUAN Yichen, LU Xiaodong, ZONG Wenjie, FU Shenyuan. Recent progress of flexible electrodes for ion polymer-metal composites (IPMC) [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4770-4782. |
[10] | SHI Tianxi, SHI Yonghui, WU Xinying, ZHANG Yihao, QIN Zhe, ZHAO Chunxia, LU Da. Effects of Fe2+ on the performance of Anammox EGSB reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5003-5010. |
[11] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
[12] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[13] | CHEN Junjun, FEI Chang’en, DUAN Jintang, GU Xueping, FENG Lianfang, ZHANG Cailiang. Research progress on chemical modification of polyether ether ketone for the high bioactivity [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4015-4028. |
[14] | YU Shan, DUAN Yuangang, ZHANG Yixin, TANG Chun, FU Mengyao, HUANG Jinyuan, ZHOU Ying. Research progress of catalysts for two-step hydrogen sulfide decomposition to produce hydrogen and sulfur [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3780-3790. |
[15] | WU Zhanhua, SHENG Min. Pitfalls of accelerating rate calorimeter for reactivity hazard evaluation and risk assessment [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3374-3382. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |