Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (1): 198-214.DOI: 10.16085/j.issn.1000-6613.2023-1489
• Column: Chemical process intensification • Previous Articles
RONG Fanding1(), DING Zexiang1, CAO Yifeng1,2(), CHEN Lihang1,2, YANG Liu1,2, SHEN Fuxing1,2, YANG Qiwei1,2, BAO Zongbi1,2()
Received:
2023-08-28
Revised:
2023-12-01
Online:
2024-02-05
Published:
2024-01-20
Contact:
CAO Yifeng, BAO Zongbi
容凡丁1(), 丁泽相1, 曹义风1,2(), 陈俐吭1,2, 杨柳1,2, 申福星1,2, 杨启炜1,2, 鲍宗必1,2()
通讯作者:
曹义风,鲍宗必
作者简介:
容凡丁(1998—),女,博士研究生,研究方向为萃取分离。E-mail:12228027@zju.edu.cn。
基金资助:
CLC Number:
RONG Fanding, DING Zexiang, CAO Yifeng, CHEN Lihang, YANG Liu, SHEN Fuxing, YANG Qiwei, BAO Zongbi. Progress in enhanced separation of compounds differing in unsaturated bonds by ionic liquids[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 198-214.
容凡丁, 丁泽相, 曹义风, 陈俐吭, 杨柳, 申福星, 杨启炜, 鲍宗必. 离子液体强化不饱和键差异化合物分离的研究进展[J]. 化工进展, 2024, 43(1): 198-214.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1489
离子液体 | 亨利系数/atm | ||||
---|---|---|---|---|---|
乙烷 | 乙烯 | 丙烷 | 丙烯 | 乙炔 | |
[P4444][TMPP][ | 28.6 | 37.5 | 9.9 | — | — |
[P66614][TMPP][ | 18.8 | 25.9 | 6.3 | 7.4 | — |
[P8111][TMPP][ | 27.8 | 38.9 | 9.6 | — | — |
[BMIM][PF6][ | 331 ± 78 | 187 ± 23 | 190 ± 24 | 74.0 ± 3.5 | 22.2 ± 0.2 |
[BMIM][BF4][ | 416±64 | 263 ± 24 | 245 ± 22 | 88.2 ± 2.9 | 16.7 ± 0.3 |
[EMIM][CF3SO3][ | 357 ± 46 | 212 ± 16 | 209 ± 15 | 88.0 ± 2.7 | — |
[EMIM][DCA][ | 675 ± 154 | 359 ± 39 | 291 ± 34 | 126 ± 6 | — |
[EMIM][NTf2][ | 169 ± 14 | 118 ± 7 | 92.1 ± 5.7 | 44.3 ± 1.4 | 23.6 ± 0.2 |
离子液体 | 亨利系数/atm | ||||
---|---|---|---|---|---|
乙烷 | 乙烯 | 丙烷 | 丙烯 | 乙炔 | |
[P4444][TMPP][ | 28.6 | 37.5 | 9.9 | — | — |
[P66614][TMPP][ | 18.8 | 25.9 | 6.3 | 7.4 | — |
[P8111][TMPP][ | 27.8 | 38.9 | 9.6 | — | — |
[BMIM][PF6][ | 331 ± 78 | 187 ± 23 | 190 ± 24 | 74.0 ± 3.5 | 22.2 ± 0.2 |
[BMIM][BF4][ | 416±64 | 263 ± 24 | 245 ± 22 | 88.2 ± 2.9 | 16.7 ± 0.3 |
[EMIM][CF3SO3][ | 357 ± 46 | 212 ± 16 | 209 ± 15 | 88.0 ± 2.7 | — |
[EMIM][DCA][ | 675 ± 154 | 359 ± 39 | 291 ± 34 | 126 ± 6 | — |
[EMIM][NTf2][ | 169 ± 14 | 118 ± 7 | 92.1 ± 5.7 | 44.3 ± 1.4 | 23.6 ± 0.2 |
1 | APONTE J C, DILLON J T, TAROZO Rafael, et al. Separation of unsaturated organic compounds using silver-thiolate chromatographic material[J]. Journal of Chromatography A, 2012, 1240: 83-89. |
2 | He NAN, ZHANG Cheng, VENKATESH Amrit, et al. Argentation gas chromatography revisited: Separation of light olefin/paraffin mixtures using silver-based ionic liquid stationary phases[J]. Journal of Chromatography A, 2017, 1523: 316-320. |
3 | 陈钧, 邱榕, 陈庶来, 等. 银离子络合萃取法及其在分离鱼油活性成分中的应用[J]. 江苏理工大学学报(自然科学版), 2000, 21(6): 18-22. |
CHEN Jun, QIU Rong, CHEN Shulai, et al. Complexation extraction with silver ion and its application in the separation of active components from esterified fish oil[J]. Journal of Jiangsu University of Science and Technology, 2000, 21(6): 18-22. | |
4 | 俞喜娜, 崔益玮, 戴志远, 等. 复合银离子络合技术在脂质分离分析中的应用[J]. 中国食品学报, 2020, 20(1): 311-318. |
YU Xina, CUI Yiwei, DAI Zhiyuan, et al. Application of silver ion-composite complexation technology in lipidomics separation and analysis[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(1): 311-318. | |
5 | SOLODAR J, PETROVICH J P. Behavior of silver(Ⅰ)-olefin complexes in organic media[J]. Inorganic Chemistry, 1971, 10(2): 395-397. |
6 | HAYES Douglas G. Effect of temperature programming on the performance of urea inclusion compound-based free fatty acid fractionation[J]. Journal of the American Oil Chemists’ Society, 2006, 83(3): 253-259. |
7 | 李明, 张连富, 李冀新, 等. 尿素包合法纯化红花籽油中亚油酸[J]. 中国粮油学报, 2005, 20(5): 105-107. |
LI Ming, ZHANG Lianfu, LI Jixin, et al. Purification of linoleic acid from safflower oil with urea adduction fractionation[J]. Chinese Cereals and Oils Association, 2005, 20(5): 105-107. | |
8 | ZHENG Zhenxiao, DAI Zhiyuan, SHEN Qing. Enrichment of polyunsaturated fatty acids from seal oil through urea adduction and the fatty acids change rules during the process[J]. Journal of Food Processing and Preservation, 2018, 42(5): e13593. |
9 | GÁMEZ-MEZA N, NORIEGA-RODRı́GUEZ J A, MEDINA-JUÁREZ L A, et al. Concentration of eicosapentaenoic acid and docosahexaenoic acid from fish oil by hydrolysis and urea complexation[J]. Food Research International, 2003, 36(7): 721-727. |
10 | LIU Shucheng, ZHANG Chaohua, HONG Pengzhi, et al. Concentration of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) of tuna oil by urea complexation: Optimization of process parameters[J]. Journal of Food Engineering, 2006, 73(3): 203-209. |
11 | 孙永利, 卢伟, 肖晓明, 等. C16、C18混合脂肪酸分离技术研究进展[J]. 化工进展, 2014, 33(12): 3139-3143. |
SUN Yongli, LU Wei, XIAO Xiaoming, et al. Development of C16 and C18 fatty acid mixtures separation technology[J]. Chemical Industry and Engineering Progress, 2014, 33(12): 3139-3143. | |
12 | LÓPEZ-MARTÍNEZ Juan Carlos, Pablo CAMPRA-MADRID, GUIL-GUERRERO José Luis. γ-Linolenic acid enrichment from Borago officinalis and Echium fastuosum seed oils and fatty acids by low temperature crystallization[J]. Journal of Bioscience and Bioengineering, 2004, 97(5): 294-298. |
13 | 郑飞洋, 戴志远, 崔益玮, 等. 金枪鱼油精制及低温结晶法富集甘油三酯型EPA、DHA[J]. 中国食品学报, 2022, 22(3): 147-158. |
ZHENG Feiyang, DAI Zhiyuan, CUI Yiwei, et al. Refinement of tuna oil and enrichment of EPA and DHA as triacylglycerols by low temperature crystallization[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(3): 147-158. | |
14 | 董青, 李敏, 杨亦文, 等. EPA和DHA的分离研究进展[J]. 中国油脂, 2019, 44(1): 15-20. |
DONG Qing, LI Min, YANG Yiwen, et al. Advance in separation of EPA and DHA[J]. China Oils and Fats, 2019, 44(1): 15-20. | |
15 | 杨永辉, 陈雪波, 姜春雨, 等. 化工产品模拟移动床色谱分离优化设计仿真[J]. 计算机仿真, 2018, 35(4): 315-318, 394. |
YANG Yonghui, CHEN Xuebo, JIANG Chunyu, et al. Optimizing design and simulation of simulated moving bed chromatography separation for chemical products[J]. Computer Simulation, 2018, 35(4): 315-318, 394. | |
16 | WEI Feng, ZHAO Yingxian. Separation of capsaicin from capsaicinoids by simulated moving bed chromatography[J]. Journal of Chromatography A, 2008, 1187(1/2): 281-284. |
17 | JUZA Markus, MAZZOTTI Marco, MORBIDELLI Massimo. Simulated moving-bed chromatography and its application to chirotechnology[J]. Trends in Biotechnology, 2000, 18(3): 108-118. |
18 | SEIDEL-MORGENSTERN A, KEßLER L C, KASPEREIT M. New developments in simulated moving bed chromatography[J]. Chemical Engineering & Technology, 2008, 31(6): 826-837. |
19 | KIM Kyung-Min, LEE Ju Weon, KIM Sunhee, et al. Advanced operating strategies to extend the applications of simulated moving bed chromatography[J]. Chemical Engineering & Technology, 2017, 40(12): 2163-2178. |
20 | 梁颖堃, 钱震, 刘宏宇, 等. 模拟移动床分离技术发展及应用[J]. 化工管理, 2020(26): 34-35. |
LIANG Yingkun, QIAN Zhen, LIU Hongyu, et al. Development and application of simulated moving bed separation technology[J]. Chemical Enterprise Management, 2020(26): 34-35. | |
21 | LI Wen, LU Hiep Thuan, DOBLIN Monika S, et al. A novel efficient liquid-liquid solvent extraction process for cannabinoid mimic recovery[J]. Separation and Purification Technology, 2023, 309: 123011. |
22 | BOKHARY A, LEITCH M, LIAO B Q. Liquid-liquid extraction technology for resource recovery: Applications, potential, and perspectives[J]. Journal of Water Process Engineering, 2021, 40: 101762. |
23 | EGOROVA K S, GORDEEV E G, ANANIKOV V P. Biological activity of ionic liquids and their application in pharmaceutics and medicine[J]. Chemical Reviews, 2017, 117(10): 7132-7189. |
24 | KE Yuqi, JIN Wenbin, YANG Qiwei, et al. Nanostructured branched-chain carboxylate ionic liquids: Synthesis, characterization, and extraordinary solubility for bioactive molecules[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 8983-8991. |
25 | EARLE M J, SEDDON K R. Ionic liquids. Green solvents for the future[J]. Pure and Applied Chemistry, 2000, 72(7): 1391-1398. |
26 | EARLE M J, ESPERANÇA J M S S, GILEA M A, et al. The distillation and volatility of ionic liquids[J]. Nature, 2006, 439(7078): 831-834. |
27 | SEDDON K R. A taste of the future[J]. Nature Materials, 2003, 2(6): 363-365. |
28 | KAUR Gagandeep, KUMAR Harsh, SINGLA Meenu. Diverse applications of ionic liquids: A comprehensive review[J]. Journal of Molecular Liquids, 2022, 351: 118556. |
29 | 吴楠, 吴海虹, 蒋咏文. 手性胍盐离子液体的合成[J]. 有机化学, 2008, 28(1): 104-110. |
WU Nan, WU Haihong JIANG, Yongwen. Synthesis of chiral guanidinium-based ionic liquids[J]. Chinese Journal of Organic Chemistry, 2008, 28(1): 104-110. | |
30 | HILMY Nurfathiah Izzaty Mohd Faridz, YAHYA Wan Zaireen Nisa, KURNIA Kiki Adi. Eutectic ionic liquids as potential electrolytes in dye-sensitized solar cells: Physicochemical and conductivity studies[J]. Journal of Molecular Liquids, 2020, 320: 114381. |
31 | Amani AL-OTHMAN, NANCARROW Paul, TAWALBEH Muhammad, et al. Novel composite membrane based on zirconium phosphate-ionic liquids for high temperature PEM fuel cells[J]. International Journal of Hydrogen Energy, 2021, 46(8): 6100-6109. |
32 | SOSNOWSKA Anita, LAUX Edith, KEPPNER Herbert, et al. Relatively high-Seebeck thermoelectric cells containing ionic liquids supplemented by cobalt redox couple[J]. Journal of Molecular Liquids, 2020, 316: 113871. |
33 | POLI Federico, MOMODU Damilola, SPINA Giovanni Emanuele, et al. Pullulan-ionic liquid-based supercapacitor: A novel, smart combination of components for an easy-to-dispose device[J]. Electrochimica Acta, 2020, 338: 135872. |
34 | MA Rui, ZHAO Qin, ZHANG Enhui, et al. Synthesis and evaluation of oil-soluble ionic liquids as multifunctional lubricant additives[J]. Tribology International, 2020, 151: 106446. |
35 | NESSIM M I, ZAKY M T, DEYAB M A. Three new gemini ionic liquids: Synthesis, characterizations and anticorrosion applications[J]. Journal of Molecular Liquids, 2018, 266: 703-710. |
36 | DECAEN Paul, Agnès ROLLAND-SABATÉ, COLOMINES Gaël, et al. Influence of ionic plasticizers on the processing and viscosity of starch melts[J]. Carbohydrate Polymers, 2020, 230: 115591. |
37 | HOWARTH Joshua. Oxidation of aromatic aldehydes in the ionic liquid [bmim]PF6 [J]. Tetrahedron Letters, 2000, 41(34): 6627-6629. |
38 | ZHAO Hua, Christopher TOE. “Water-like” ammonium-based ionic liquids for lipase activation and enzymatic polymerization[J]. Process Biochemistry, 2020, 98: 59-64. |
39 | ABARCA Gabriel, GONÇALVES Wellington D G, ALBUQUERQUE Brunno L, et al. Bimetallic RuPd nanoparticles in ionic liquids: Selective catalysts for the hydrogenation of aromatic compounds[J]. New Journal of Chemistry, 2021, 45(1): 98-103. |
40 | 杨启炜, 鲍宗必, 邢华斌, 等. 离子液体萃取分离结构相似化合物研究进展[J]. 化工进展, 2019, 38(1): 91-99. |
YANG Qiwei, BAO Zongbi, XING Huabin, et al. Research progress on the extractive separation of structurally-related compounds by ionic liquids[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 91-99. | |
41 | ANDERSON J L, DING Jie, WELTON T, et al. Characterizing ionic liquids on the basis of multiple solvation interactions[J]. Journal of the American Chemical Society, 2002, 124(47): 14247-14254. |
42 | GIRAUD G, GORDON C M, DUNKIN I R, et al. The effects of anion and cation substitution on the ultrafast solvent dynamics of ionic liquids: A time-resolved optical Kerr-effect spectroscopic study[J]. The Journal of Chemical Physics, 2003, 119(1): 464-477. |
43 | CAMPER Dean, BECKER Collin, KOVAL Carl, et al. Low pressure hydrocarbon solubility in room temperature ionic liquids containing imidazolium rings interpreted using regular solution theory[J]. Industrial & Engineering Chemistry Research, 2005, 44(6): 1928-1933. |
44 | LEE Jung Min, PALGUNADI Jelliarko, KIM Jin Hyung, et al. Selective removal of acetylenes from olefin mixtures through specific physicochemical interactions of ionic liquids with acetylenes[J]. Physical Chemistry Chemical Physics, 2010, 12(8): 1812-1816. |
45 | Zhaoxian LYU, ZHOU Teng, CHEN Lifang, et al. Simulation based ionic liquid screening for benzene-cyclohexane extractive separation[J]. Chemical Engineering Science, 2014, 113: 45-53. |
46 | CAO Yifeng, GE Luwei, DONG Xinyan, et al. Separation of hydrophobic compounds differing in a monounsaturated double bond using hydrophilic ionic liquid/water mixtures as extractants[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 2379-2385. |
47 | CAO Yingying, TAN Xin, ZHAN Guoxiong, et al. Novel process for selective separation of trace artemisitene from artemisinin by ammonium functional ionic liquids[J]. AIChE Journal, 2022, 68(8): e17711. |
48 | KLAMT Andreas, ECKERT Frank, ARLT Wolfgang. COSMO-RS: An alternative to simulation for calculating thermodynamic properties of liquid mixtures[J]. Annual Review of Chemical and Biomolecular Engineering, 2010, 1: 101-122. |
49 | PALOMAR Jose, Maria GONZALEZ-MIQUEL, BEDIA Jorge, et al. Task-specific ionic liquids for efficient ammonia absorption[J]. Separation and Purification Technology, 2011, 82: 43-52. |
50 | SALLEH M Z M, HADJ-KALI M K, HASHIM M A, et al. Ionic liquids for the separation of benzene and cyclohexane—COSMO-RS screening and experimental validation[J]. Journal of Molecular Liquids, 2018, 266: 51-61. |
51 | ARLT W. Buchbesprechung: COSMO-RS—from quantum chemistry to fluid phase thermodynamics and drug design. von A. klamt[J]. Chemie Ingenieur Technik, 2007, 79(1/2): 171. |
52 | LI Hao, LI Libo, LIN Rui-Biao, et al. Porous metal-organic frameworks for gas storage and separation: Status and challenges[J]. EnergyChem, 2019, 1(1): 100006. |
53 | XU Shuang, LIU Rushuai, ZHANG Mengyao, et al. Designed synthesis of porous carbons for the separation of light hydrocarbons[J]. Chinese Journal of Chemical Engineering, 2022, 42: 130-150. |
54 | XING Huabin, ZHAO Xu, LI Rulong, et al. Improved efficiency of ethylene/ethane separation using a symmetrical dual nitrile-functionalized ionic liquid[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(11): 1357-1363. |
55 | LIU Xiangyang, LIU Siqi, BAI Lihang, et al. Absorption and separation of CO2/C3H8 and C3H6/C3H8 by ionic liquid: Effect of molar volume[J]. Journal of Natural Gas Science and Engineering, 2018, 58: 266-274. |
56 | LIU Xiangyang, AFZAL Waheed, PRAUSNITZ J M. Solubilities of small hydrocarbons in tetrabutylphosphonium bis(2, 4, 4-trimethylpentyl) phosphinate and in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide[J]. Industrial & Engineering Chemistry Research, 2013, 52(42): 14975-14978. |
57 | LIU Xiangyang, AFZAL Waheed, YU Guangren, et al. High solubilities of small hydrocarbons in trihexyl tetradecylphosphonium bis(2, 4, 4-trimethylpentyl) phosphinate[J]. The Journal of Physical Chemistry B, 2013, 117(36): 10534-10539. |
58 | LIU Xiangyang, RUIZ Elia, AFZAL Waheed, et al. High solubilities for methane, ethane, ethylene, and propane in trimethyloctylphosphonium bis(2, 4, 4-trimethylpentyl) phosphinate ([P8111][TMPP])[J]. Industrial & Engineering Chemistry Research, 2014, 53(1): 363-368. |
59 | PLAZA M G, FERREIRA A F P, SANTOS J C, et al. Propane/propylene separation by adsorption using shaped copper trimesate MOF[J]. Microporous and Mesoporous Materials, 2012, 157: 101-111. |
60 | CORMA A, MELO F V, SAUVANAUD L, et al. Light cracked naphtha processing: Controlling chemistry for maximum propylene production[J]. Catalysis Today, 2005, 107/108: 699-706. |
61 | 张健. 我国丙烯下游产业发展现状及趋势分析[J]. 石化技术与应用, 2022, 40(1): 66-71. |
ZHANG Jian. Development status and trend analysis of propylene downstream industry[J]. Petrochemical Technology & Application, 2022, 40(1): 66-71. | |
62 | ZHAO Xiang, WANG Yanxiang, LI Dongsheng, et al. Metal-organic frameworks for separation[J]. Advanced Materials, 2018, 30(37): 1705189. |
63 | MOURA Leila, MISHRA Manas, BERNALES Varinia, et al. Effect of unsaturation on the absorption of ethane and ethylene in imidazolium-based ionic liquids[J]. The Journal of Physical Chemistry B, 2013, 117(24): 7416-7425. |
64 | HE Maogang, LIU Siqi, BAI Lihang, et al. Propane/propylene separation and CO2 capture in magnetic ionic liquid[bmim][FeCl4][J]. Chemical Engineering Research and Design, 2018, 137: 186-193. |
65 | HUANG Yuqi, ZHANG Yuanbin, XING Huabin. Separation of light hydrocarbons with ionic liquids: A review[J]. Chinese Journal of Chemical Engineering, 2019, 27(6): 1374-1382. |
66 | CAMPER Dean, BECKER Collin, KOVAL Carl, et al. Diffusion and solubility measurements in room temperature ionic liquids[J]. Industrial & Engineering Chemistry Research, 2006, 45(1): 445-450. |
67 | LIU Xiangyang, HE Maogang, LV Nan, et al. Selective absorption of CO2 from H2, O2 and N2 by 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate[J]. The Journal of Chemical Thermodynamics, 2016, 97: 48-54. |
68 | 赵旭. 离子液体吸收分离乙炔乙烯的分子模拟与实验研究[D]. 杭州: 浙江大学, 2014. |
ZHAO Xu. Separation of acetylene and ethylene with ionic liquids: A simulation and experimental study[D]. Hangzhou: Zhejiang University, 2014. | |
69 | ZHAO Xu, XING Huabin, YANG Qiwei, et al. Differential solubility of ethylene and acetylene in room-temperature ionic liquids: A theoretical study[J]. The Journal of Physical Chemistry B, 2012, 116(13): 3944-3953. |
70 | MEINDERSMA G W, DE HAAN A B. Conceptual process design for aromatic/aliphatic separation with ionic liquids[J]. Chemical Engineering Research and Design, 2008, 86(7): 745-752. |
71 | JONGMANS Mark T G, Jorg TRAMPÉ, SCHUUR Boelo, et al. Solute recovery from ionic liquids: A conceptual design study for recovery of styrene monomer from [4-mebupy][BF4][J]. Chemical Engineering and Processing: Process Intensification, 2013, 70: 148-161. |
72 | GARCIA VILLALUENGA J P, TABE-MOHAMMADI A. A review on the separation of benzene/cyclohexane mixtures by pervaporation processes[J]. Journal of Membrane Science, 2000, 169(2): 159-174. |
73 | 丁淑娟. 苯和环己烷的分离研究进展[J]. 石油化工应用, 2019, 38(8): 6-8. |
DING Shujuan. Research progress on separation of benzene and cyclohexane[J]. Petrochemical Industry Application, 2019, 38(8): 6-8. | |
74 | SALLEH Zulhaziman, WAZEER Irfan, MULYONO Sarwono, et al. Efficient removal of benzene from cyclohexane-benzene mixtures using deep eutectic solvents—COSMO-RS screening and experimental validation[J]. The Journal of Chemical Thermodynamics, 2017, 104: 33-44. |
75 | LETCHER T M, REDHI G G, RADLOFF S E, et al. Liquid-liquid equilibria of the ternary mixtures with sulfolane at 303.15K[J]. Journal of Chemical & Engineering Data, 1996, 41(3): 634-638. |
76 | LETCHER T M, NAICKER P K. Ternary liquid-liquid equilibria for mixtures of an n-alkane + an aromatic hydrocarbon + N-methyl-2-pyrrolidone at 298.2K and 1atm[J]. Journal of Chemical & Engineering Data, 1998, 43(6): 1034-1038. |
77 | MEINDERSMA G W, PODT A J G, DE HAAN A B. Ternary liquid-liquid equilibria for mixtures of toluene + n-heptane + an ionic liquid[J]. Fluid Phase Equilibria, 2006, 247(1/2): 158-168. |
78 | ARCE A, EARLE M J, RODRÍGUEZ H, et al. Separation of aromatic hydrocarbons from alkanes using the ionic liquid 1-ethyl-3-methylimidazoliumbis {(trifluoromethyl)sulfonyl}amide[J]. Green Chemistry, 2007, 9(1): 70-74. |
79 | ARCE A, EARLE M J, RODRÍGUEZ H, et al. Separation of benzene and hexane by solvent extraction with 1-alkyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide ionic liquids: Effect of the alkyl-substituent length[J]. The Journal of Physical Chemistry B, 2007, 111(18): 4732-4736. |
80 | ZHOU Teng, WANG Ziyun, YE Yinmei, et al. Deep separation of benzene from cyclohexane by liquid extraction using ionic liquids as the solvent[J]. Industrial & Engineering Chemistry Research, 2012, 51(15): 5559-5564. |
81 | ABU-EISHAH S I, DOWAIDAR A M. Liquid-liquid equilibrium of ternary systems of cyclohexane + (benzene, + toluene, + ethylbenzene, or + o-xylene) + 4-methyl-N-butyl pyridinium tetrafluoroborate ionic liquid at 303.15K[J]. Journal of Chemical & Engineering Data, 2008, 53(8): 1708-1712. |
82 | AL-TUWAIM M S, ALKHALDI K H A E, FANDARY M S, et al. Extraction of propylbenzene or butylbenzene from dodecane using 4-methyl-N-butylpyridinium tetrafluoroborate, [mebupy][BF4], as an ionic liquid at different temperatures[J]. The Journal of Chemical Thermodynamics, 2011, 43(12): 1804-1809. |
83 | REQUEJO P F, Elena GÓMEZ, CALVAR Noelia, et al. Application of pyrrolidinium-based ionic liquid as solvent for the liquid extraction of benzene from its mixtures with aliphatic hydrocarbons[J]. Industrial & Engineering Chemistry Research, 2015, 54(4): 1342-1349. |
84 | ARCE A, EARLE M J, RODRÍGUEZ H, et al. Bis {(trifluoromethyl)sulfonyl}amide ionic liquids as solvents for the extraction of aromatic hydrocarbons from their mixtures with alkanes: Effect of the nature of the cation[J]. Green Chemistry, 2009, 11(3): 365-372. |
85 | PENG D, HORVAT D P, PICCHIONI F. Computer-aided ionic liquid design and experimental validation for benzene-cyclohexane separation[J]. Industrial & Engineering Chemistry Research, 2021, 60(13): 4951-4961. |
86 | SALLEH M Z M, HADJ-KALI M K, WAZEER I, et al. Extractive separation of benzene and cyclohexane using binary mixtures of ionic liquids[J]. Journal of Molecular Liquids, 2019, 285: 716-726. |
87 | ZHANG Fan, LI Yong, ZHANG Lele, et al. Benzyl- and vinyl-functionalized imidazoium ionic liquids for selective separating aromatic hydrocarbons from alkanes[J]. Industrial & Engineering Chemistry Research, 2016, 55(3): 747-756. |
88 | YAO Congfei, HOU Yucui, WU Weize, et al. Imidazolium-based dicationic ionic liquids: Highly efficient extractants for separating aromatics from aliphatics[J]. Green Chemistry, 2018, 20(13): 3101-3111. |
89 | YU Hui, GENG Chuanqi, LI Xinyu, et al. Highly selective extraction of aromatics from aliphatics using an N-methylpyrrolidone-based protic ionic liquid[J]. The Canadian Journal of Chemical Engineering, 2023, 101(10): 5967-5976. |
90 | LARRIBA Marcos, NAVARRO Pablo, Julián GARCÍA, et al. Liquid-liquid extraction of toluene from heptane using [emim][DCA], [bmim][DCA], and [emim][TCM] ionic liquids[J]. Industrial & Engineering Chemistry Research, 2013, 52(7): 2714-2720. |
91 | CANALES R I, BRENNECKE J F. Comparison of ionic liquids to conventional organic solvents for extraction of aromatics from aliphatics[J]. Journal of Chemical & Engineering Data, 2016, 61(5): 1685-1699. |
92 | REVELLI Anne-Laure, MUTELET Fabrice, JAUBERT Jean-Noël. Extraction of benzene or thiophene from n-heptane using ionic liquids. NMR and thermodynamic study[J]. The Journal of Physical Chemistry B, 2010, 114(13): 4600-4608. |
93 | DING Yan, GUO Yicang, SUN Yuhang, et al. Mixed ionic liquids as entrainers for aromatic extraction processes: Energy, economic, and environmental evaluations[J]. Industrial & Engineering Chemistry Research, 2022, 61(43): 16193-16208. |
94 | LARRIBA Marcos, NAVARRO Pablo, Julián GARCÍA, et al. Liquid-liquid extraction of toluene from n-alkanes using {[4empy][Tf2N]+[emim][DCA]} ionic liquid mixtures[J]. Journal of Chemical & Engineering Data, 2014, 59(5): 1692-1699. |
95 | LARRIBA Marcos, NAVARRO Pablo, Julián GARCÍA, et al. Extraction of benzene, ethylbenzene, and xylenes from n-heptane using binary mixtures of [4empy][Tf2N] and [emim][DCA] ionic liquids[J]. Fluid Phase Equilibria, 2014, 380: 1-10. |
96 | MEINDERSMA G W, HANSMEIER A R, DE HAAN A B. Ionic liquids for aromatics extraction. Present status and future outlook[J]. Industrial & Engineering Chemistry Research, 2010, 49(16): 7530-7540. |
97 | NAVARRO Pablo, MORENO Daniel, LARRIBA Marcos, et al. An overview process analysis of the aromatic-aliphatic separation by liquid-liquid extraction with ionic liquids[J]. Separation and Purification Technology, 2023, 316: 123848. |
98 | LI Rulong, XING Huabin, YANG Qiwei, et al. Selective extraction of 1-hexene against n-hexane in ionic liquids with or without silver salt[J]. Industrial & Engineering Chemistry Research, 2012, 51(25): 8588-8597. |
99 | 李如龙. 离子液体在乙烯/乙烷、1-己烯/正己烷分离中的应用基础研究[D]. 杭州: 浙江大学, 2012. |
LI Rulong. Applied fundamental research on the separations of ethylene/ethane and 1-hexene/n-hexane by ionic liquid[D]. Hangzhou: Zhejiang University, 2012. | |
100 | Urszula DOMAŃSKA, Michał WLAZŁO, Monika KARPIŃSKA. Activity coefficients at infinite dilution of organic solvents and water in 1-butyl-3-methylimidazolium dicyanamide. A literature review of hexane/hex-1-ene separation[J]. Fluid Phase Equilibria, 2016, 417: 50-61. |
101 | ZHU Jiqin, YU Yanmei, CHEN Jian, et al. Measurement of activity coefficients at infinite dilution for hydrocarbons in imidazolium-based ionic liquids and QSPR model[J]. Frontiers of Chemical Engineering in China, 2007, 1(2): 190-194. |
102 | XU Qianqian, SU Baogen, LUO Xinyi, et al. Accurate measurements of infinite dilution activity coefficients using gas chromatography with static-wall-coated open-tubular columns[J]. Analytical Chemistry, 2012, 84(21): 9109-9115. |
103 | ZHOU Qing, WANG Lisheng. Activity coefficients at infinite dilution of alkanes, alkenes, and alkyl benzenes in 1-butyl-3-methylimidazolium tetrafluoroborate using gas-liquid chromatography[J]. Journal of Chemical & Engineering Data, 2006, 51(5): 1698-1701. |
104 | REVELLI Anne-Laure, MUTELET Fabrice, TURMINE Mireille, et al. Activity coefficients at infinite dilution of organic compounds in 1-butyl-3-methylimidazolium tetrafluoroborate using inverse gas chromatography[J]. Journal of Chemical & Engineering Data, 2009, 54(1): 90-101. |
105 | BAHLMANN Matthias, NEBIG Silke, Jürgen GMEHLING. Activity coefficients at infinite dilution of alkanes and alkenes in 1-alkyl-3-methylimidazolium tetrafluoroborate[J]. Fluid Phase Equilibria, 2009, 282(2): 113-116. |
106 | ZHANG Juan, ZHANG Qinghua, QIAO Botao, et al. Solubilities of the gaseous and liquid solutes and their thermodynamics of solubilization in the novel room-temperature ionic liquids at infinite dilution by gas chromatography[J]. Journal of Chemical & Engineering Data, 2007, 52(6): 2277-2283. |
107 | HEINTZ A, CASÁS L M, NESTEROV I A, et al. Thermodynamic properties of mixtures containing ionic liquids. 5. Activity coefficients at infinite dilution of hydrocarbons, alcohols, esters, and aldehydes in 1-methyl-3-butyl-imidazolium bis(trifluoromethyl-sulfonyl)imide using gas-liquid chromatography[J]. Journal of Chemical & Engineering Data, 2005, 50(5): 1510-1514. |
108 | KRUMMEN Michael, WASSERSCHEID Peter, Jürgen GMEHLING. Measurement of activity coefficients at infinite dilution in ionic liquids using the dilutor technique[J]. Journal of Chemical & Engineering Data, 2002, 47(6): 1411-1417. |
109 | YAO Congfei, HOU Yucui, SUN Ying, et al. Extraction of aromatics from aliphatics using a hydrophobic dicationic ionic liquid adjusted with small-content water[J]. Separation and Purification Technology, 2020, 236: 116287. |
110 | LI Xuenan, ZHANG Xiao, YANG Qiwei, et al. Separation of highly unsaturated fatty acid methyl esters from model bio-oils with ionic liquid-cosolvent as extractants[J]. RSC Advances, 2016, 6(65): 60709-60716. |
111 | XING Huabin, ZHANG Xiao, YANG Qiwei, et al. Separation of long chain fatty acids with different number of unsaturated bonds by fractional extraction: Experimental and COSMO-RS study[J]. Food Chemistry, 2014, 143: 411-417. |
112 | CAO Yingying, WANG Yaofeng, CHEN Bingtong, et al. Design of dual stimuli-responsive copolymerized ionic liquid with flexible phase transition temperature and its application in selective separation of artemisitene/artemisinin[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(11): 4463-4472. |
113 | 梁瑞斯. 以离子液体为介质萃取分离甾醇类物质的研究[D]. 杭州: 浙江大学, 2013. |
LIANG Ruisi. Separation of sterol compounds by ionic liquid-based liquid-liquid extraction[D]. Hangzhou: Zhejiang University, 2013. | |
114 | RUXTON C H S, REED S C, SIMPSON M J A, et al. The health benefits of omega-3 polyunsaturated fatty acids: A review of the evidence[J]. Journal of Human Nutrition and Dietetics, 2004, 17(5): 449-459. |
115 | CHEN Guan-Qun, JIANG Yue, CHEN Feng. Fatty acid and lipid class composition of the eicosapentaenoic acid-producing microalga, Nitzschia laevis [J]. Food Chemistry, 2007, 104(4): 1580-1585. |
116 | SWERN D, PARKER W E. Application of urea complexes in the purification of fatty acids, esters, and alcohols. Ⅲ. Concentrates of natural linoleic and linolenic acids[J]. Journal of the American Oil Chemists Society, 1953, 30(1): 5-7. |
117 | SWERN D, PARKER W E. Application of urea complexes in the purification of fatty acids, esters, and alcohols. Ⅱ. Oleic acid and methyl oleate from olive oil[J]. Journal of the American Oil Chemists Society, 1952, 29(12): 614-615. |
118 | SWERN D, PARKER W E. Application of urea complexes in the purification of fatty acids, esters, and alcohols. Ⅰ. Oleic acid from inedible animal fats[J]. Journal of the American Oil Chemists Society, 1952, 29(10): 431-434. |
119 | 孙文菊, 武瑞霞, 陈杨扬, 等. 尿素包合法富集鱼油中EPA和DHA的研究[J]. 食品工业, 2016, 37(10): 37-40. |
SUN Wenju, WU Ruixia, CHEN Yangyang, et al. Enrichment of EPA and DHA from fish oil by urea adduction fractionation[J]. The Food Industry, 2016, 37(10): 37-40. | |
120 | 雍梁敏, 王丽蓉, 刘石生. 双溶剂冷冻结晶法分离橡胶籽油中α-亚麻酸工艺研究[J]. 食品科技, 2014, 39(7): 233-237. |
YONG Liangmin, WANG Lirong, LIU Shisheng. Separation process of α-linolenic acid from rubber seed oil by double solvent freezing crystallization[J]. Food Science and Technology, 2014, 39(7): 233-237. | |
121 | 侯雯雯, 刘世川, 杨东元, 等. 冷冻溶剂结晶法分离纯化混合脂肪酸中的亚油酸[J]. 中国油脂, 2011, 36(10): 54-56. |
HOU Wenwen, LIU Shichuan, YANG Dongyuan, et al. Separation of linoleic acid from mixed fatty acids by frozen solvent crystallization[J]. China Oils and Fats, 2011, 36(10): 54-56. | |
122 | Nuria RUBIO-RODRÍGUEZ, DE DIEGO Sara M, Sagrario BELTRÁN, et al. Supercritical fluid extraction of fish oil from fish by-products: A comparison with other extraction methods[J]. Journal of Food Engineering, 2012, 109(2): 238-248. |
123 | LI Min, PITTMAN Charles U, LI Tingyu. Extraction of polyunsaturated fatty acid methyl esters by imidazolium-based ionic liquids containing silver tetrafluoroborate—Extraction equilibrium studies[J]. Talanta, 2009, 78(4/5): 1364-1370. |
124 | FAN Chen, WEN Lijiao, CAO Xueli. A biphasic system based on guanidinium ionic liquid: Preparative separation of eicosapentaenoic acid ethyl ester and docosahexaenoic acid ethyl ester by countercurrent chromatography[J]. Journal of Chromatography A, 2020, 1618: 460872. |
125 | LU Muwen, Chi-Tang HO, HUANG Qingrong. Extraction, bioavailability, and bioefficacy of capsaicinoids[J]. Journal of Food and Drug Analysis, 2017, 25(1): 27-36. |
126 | CHOI Cheol-Hee, JUNG Yong-Keun, Seon-Hee OH. Selective induction of catalase-mediated autophagy by dihydrocapsaicin in lung cell lines[J]. Free Radical Biology and Medicine, 2010, 49(2): 245-257. |
127 | SANTOS Poliane Lima, SANTOS Lana Naiadhy Silva, VENTURA Sónia Patrícia Marques, et al. Recovery of capsaicin from Capsicum frutescens by applying aqueous two-phase systems based on acetonitrile and cholinium-based ionic liquids[J]. Chemical Engineering Research and Design, 2016, 112: 103-112. |
128 | LAI H, SASAKI T, SINGH N P. Targeted treatment of cancer with artemisinin and artemisinin-tagged iron-carrying compounds[J]. Expert Opinion on Therapeutic Targets, 2005, 9(5): 995-1007. |
129 | MENG Yuqing, MA Nan, Haining LYU, et al. Recent pharmacological advances in the repurposing of artemisinin drugs[J]. Medicinal Research Reviews, 2021, 41(6): 3156-3181. |
130 | WU Guolin, CHENG Bao, QIAN Hui, et al. Identification of HSP90 as a direct target of artemisinin for its anti-inflammatory activity via quantitative chemical proteomics[J]. Organic & Biomolecular Chemistry, 2019, 17(28): 6854-6859. |
131 | 鲁洋洋, 王文俊, 李伯耿. 聚离子液体及其在天然产物分离中的应用[J]. 化工学报, 2016, 67(2): 416-424. |
LU Yangyang, WANG Wenjun, LI Bogeng. Poly(ionic liquid)s and their applications in natural product separation[J]. CIESC Journal, 2016, 67(2): 416-424. | |
132 | Julián GARCÍA, TORRECILLA J S, Adela FERNÁNDEZ, et al. (Liquid + liquid) equilibria in the binary systems (aliphatic, or aromatic hydrocarbons + 1-ethyl-3-methylimidazolium ethylsulfate, or 1-butyl-3-methylimidazolium methylsulfate ionic liquids)[J]. The Journal of Chemical Thermodynamics, 2010, 42(1): 144-150. |
133 | WANG Ruijie, WANG Junfeng, MENG Hong, et al. Liquid-liquid equilibria for benzene + cyclohexane + 1-methyl-3-methylimidazolium dimethylphosphate or + 1-ethyl-3-methylimidazolium diethylphosphate[J]. Journal of Chemical & Engineering Data, 2008, 53(5): 1159-1162. |
134 | Urszula DOMAŃSKA, LASKOWSKA Marta, MARCINIAK Andrzej. Phase equilibria of (1-ethyl-3-methylimidazolium ethylsulfate + hydrocarbon, + ketone, and + ether) binary systems[J]. Journal of Chemical & Engineering Data, 2008, 53(2): 498-502. |
135 | Urszula DOMAŃSKA, ROGUSZEWSKA Marlena, Marek KRÓLIKOWSKI, et al. Phase equilibria study of binary systems comprising an (ionic liquid + hydrocarbon)[J]. The Journal of Chemical Thermodynamics, 2015, 83: 90-96. |
136 | SHAH Syed Nasir, ISMAIL Mohd, MUTALIB Mohammad Ibrahim Abdul, et al. Extraction and recovery of toxic acidic components from highly acidic oil using ionic liquids[J]. Fuel, 2016, 181: 579-586. |
137 | PLECHKOVA N V, SEDDON K R. Applications of ionic liquids in the chemical industry[J]. Chemical Society Reviews, 2008, 37(1): 123-150. |
138 | FERRO V R, MOYA C, MORENO D, et al. Enterprise ionic liquids database (ILUAM) for use in Aspen ONE programs suite with COSMO-based property methods[J]. Industrial & Engineering Chemistry Research, 2018, 57(3): 980-989. |
139 | DE RIVA J, FERRO V R. Aspen Plus supported conceptual design of the aromatic-aliphatic separation from low aromatic content naphtha using 4-methyl-N-butylpyridinium tetrafluoroborate ionic liquid[J]. Fuel Processing Technology, 2016, 146: 29-38. |
140 | LARRIBA Marcos, DE RIVA Juan, NAVARRO Pablo, et al. COSMO-based/Aspen Plus process simulation of the aromatic extraction from pyrolysis gasoline using the {[4empy][NTf2]+[emim][DCA]} ionic liquid mixture[J]. Separation and Purification Technology, 2018, 190: 211-227. |
141 | WANG Jingwen, SONG Zhen, CHENG Hongye, et al. Computer-aided design of ionic liquids as absorbent for gas separation exemplified by CO2 capture cases[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 12025-12035. |
142 | ZHANG Xiang, DING Xuechong, SONG Zhen, et al. Integrated ionic liquid and rate-based absorption process design for gas separation: Global optimization using hybrid models[J]. AIChE Journal, 2021, 67(10): e17340. |
143 | AMIRI Nesrine, BENYOUNES Hassiba, LOUNIS Zoubida, et al. Design of absorption process for CO2 capture using cyano based anion ionic liquid[J]. Chemical Engineering Research and Design, 2021, 169: 239-249. |
144 | SANTIAGO R, BEDIA J, MORENO D, et al. Acetylene absorption by ionic liquids: A multiscale analysis based on molecular and process simulation[J]. Separation and Purification Technology, 2018, 204: 38-48. |
145 | LI Guoxuan, GAO Qinghe, LIU Qinghua, et al. Extraction of polycyclic aromatic hydrocarbons from fluid catalytic cracking diesel with ionic liquids[J]. AIChE Journal, 2023, 69(2): e17914. |
146 | TSAI Chang-Che, MCNEELEY Adam, LIN Shiang-Tai, et al. Evaluation of thermophysical data, COSMO-SAC predictions, and feed simplifications for aromatic extraction process simulation using ionic liquid [EMIM][NTf2][J]. AIChE Journal, 2023, 69(2): e17916. |
147 | LEI Yang, ZHOU Yuhang, WEI Zhiqiang, et al. Optimal design of an ionic liquid (IL)-based aromatic extractive distillation process involving energy and economic evaluation[J]. Industrial & Engineering Chemistry Research, 2021, 60(9): 3605-3616. |
148 | TAO Guohong, HE Ling, SUN Ning, et al. New generation ionic liquids: Cations derived from amino acids[J]. Chemical Communications, 2005(28): 3562-3564. |
149 | FUKUMOTO Kenta, YOSHIZAWA Masahiro, OHNO Hiroyuki. Room temperature ionic liquids from 20 natural amino acids[J]. Journal of the American Chemical Society, 2005, 127(8): 2398-2399. |
150 | TAO Duanjian, CHENG Zheng, CHEN Fengfeng, et al. Synthesis and thermophysical properties of biocompatible cholinium-based amino acid ionic liquids[J]. Journal of Chemical & Engineering Data, 2013, 58(6): 1542-1548. |
151 | LIU Xianxian, JI Cai, YANG Qiwei, et al. Carboxylate ionic liquids combining low cytotoxicity toward HepG2 cell and high separation efficiency for bioactive molecules[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(2): 1974-1981. |
152 | MUHAMMAD N, HOSSAIN M I, MAN Z, et al. Synthesis and physical properties of choline carboxylate ionic liquids[J]. Journal of Chemical & Engineering Data, 2012, 57(8): 2191-2196. |
[1] | CHEN Yaoji, REN Chengyu, HU Daqing, LU Hanfeng, GE Chunliang, CUI Guokai. Carbon monoxide conversion via ionic liquids intensification [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 124-134. |
[2] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[3] | LIAO Zhixin, LUO Tao, WANG Hong, KONG Jiajun, SHEN Haiping, GUAN Cuishi, WANG Cuihong, SHE Yucheng. Application and progress of solvent deasphalting technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4573-4586. |
[4] | QIAN Sitian, PENG Wenjun, ZHANG Xianming. Comparative analysis of forming cyclic oligomers via PET melt polycondensation and cyclodepolymerization [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4808-4816. |
[5] | ZHU Chuanqiang, RU Jinbo, SUN Tingting, XIE Xingwang, LI Changming, GAO Shiqiu. Characteristics of selective non-catalytic reduction of NO x with solid polymer denitration agent [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4939-4946. |
[6] | WANG Qi, KOU Lihong, WANG Guanyu, WANG Jikun, LIU Min, LI Lanting, WANG Hao. Molecular recognition of dissolved organic matter in bio-treated effluent of coking wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4984-4993. |
[7] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
[8] | WANG Baoying, WANG Huangying, YAN Junying, WANG Yaoming, XU Tongwen. Research progress of polymer inclusion membrane in metal separation and recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3990-4004. |
[9] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[10] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[11] | WANG Xiaohan, ZHOU Yasong, YU Zhiqing, WEI Qiang, SUN Jinxiao, JIANG Peng. Synthesis and hydrocracking performance of Y molecular sieves with different crystal sizes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4283-4295. |
[12] | WANG Jiaxin, PAN Yong, XIONG Xinyi, WAN Xiaoyue, WANG Jianchao. Reaction process and hazards of dinitrotoluene preparation by one-step catalytic nitration of toluene [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3420-3430. |
[13] | HAN Hengwen, HAN Wei, LI Mingfeng. Research progress in olefin hydration process and the catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3489-3500. |
[14] | YIN Pengzhen, WU Qin, LI Hansheng. Advances in catalysts for liquid-phase selective oxidation of methyl aromatic hydrocarbons [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2916-2943. |
[15] | YUE Xin, LI Chunying, SUN Dao’an, LI Jiangwei, DU Yongmei, MA Hui, LYU Jian. Progress on heterogeneous catalysts for cyclopropanation of diazo compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2390-2401. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |