Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (3): 1228-1239.DOI: 10.16085/j.issn.1000-6613.2022-0911
• Chemical processes and equipment • Previous Articles Next Articles
LUO Xiaoping1(), FAN Peng1, ZHOU Jianyang2, WANG Mengyuan1
Received:
2022-05-17
Revised:
2022-06-07
Online:
2023-04-10
Published:
2023-03-15
Contact:
LUO Xiaoping
通讯作者:
罗小平
作者简介:
罗小平(1967—),教授,博士生导师,主要研究方向为微通道换热器相变传热、EHD强化沸腾传热及其控制。E-mail:mmxpluo@scut.edu.cn。
基金资助:
CLC Number:
LUO Xiaoping, FAN Peng, ZHOU Jianyang, WANG Mengyuan. Boiling curve and onset of nucleate boiling of microchannels with corrugated walls[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1228-1239.
罗小平, 樊鹏, 周建阳, 王梦圆. 不同波纹壁面微细通道沸腾曲线及沸腾起始点研究[J]. 化工进展, 2023, 42(3): 1228-1239.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0911
仪器名称 | 出产厂家 | 仪器型号 | 简介 |
---|---|---|---|
磁力泵 | 广州隆鑫泵业有限公司 | 20LH0-12 | 输出量程大且平稳 |
变频器 | 三菱电机自动化有限公司 | FR-D720S-2.2K-CHT | 在循环管路其他阀门保持不变时,变频器的频率与磁力泵输出流量成线性关系 |
云母加热板 | 定制 | 最大输出功率1500W,最大电压220V | 通过调压器调节加热功率,保持稳定输出 |
温度传感器 | 上海中泰电热仪表厂 | WRNK-291K型热电偶 | 精度0.2%,量程0~200℃ |
压力传感器 | 广州汉川仪表有限公司 | HC3160-HVG4 | 精度0.5%,量程0~700kPa |
安捷伦 | 艾德克斯电子有限公司 | IT8511 | 直接采集数据 |
冷却机组 | 广州东教冷冻工程有限公司 | KL858 | 可控制温度2~80℃ |
仪器名称 | 出产厂家 | 仪器型号 | 简介 |
---|---|---|---|
磁力泵 | 广州隆鑫泵业有限公司 | 20LH0-12 | 输出量程大且平稳 |
变频器 | 三菱电机自动化有限公司 | FR-D720S-2.2K-CHT | 在循环管路其他阀门保持不变时,变频器的频率与磁力泵输出流量成线性关系 |
云母加热板 | 定制 | 最大输出功率1500W,最大电压220V | 通过调压器调节加热功率,保持稳定输出 |
温度传感器 | 上海中泰电热仪表厂 | WRNK-291K型热电偶 | 精度0.2%,量程0~200℃ |
压力传感器 | 广州汉川仪表有限公司 | HC3160-HVG4 | 精度0.5%,量程0~700kPa |
安捷伦 | 艾德克斯电子有限公司 | IT8511 | 直接采集数据 |
冷却机组 | 广州东教冷冻工程有限公司 | KL858 | 可控制温度2~80℃ |
物性 | 参数值 |
---|---|
分子量 | 116.95 |
沸点/℃ | 32.05 |
临界温度/℃ | 204.15 |
临界压力/MPa | 4.25 |
饱和液体密度/kg·m-3 | 1.227 |
液体比热容/kJ·kg-1·℃-1 | 1.16 |
临界密度/g·cm-3 | 0.43 |
物性 | 参数值 |
---|---|
分子量 | 116.95 |
沸点/℃ | 32.05 |
临界温度/℃ | 204.15 |
临界压力/MPa | 4.25 |
饱和液体密度/kg·m-3 | 1.227 |
液体比热容/kJ·kg-1·℃-1 | 1.16 |
临界密度/g·cm-3 | 0.43 |
壁面结构 | H/mm | Dc/mm | Ac/mm |
---|---|---|---|
普通光滑 | 2 | 0 | 0 |
正弦波纹 | 2 | 12 | 0.8 |
三角形波纹 | 2 | 12 | 0.8 |
壁面结构 | H/mm | Dc/mm | Ac/mm |
---|---|---|---|
普通光滑 | 2 | 0 | 0 |
正弦波纹 | 2 | 12 | 0.8 |
三角形波纹 | 2 | 12 | 0.8 |
参数 | 仪器 | 量程 | 精度/% |
---|---|---|---|
温度 | K型热电偶 | 0~200℃ | 0.2 |
流量 | 涡轮流量计 | 0~250L/h | 0.5 |
压力 | 压力传感器 | 0~700kPa | 0.5 |
参数 | 仪器 | 量程 | 精度/% |
---|---|---|---|
温度 | K型热电偶 | 0~200℃ | 0.2 |
流量 | 涡轮流量计 | 0~250L/h | 0.5 |
压力 | 压力传感器 | 0~700kPa | 0.5 |
物理量 | 相对不确定度/% |
---|---|
G | 0.68 |
qeff | 4.57 |
物理量 | 相对不确定度/% |
---|---|
G | 0.68 |
qeff | 4.57 |
模型 | 关联式 | 平均绝对误差/% | ||
---|---|---|---|---|
普通 | 正弦 | 三角形 | ||
Hsu[ | 13.98 | 9.78 | 7.56 | |
Sato and Matsumara[ | 32.00 | 22.58 | 23.79 | |
Davis and Anderson[ | 19.88 | 10.88 | 11.16 | |
Liu等[ | 12.00 | 15.31 | 11.10 | |
Kandlikar等[ | 27.07 | 16.97 | 18.48 | |
Celata等[ | 10.68 | 11.68 | 7.45 |
模型 | 关联式 | 平均绝对误差/% | ||
---|---|---|---|---|
普通 | 正弦 | 三角形 | ||
Hsu[ | 13.98 | 9.78 | 7.56 | |
Sato and Matsumara[ | 32.00 | 22.58 | 23.79 | |
Davis and Anderson[ | 19.88 | 10.88 | 11.16 | |
Liu等[ | 12.00 | 15.31 | 11.10 | |
Kandlikar等[ | 27.07 | 16.97 | 18.48 | |
Celata等[ | 10.68 | 11.68 | 7.45 |
1 | SAISORN S, WONGWISES S. The effects of channel diameter on flow pattern, void fraction and pressure drop of two-phase air-water flow in circular micro-channels[J]. Experimental Thermal and Fluid Science, 2010, 34(4): 454-462. |
2 | SALAH S A S, FILALI E G, DJELLOULI S. Numerical investigation of Reynolds number and scaling effects in micro-channels flows[J]. Journal of Hydrodynamics B, 2017, 29(4): 647-658. |
3 | AL-YAHIA O S, JO D. ONB, OSV, and OFI for subcooled flow boiling through a narrow rectangular channel heated on one-side[J]. International Journal of Heat and Mass Transfer, 2018, 116: 136-151. |
4 | WAN Zhenping, WANG Yongnan, WANG Xiaowu, et al. Flow boiling characteristics in microchannels with half-corrugated bottom plates[J]. International Journal of Heat and Mass Transfer, 2018, 116: 557-568. |
5 | FOO Z H, CHENG K X, GOH A L, et al. Single-phase convective heat transfer performance of wavy microchannels in macro geometry[J]. Applied Thermal Engineering, 2018, 141: 675-687. |
6 | 李蔚, 李俊业, 汪秋刚, 等. 微细窄通道内纳米线表面的过冷沸腾流动与传热特性[J]. 科学通报, 2020, 65(20): 2178-2186. |
LI Wei, LI Junye, WANG Qiugang, et al. Flow and heat transfer characteristics of subcooled flow boiling on nanowires surfaces in a narrow microchannel[J]. Chinese Science Bulletin, 2020, 65(20): 2178-2186. | |
7 | PEHLIVAN H, TAYMAZ I, İSLAMOĞLU Y. Experimental study of forced convective heat transfer in a different arranged corrugated channel[J]. International Communications in Heat and Mass Transfer, 2013, 46: 106-111. |
8 | TOGHRAIE D, ABDOLLAH M M D, POURFATTAH F, et al. Numerical investigation of flow and heat transfer characteristics in smooth, sinusoidal and zigzag-shaped microchannel with and without nanofluid[J]. Journal of Thermal Analysis and Calorimetry, 2018, 131(2): 1757-1766. |
9 | HAPKE I, BOYE H, SCHMIDT J. Onset of nucleate boiling in minichannels[J]. International Journal of Thermal Sciences, 2000, 39(4): 505-513. |
10 | BHIDE R R, SINGH S G, DURYODHAN V S, et al. Onset of nucleate boiling and critical heat flux with boiling water in microchannels[J]. International Journal of Microscale and Nanoscale Themal and Fluid Transport Phenomena, 2015, 4(1): 25-47. |
11 | AHMADI R, UENO T, OKAWA T. Bubble dynamics at boiling incipience in subcooled upward flow boiling[J]. International Journal of Heat and Mass Transfer, 2012, 55(1/2/3): 488-497. |
12 | MCHALE J P, GARIMELLA S V. Bubble nucleation characteristics in pool boiling of a wetting liquid on smooth and rough surfaces[J]. International Journal of Multiphase Flow, 2010, 36(4): 249-260. |
13 | 罗小平, 王文, 廖政标, 等. 基于不同润湿性微细通道过冷沸腾起始点(ONB)的实验研究[J]. 化工进展, 2018, 37(3): 884-892. |
LUO Xiaoping, WANG Wen, LIAO Zhengbiao, et al. Experimental study on onset of nucleate boiling (ONB) in different wettability micro-channels[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 884-892. | |
14 | MASRI M A, CIOULACHTJIAN S, VEILLAS C, et al. Nucleate boiling on ultra-smooth surfaces: explosive incipience and homogeneous density of nucleation sites[J]. Experimental Thermal and Fluid Science, 2017, 88: 24-36. |
15 | MISHIMA K, HIBIKI T. Some characteristics of air-water two-phase flow in small diameter vertical tubes[J]. International Journal of Multiphase Flow, 1996, 22(4): 703-712. |
16 | WANG G D, CHENG P, BERGLES A E. Effects of inlet/outlet configurations on flow boiling instability in parallel microchannels[J]. International Journal of Heat and Mass Transfer, 2008, 51(9/10): 2267-2281. |
17 | 银了飞. 微细通道流动沸腾气泡受限行为特性实验研究[D]. 北京: 北京交通大学, 2015. |
YIN L F. Experimental investigation on the characteristics of bubble confined behaviors during flow boiling in mini/micro-channel[D]. Beijing: Beijing Jiaotong University, 2015. | |
18 | MOFFAT R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17. |
19 | QU W L, MUDAWAR I. Flow boiling heat transfer in two-phase micro-channel heat sinks (I): Experimental investigation and assessment of correlation methods[J]. International Journal of Heat and Mass Transfer, 2003, 46(15): 2755-2771. |
20 | HIBIKI T, ISHII M. Active nucleation site density in boiling systems[J]. International Journal of Heat and Mass Transfer, 2003, 46(14): 2587-2601. |
21 | COLE R. Boiling nucleation[J]. Advances in Heat Transfer, 1974, 10: 85-166. |
22 | BASU N, WARRIER G R, DHIR V K. Wall heat flux partitioning during subcooled flow boiling (I): Model development[J]. Journal of Heat Transfer, 2005, 127(2): 131-140. |
23 | OKAWA T. Onset of nucleate boiling in mini and microchannels: a brief review[J]. Frontiers in Heat and Mass Transfer, 2012, 3(1). |
24 | RABHI A, ASLANIDOU I, KYPRIANIDIS K, et al. Onset of nucleate boiling model for rectangular upward narrow channel: CFD based approach[J]. International Journal of Heat and Mass Transfer, 2021, 165: 120715. |
25 | HSU Y Y. On the size range of active nucleation cavities on a heating surface[J].Journal of Heat Transfer, 1962, 84(3): 207-213. |
26 | SATO T, MATSUMURA H. On the conditions of incipient subcooled-boiling with forced convection[J]. Bulletin of JSME, 1964, 7(26): 392-398. |
27 | DAVIS E J, ANDERSON G H. The incipience of nucleate boiling in forced convection flow[J]. AIChE Journal, 1966, 12(4): 774-780. |
28 | LIU D, LEE P S, GARIMELLA S V. Prediction of the onset of nucleate boiling in microchannel flow[J]. International Journal of Heat and Mass Transfer, 2005, 48(25/26): 5134-5149. |
29 | KANDLIKAR S G. Nucleation characteristics and stability considerations during flow boiling in microchannels[J]. Experimental Thermal and Fluid Science, 2006, 30(5): 441-447. |
30 | CELATA G P, CUMO M, MARIANI A. Experimental evaluation of the onset of subcooled flow boiling at high liquid velocity and subcooling[J]. International Journal of Heat and Mass Transfer, 1997, 40(12): 2879-2885. |
31 | BASU N, WARRIER G R, DHIR V K. Onset of nucleate boiling and active nucleation site density during subcooled flow boiling[J]. Journal of Heat Transfer, 2002, 124(4): 717-728. |
[1] | XU Ruosi, TAN Wei. Flow field simulation and fluid-structure coupling analysis of C-tube pool boiling two-phase flow model [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 47-55. |
[2] | ZHAO Chen, MIAO Tianze, ZHANG Chaoyang, HONG Fangjun, WANG Dahai. Heat transfer characteristics of ethylene glycol aqueous solution in slit channel under negative pressure [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 148-157. |
[3] | LUO Cheng, FAN Xiaoyong, ZHU Yonghong, TIAN Feng, CUI Louwei, DU Chongpeng, WANG Feili, LI Dong, ZHENG Hua’an. CFD simulation of liquid distribution in different distributors in medium-low temperature coal tar hydrogenation reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4538-4549. |
[4] | CHEN Weiyang, SONG Xin, YIN Yaran, ZHANG Xianming, ZHU Chunying, FU Taotao, MA Youguang. Effect of liquid viscosity on bubble interface in the rectangular microchannel [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3468-3477. |
[5] | WANG Shuo, ZHANG Yaxin, ZHU Botao. Prediction of erosion life of coal water slurry pipeline based on grey prediction model [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3431-3442. |
[6] | YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi. Performance prediction of variable-width microfluidic concentration gradient chips by deep learning [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393. |
[7] | TAO Mengqi, LIU Meihong, KANG Yuchi. Analysis of fluid across a single cylinder and two parallel cylinders in a micro flow channel by micro-PIV [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2836-2844. |
[8] | TIAN Qikai, ZHENG Haiping, ZHANG Shaobin, ZHANG Jing, YU Ziyi. Advances in mixing enhanced microfluidic channels [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1677-1687. |
[9] | ZHANG Meng, LI Shuqian, ZHANG Dong, MA Kunru. Motion characteristics for vapor-liquid interfaces of direct contact condensation in a microchannel [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4644-4652. |
[10] | PENG Deqi, FENG Yuan, WANG Yiran, TAN Zhuowei, YU Tianlan, WU Shuying. Distribution characteristics and convergence of particles in converging-diverging tube [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4662-4672. |
[11] | ZENG Long, ZHENG Guisen, DENG Daxiang, SUN Jian, LIU Yongheng. Experimental study of heat transfer performance of porous wall microchannels [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4625-4634. |
[12] | FAN Junling, HE Hao, ZHANG Pan, CHEN Guanghui. Effect of local erosion on flow field and separation performance of α-type cyclone separator [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4025-4034. |
[13] | FENG Longlong, ZHONG Ke, ZHANG Yusen, SHANG Qingchun, JIA Hongwei. Flow boiling heat transfer characteristics of R1234yf in horizontal microchannel [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3502-3509. |
[14] | MAO Jijin, ZHANG Donghui, SUN Lili, LEI Qinhui, QU Jian. Boiling heat transfer and resistance characteristics of two types of sintered structures [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3483-3492. |
[15] | ZHENG Suzheng, LI Nanxi, DONG Deping. Experimental and numerical investigation of loop heat pipe with flat ceramic capillary wick [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3510-3518. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |