Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (2): 957-968.DOI: 10.16085/j.issn.1000-6613.2022-0628
• Resources and environmental engineering • Previous Articles Next Articles
CHENG Rong1(), DENG Ziqi1, XIA Jincheng1, LI Jiang2, SHI Lei1, ZHENG Xiang1()
Received:
2022-04-12
Revised:
2022-07-15
Online:
2023-03-13
Published:
2023-02-25
Contact:
ZHENG Xiang
程荣1(), 邓子祺1, 夏锦程1, 李江2, 石磊1, 郑祥1()
通讯作者:
郑祥
作者简介:
程荣(1981—),女,副教授,研究方向为环境公共卫生与环境功能材料。E-mail:chengrong@ruc.edu.cn。
基金资助:
CLC Number:
CHENG Rong, DENG Ziqi, XIA Jincheng, LI Jiang, SHI Lei, ZHENG Xiang. Research progress on photocatalysis systems for inactivation of microbial aerosol[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 957-968.
程荣, 邓子祺, 夏锦程, 李江, 石磊, 郑祥. 光催化系统灭活微生物气溶胶的研究进展[J]. 化工进展, 2023, 42(2): 957-968.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0628
光催化剂种类 | 负载方法 | 载体 | 微生物种类 | 最高去除率/% | 参考文献 |
---|---|---|---|---|---|
TiO2 | 浸涂法 | 玻璃环 | 枯草芽孢杆菌 | 100 | [ |
反应器内壁 | 嗜肺军团菌 | 94 | [ | ||
高效空气过滤器 (HEPA)滤芯 | 大肠杆菌 | 100 | [ | ||
多种细菌、真菌 | 77 | [ | |||
表皮菌、枯草杆菌、尼日尔菌和青霉菌 | 98 | [ | |||
聚醚砜膜盘式过滤器 | 大肠杆菌、枯草芽孢杆菌、微杆菌 | 100 | [ | ||
硼硅酸盐板 | 多种细菌、真菌 | 98 | [ | ||
玻璃纤维过滤器 | 大肠杆菌K-12 | 100 | [ | ||
β-SiC泡沫 | T2噬菌体 | 99.9 | [ | ||
多孔陶瓷板 | H1N1流感病毒 | 100 | [ | ||
铝板 | H1N1流感病毒 | 99.999 | [ | ||
陶瓷泡沫 | 大肠杆菌等5种细菌 | 99.9 | [ | ||
溶胶-凝胶法 | 玻璃纤维 | 大肠杆菌 | 97.7 | [ | |
化学接枝法 | 聚氨酯泡沫 | 嗜肺军团菌 | 90 | [ | |
TiO2、ZnO | 浸涂法 | 乙酸纤维素蜂窝结构 | 多种细菌、真菌 | 98 | [ |
多孔玻璃珠 | 细菌、真菌 | 78 | [ | ||
溶胶-凝胶法 | 珍珠岩、多孔玻璃珠 | 细菌、真菌 | 77 | [ | |
珍珠岩 | 细菌、真菌 | 70 | [ | ||
Cu/TiO2 | 溶胶-凝胶法 | 玻璃纤维 | 大肠杆菌 | 87.80 | [ |
无纺布 | 人类诺如病毒 | 99.87 | [ | ||
化学接枝法 | 聚氨酯泡沫 | 酵母菌 | — | [ | |
Ag/TiO2 | 浸涂法 | 织物过滤器 | 细菌、真菌、病毒 | 100 | [ |
铝板、聚酯纤维 | 蜡样芽孢杆菌孢子 | 97.89 | [ | ||
Cu/TiO2、Ag/TiO2 | 溶胶-凝胶法 | 玻璃纤维 | 大肠杆菌和金黄色葡萄球菌 | 94.46 | [ |
TiO2/Cu2+、Ag@TiO2/Cu2+ | 浸涂法 | 珍珠岩 | 大肠杆菌、金黄色葡萄球菌 | 100 | [ |
Pd/TiO2 | 静电自组装法、 溶胶-凝胶法 | 钛板 | MS2噬菌体 | 100 | [ |
TiO2、Pt/TiO2 | 浸涂法 | 玻璃板 | 多种细菌、病毒 | 99.8 | [ |
Ag/TiO2、Ag/ZnO | 喷涂法 | 反应灯内表面 | 环境空气细菌 | 96.48 | [ |
ZIF-8 | 热压法 | 无纺布 | 大肠杆菌 | 99.99 | [ |
TiO2/MXene | 浸涂法 | 聚氨酯泡沫 | 大肠杆菌 | 99.96 | [ |
光催化剂种类 | 负载方法 | 载体 | 微生物种类 | 最高去除率/% | 参考文献 |
---|---|---|---|---|---|
TiO2 | 浸涂法 | 玻璃环 | 枯草芽孢杆菌 | 100 | [ |
反应器内壁 | 嗜肺军团菌 | 94 | [ | ||
高效空气过滤器 (HEPA)滤芯 | 大肠杆菌 | 100 | [ | ||
多种细菌、真菌 | 77 | [ | |||
表皮菌、枯草杆菌、尼日尔菌和青霉菌 | 98 | [ | |||
聚醚砜膜盘式过滤器 | 大肠杆菌、枯草芽孢杆菌、微杆菌 | 100 | [ | ||
硼硅酸盐板 | 多种细菌、真菌 | 98 | [ | ||
玻璃纤维过滤器 | 大肠杆菌K-12 | 100 | [ | ||
β-SiC泡沫 | T2噬菌体 | 99.9 | [ | ||
多孔陶瓷板 | H1N1流感病毒 | 100 | [ | ||
铝板 | H1N1流感病毒 | 99.999 | [ | ||
陶瓷泡沫 | 大肠杆菌等5种细菌 | 99.9 | [ | ||
溶胶-凝胶法 | 玻璃纤维 | 大肠杆菌 | 97.7 | [ | |
化学接枝法 | 聚氨酯泡沫 | 嗜肺军团菌 | 90 | [ | |
TiO2、ZnO | 浸涂法 | 乙酸纤维素蜂窝结构 | 多种细菌、真菌 | 98 | [ |
多孔玻璃珠 | 细菌、真菌 | 78 | [ | ||
溶胶-凝胶法 | 珍珠岩、多孔玻璃珠 | 细菌、真菌 | 77 | [ | |
珍珠岩 | 细菌、真菌 | 70 | [ | ||
Cu/TiO2 | 溶胶-凝胶法 | 玻璃纤维 | 大肠杆菌 | 87.80 | [ |
无纺布 | 人类诺如病毒 | 99.87 | [ | ||
化学接枝法 | 聚氨酯泡沫 | 酵母菌 | — | [ | |
Ag/TiO2 | 浸涂法 | 织物过滤器 | 细菌、真菌、病毒 | 100 | [ |
铝板、聚酯纤维 | 蜡样芽孢杆菌孢子 | 97.89 | [ | ||
Cu/TiO2、Ag/TiO2 | 溶胶-凝胶法 | 玻璃纤维 | 大肠杆菌和金黄色葡萄球菌 | 94.46 | [ |
TiO2/Cu2+、Ag@TiO2/Cu2+ | 浸涂法 | 珍珠岩 | 大肠杆菌、金黄色葡萄球菌 | 100 | [ |
Pd/TiO2 | 静电自组装法、 溶胶-凝胶法 | 钛板 | MS2噬菌体 | 100 | [ |
TiO2、Pt/TiO2 | 浸涂法 | 玻璃板 | 多种细菌、病毒 | 99.8 | [ |
Ag/TiO2、Ag/ZnO | 喷涂法 | 反应灯内表面 | 环境空气细菌 | 96.48 | [ |
ZIF-8 | 热压法 | 无纺布 | 大肠杆菌 | 99.99 | [ |
TiO2/MXene | 浸涂法 | 聚氨酯泡沫 | 大肠杆菌 | 99.96 | [ |
光源种类 | 光源额定功率 | 光照强度/mW·cm-2 | 微生物种类 | 最高去除率/% | 参考文献 |
---|---|---|---|---|---|
UVA | 6W×19个 | 内侧3.43;外侧1.89 | 枯草芽孢杆菌 | 100 | [ |
8W×2个 | 1.82~6.28 | 大肠杆菌、枯草芽孢杆菌、微杆菌 | 100 | [ | |
14W×6个 | 10 | 细菌、真菌、病毒 | 100 | [ | |
14W×43个 | 5 | 蜡样芽孢杆菌孢子 | 97.89 | [ | |
36W×5个 | 4.85±0.09 | 多种细菌、真菌 | 77 | [ | |
8W×2个 | 0.5~3.4 | 大肠杆菌K-12 | 100 | [ | |
— | 1 | H1N1流感病毒 | 100 | [ | |
— | 0.25 | 大肠杆菌等5种细菌 | 99.9 | [ | |
UVC | — | 1.8 | 金黄色葡萄球菌 | 99.98 | [ |
18W、35W | 0.06~0.105 | 多种致病细菌、病毒 | 99.99 | [ | |
11W×2个 | 12.8 | 粪肠球菌、法氏囊病病毒 | 99.7 | [ | |
UVC | 15W×1个 | 10 | 大肠杆菌 | 99.96 | [ |
UVA | 8W×1个 | 10 | 大肠杆菌 | 99.68 | |
UVC | 6W | 1.4±0.09 | 表皮菌、枯草杆菌、尼日尔菌和 青霉菌 | 87 | [ |
UVA | 6W | 2.2±0.06 | 73 | ||
VUV | 0.5~11W | — | MS2噬菌体 | 100 | [ |
UV-LED(392nm) | 0.0097W×56个 | 11.7±2.0 | T2噬菌体 | 99.9 | [ |
UV-LED(375nm) | 2W×12个 | — | H1N1流感病毒 | 99.999 | [ |
蓝色LED(430~505nm) | 60个(30mA, 3.6V) | — | 大肠杆菌、金黄色葡萄球菌 | 100 | [ |
UV-LED(380~420 nm) | 6个(500~700mA, 3.2~3.6V) | ||||
蓝色LED(460nm) | 6.8W×85个 | — | 细菌 | 99.9 | [ |
可见光LED(405nm) | 7W×1个 | — | 环境空气细菌 | 96.48 | [ |
可见光 | 20W×4个 | 25 | 大肠杆菌 | 87.80 | [ |
20W×4个 | 25 | 大肠杆菌和金黄色葡萄球菌 | 94.46 | [ | |
模拟太阳光(300~1100nm) | 300W氙灯 | 100 | 大肠杆菌 | 99.99 | [ |
太阳光 | — | 18~21 | 表皮葡萄球菌 | 99.98 | [ |
光源种类 | 光源额定功率 | 光照强度/mW·cm-2 | 微生物种类 | 最高去除率/% | 参考文献 |
---|---|---|---|---|---|
UVA | 6W×19个 | 内侧3.43;外侧1.89 | 枯草芽孢杆菌 | 100 | [ |
8W×2个 | 1.82~6.28 | 大肠杆菌、枯草芽孢杆菌、微杆菌 | 100 | [ | |
14W×6个 | 10 | 细菌、真菌、病毒 | 100 | [ | |
14W×43个 | 5 | 蜡样芽孢杆菌孢子 | 97.89 | [ | |
36W×5个 | 4.85±0.09 | 多种细菌、真菌 | 77 | [ | |
8W×2个 | 0.5~3.4 | 大肠杆菌K-12 | 100 | [ | |
— | 1 | H1N1流感病毒 | 100 | [ | |
— | 0.25 | 大肠杆菌等5种细菌 | 99.9 | [ | |
UVC | — | 1.8 | 金黄色葡萄球菌 | 99.98 | [ |
18W、35W | 0.06~0.105 | 多种致病细菌、病毒 | 99.99 | [ | |
11W×2个 | 12.8 | 粪肠球菌、法氏囊病病毒 | 99.7 | [ | |
UVC | 15W×1个 | 10 | 大肠杆菌 | 99.96 | [ |
UVA | 8W×1个 | 10 | 大肠杆菌 | 99.68 | |
UVC | 6W | 1.4±0.09 | 表皮菌、枯草杆菌、尼日尔菌和 青霉菌 | 87 | [ |
UVA | 6W | 2.2±0.06 | 73 | ||
VUV | 0.5~11W | — | MS2噬菌体 | 100 | [ |
UV-LED(392nm) | 0.0097W×56个 | 11.7±2.0 | T2噬菌体 | 99.9 | [ |
UV-LED(375nm) | 2W×12个 | — | H1N1流感病毒 | 99.999 | [ |
蓝色LED(430~505nm) | 60个(30mA, 3.6V) | — | 大肠杆菌、金黄色葡萄球菌 | 100 | [ |
UV-LED(380~420 nm) | 6个(500~700mA, 3.2~3.6V) | ||||
蓝色LED(460nm) | 6.8W×85个 | — | 细菌 | 99.9 | [ |
可见光LED(405nm) | 7W×1个 | — | 环境空气细菌 | 96.48 | [ |
可见光 | 20W×4个 | 25 | 大肠杆菌 | 87.80 | [ |
20W×4个 | 25 | 大肠杆菌和金黄色葡萄球菌 | 94.46 | [ | |
模拟太阳光(300~1100nm) | 300W氙灯 | 100 | 大肠杆菌 | 99.99 | [ |
太阳光 | — | 18~21 | 表皮葡萄球菌 | 99.98 | [ |
反应器结构 | 微生物种类 | 反应时间 | 最高去除效果/% | 参考文献 |
---|---|---|---|---|
环形反应器 | 枯草芽孢杆菌(营养细胞和孢子) | 60min | 100 | [ |
细菌、真菌 | 5.7s | 77 | [ | |
大肠杆菌、枯草芽孢杆菌、微杆菌 | 3.57min | 100 | [ | |
大肠杆菌 | 4.27s | 99.96 | [ | |
多种细菌、真菌 | 0.3min | 98 | [ | |
大肠杆菌K-12 | 1.1min | 100 | [ | |
大肠杆菌 | — | 97.7 | [ | |
嗜肺军团菌 | 1.5s | 90 | [ | |
MS2病毒 | 0.125s | 100 | [ | |
嗜肺军团菌 | — | 94 | [ | |
细菌 | 6s | 99.9 | [ | |
圆柱形反应器 | 大肠杆菌 | 4h | 100 | [ |
大肠杆菌 | 1h | 87.80 | [ | |
T2噬菌体 | 60min | 99.9 | [ | |
大肠杆菌 | 1h | 100 | [ | |
多种致病细菌、病毒 | 0.06~0.13s | 99.999 | [ | |
矩形反应器 | 细菌、真菌、病毒 | 2min | 100 | [ |
多种细菌、真菌 | 8h | 77 | [ | |
B1噬菌体 | 1h | 99.8 | [ | |
大肠杆菌 | 30min | 99.99 | [ | |
E.粪肠球菌、IBDV病毒 | 1s | 99.7 | [ | |
环境空气微生物 | 300min | 100 | [ | |
大肠杆菌等5种细菌 | 24h | 99.9 | [ | |
立方体反应器 | H1N1流感病毒 | 5min | 100 | [ |
催化剂涂层反应灯 | 环境空气细菌 | 48h | 96.48 | [ |
光催化空气净化器 | H1N1流感病毒 | 7min | 99.999 | [ |
反应器结构 | 微生物种类 | 反应时间 | 最高去除效果/% | 参考文献 |
---|---|---|---|---|
环形反应器 | 枯草芽孢杆菌(营养细胞和孢子) | 60min | 100 | [ |
细菌、真菌 | 5.7s | 77 | [ | |
大肠杆菌、枯草芽孢杆菌、微杆菌 | 3.57min | 100 | [ | |
大肠杆菌 | 4.27s | 99.96 | [ | |
多种细菌、真菌 | 0.3min | 98 | [ | |
大肠杆菌K-12 | 1.1min | 100 | [ | |
大肠杆菌 | — | 97.7 | [ | |
嗜肺军团菌 | 1.5s | 90 | [ | |
MS2病毒 | 0.125s | 100 | [ | |
嗜肺军团菌 | — | 94 | [ | |
细菌 | 6s | 99.9 | [ | |
圆柱形反应器 | 大肠杆菌 | 4h | 100 | [ |
大肠杆菌 | 1h | 87.80 | [ | |
T2噬菌体 | 60min | 99.9 | [ | |
大肠杆菌 | 1h | 100 | [ | |
多种致病细菌、病毒 | 0.06~0.13s | 99.999 | [ | |
矩形反应器 | 细菌、真菌、病毒 | 2min | 100 | [ |
多种细菌、真菌 | 8h | 77 | [ | |
B1噬菌体 | 1h | 99.8 | [ | |
大肠杆菌 | 30min | 99.99 | [ | |
E.粪肠球菌、IBDV病毒 | 1s | 99.7 | [ | |
环境空气微生物 | 300min | 100 | [ | |
大肠杆菌等5种细菌 | 24h | 99.9 | [ | |
立方体反应器 | H1N1流感病毒 | 5min | 100 | [ |
催化剂涂层反应灯 | 环境空气细菌 | 48h | 96.48 | [ |
光催化空气净化器 | H1N1流感病毒 | 7min | 99.999 | [ |
微生物 | 紫外照射时间/h | 去除效率/lg | 实验次数 |
---|---|---|---|
萎缩芽孢杆菌 | 24 | 9 | 3 |
24 | 15 | 2 | |
24 | 14 | 4 | |
24 | 16 | 2 | |
24 | 14 | 3 | |
48 | 14 | 3 | |
48 | 16 | 1 | |
48 | 17 | 1 |
微生物 | 紫外照射时间/h | 去除效率/lg | 实验次数 |
---|---|---|---|
萎缩芽孢杆菌 | 24 | 9 | 3 |
24 | 15 | 2 | |
24 | 14 | 4 | |
24 | 16 | 2 | |
24 | 14 | 3 | |
48 | 14 | 3 | |
48 | 16 | 1 | |
48 | 17 | 1 |
1 | 疫情实时大数据报告[EB/OL]. [2022-06-13]. . |
Real-time big data reporting of outbreaks[EB/oL]. [2022-06-13]. . | |
2 | World Health Organization. Access to assistive technology during the COVID-19 pandemic[EB/OL]. [2022-03-11]. . |
3 | 国家卫生健康委员会. 新型冠状病毒肺炎诊疗方案(试行第九版). [2022-03-11]. . |
National Health Commission. COVID-19 Diagnosis and Treatment Protocol (Trial Version 9). [2022-03-11]. . | |
4 | GRIFFITHS W D, DECOSEMO G A L. The assessment of bioaerosols: A critical review[J]. Journal of Aerosol Science, 1994, 25(8): 1425-1458. |
5 | 丘杨, 王宁, 曾文, 等. 新型冠状病毒能否通过气溶胶传播?[J]. 三峡生态环境监测, 2020, 5(2): 1-5. |
QIU Yang, WANG Ning, ZENG Wen, et al. Can 2019-nCov be transmitted by aerosol? [J]. Ecology and Environmental Monitoring of Three Gorges, 2020, 5(2): 1-5. | |
6 | TELLIER R. Aerosol transmission of influenza A virus: A review of new studies[J]. Journal of the Royal Society, Interface, 2009, 6(S 6): S783-S790. |
7 | JONES R M, BROSSEAU L M. Aerosol transmission of infectious disease[J]. Journal of Occupational and Environmental Medicine, 2015, 57(5): 501-508. |
8 | 李晓旭, 翁祖峰, 曹爱丽, 等. 室内空气中致病微生物的种类及检测技术概述[J]. 科学通报, 2018, 63(21): 2116-2127. |
LI Xiaoxu, WENG Zufeng, CAO Aili, et al. An overview about varieties and detection methods of pathogenic microorganisms in indoor air[J]. Chinese Science Bulletin, 2018, 63(21): 2116-2127. | |
9 | SUNGKAJUNTRANON K, SRIBENJALUX P, SUPOTHINA S, et al. Effect of binders on airborne microorganism inactivation using TiO2 photocatalytic fluorescent lamps[J]. Journal of Photochemistry and Photobiology B: Biology, 2014, 138: 160-171. |
10 | SONG L, ZHOU J F, WANG C, et al. Airborne pathogenic microorganisms and air cleaning technology development: A review[J]. Journal of Hazardous Materials, 2022, 424: 127429. |
11 | FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. |
12 | HEO K J, JEONG S B, SHIN J, et al. Water-repellent TiO2-organic dye-based air filters for efficient visible-light-activated photochemical inactivation against bioaerosols[J]. Nano Letters, 2021, 21(4): 1576-1583. |
13 | LU S Y, MENG G, WANG C, et al. Photocatalytic inactivation of airborne bacteria in a polyurethane foam reactor loaded with a hybrid of MXene and anatase TiO2 exposing{0 0 1}facets[J]. Chemical Engineering Journal, 2021, 404: 126526. |
14 | VOHRA A, GOSWAMI D Y, DESHPANDE D A, et al. Enhanced photocatalytic disinfection of indoor air[J]. Applied Catalysis B: Environmental, 2006, 64(1/2): 57-65. |
15 | VOHRA A, GOSWAMI D Y, DESHPANDE D A, et al. Enhanced photocatalytic inactivation of bacterial spores on surfaces in air[J]. Journal of Industrial Microbiology and Biotechnology, 2005, 32(8): 364. |
16 | KOZLOVA E A, SAFATOV A S, KISELEV S A, et al. Inactivation and mineralization of aerosol deposited model pathogenic microorganisms over TiO2 and Pt/TiO2 [J]. Environmental Science & Technology, 2010, 44(13): 5121-5126. |
17 | PHAM T D, LEE B K. Cu doped TiO2/GF for photocatalytic disinfection of Escherichia coli in bioaerosols under visible light irradiation: Application and mechanism[J]. Applied Surface Science, 2014, 296: 15-23. |
18 | HERNÁNDEZ-GORDILLO A, ARRIAGA S. Mesoporous TiO2 monoliths impregnated with CdS and CuO nanoparticles for airborne bacteria inactivation under visible light[J]. Catalysis Letters, 2022, 152(3): 629-640. |
19 | ZACARÍAS S M, MANASSERO A, PIROLA S, et al. Design and performance evaluation of a photocatalytic reactor for indoor air disinfection[J]. Environmental Science and Pollution Research International, 2021, 28(19): 23859-23867. |
20 | JOSSET S, TARANTO J, KELLER N, et al. Photocatalytic treatment of bioaerosols: Impact of the reactor design[J]. Environmental Science & Technology, 2010, 44(7): 2605-2611. |
21 | PIGEOT-REMY S, LAZZARONI J C, SIMONET F, et al. Survival of bioaerosols in HVAC system photocatalytic filters[J]. Applied Catalysis B: Environmental, 2014, 144: 654-664. |
22 | CHUAYBAMROONG P, CHOTIGAWIN R, SUPOTHINA S, et al. Efficacy of photocatalytic HEPA filter on microorganism removal[J]. Indoor Air, 2010, 20(3): 246-254. |
23 | MOUSAVI T, GOLBABAEI F, KOHNESHAHRI M H, et al. Efficacy of photocatalytic HEPA filter on reducing bacteria and fungi spores in the presence of UVC and UVA lights[J]. Pollution, 2021, 7(2): 309-319. |
24 | PAL A, MIN X, YU L E, et al. Photocatalytic inactivation of bioaerosols by TiO2 coated membrane[J]. International Journal of Chemical Reactor Engineering, 2005, 3(1): A45. |
25 | BRIGGILER MARCÓ M, NEGRO A C, ALFANO O M, et al. New semi-pilot-scale reactor to study the photocatalytic inactivation of phages contained in aerosol[J]. Environmental Science and Pollution Research International, 2018, 25(22): 21385-21392. |
26 | PAL A, PEHKONEN S O, YU L E, et al. Photocatalytic inactivation of airborne bacteria in a continuous-flow reactor[J]. Industrial & Engineering Chemistry Research, 2008, 47(20): 7580-7585. |
27 | DOSS N, CARRÉ G, KELLER V, et al. Photocatalytic decontamination of airborne T2 bacteriophage viruses in a small-size TiO2/β-SiC alveolar foam LED reactor[J]. Water, Air, & Soil Pollution, 2018, 229(2): 1-11. |
28 | DAIKOKU T, TAKEMOTO M, YOSHIDA Y, et al. Decomposition of organic chemicals in the air and inactivation of aerosol-associated influenza infectivity by photocatalysis[J]. Aerosol and Air Quality Research, 2015, 15(4): 1469-1484. |
29 | SHIRAKI K, YAMADA H, YOSHIDA Y, et al. Improved photocatalytic air cleaner with decomposition of aldehyde and aerosol-associated influenza virus infectivity in indoor air[J]. Aerosol and Air Quality Research, 2017, 17(11): 2901-2912. |
30 | YAO Y Y, OCHIAI T, ISHIGURO H, et al. Antibacterial performance of a novel photocatalytic-coated cordierite foam for use in air cleaners[J]. Applied Catalysis B: Environmental, 2011, 106(3/4): 592-599. |
31 | LIN C H, LEE J W, CHANG C Y, et al. Novel TiO2 thin films/glass fiber photocatalytic reactors in the removal of bioaerosols[J]. Surface and Coatings Technology, 2010, 205: S341-S344. |
32 | JOSSET S, HAJIESMAILI S, BEGIN D, et al. UV-A photocatalytic treatment of Legionella pneumophila bacteria contaminated airflows through three-dimensional solid foam structured photocatalytic reactors[J]. Journal of Hazardous Materials, 2010, 175(1/2/3): 372-381. |
33 | RODRIGUES-SILVA C, MIRANDA S M, LOPES F V S, et al. Bacteria and fungi inactivation by photocatalysis under UVA irradiation: Liquid and gas phase[J]. Environmental Science and Pollution Research International, 2017, 24(7): 6372-6381. |
34 | VALDEZ-CASTILLO M, SAUCEDO-LUCERO J O, VILLALOBOS-ROMERO K L, et al. Steady-state operation of a biofilter coupled with photocatalytic control of bacterial bioaerosol emissions[J]. Environmental Science and Pollution Research International, 2021, 28(11): 13970-13980. |
35 | VALDEZ-CASTILLO M, ARRIAGA S. Response of bioaerosol cells to photocatalytic inactivation with ZnO and TiO2 impregnated onto Perlite and Poraver carriers[J]. Frontiers of Environmental Science & Engineering, 2020, 15(3): 1-13. |
36 | VALDEZ-CASTILLO M, SAUCEDO-LUCERO J O, ARRIAGA S. Photocatalytic inactivation of airborne microorganisms in continuous flow using perlite-supported ZnO and TiO2 [J]. Chemical Engineering Journal, 2019, 374: 914-923. |
37 | MOON E W, LEE H W, ROK J H, et al. Photocatalytic inactivation of viral particles of human norovirus by Cu-doped TiO2 non-woven fabric under UVA-LED wavelengths[J]. Science of the Total Environment, 2020, 749: 141574. |
38 | PHAM T D, LEE B K. Advanced removal of C. famata in bioaerosols by simultaneous adsorption and photocatalytic oxidation of Cu-doped TiO2/PU under visible irradiation[J]. Chemical Engineering Journal, 2016, 286: 377-386. |
39 | PHAM T D, LEE B K. Photocatalytic comparison of Cu- and Ag-doped TiO2/GF for bioaerosol disinfection under visible light[J]. Journal of Solid State Chemistry, 2015, 232: 256-263. |
40 | MARTÍNEZ-MONTELONGO J H, MEDINA-RAMÍREZ I E, ROMO-LOZANO Y, et al. Development of a sustainable photocatalytic process for air purification[J]. Chemosphere, 2020, 257: 127236. |
41 | KIM J, JANG J. Inactivation of airborne viruses using vacuum ultraviolet photocatalysis for a flow-through indoor air purifier with short irradiation time[J]. Aerosol Science and Technology, 2018, 52(5): 557-566. |
42 | TALLÓSY S P, JANOVÁK L, MÉNESI J, et al. Investigation of the antibacterial effects of silver-modified TiO2 and ZnO plasmonic photocatalysts embedded in polymer thin films[J]. Environmental Science and Pollution Research International, 2014, 21(19): 11155-11167. |
43 | LI P, LI J Z, FENG X, et al. Metal-organic frameworks with photocatalytic bactericidal activity for integrated air cleaning[J]. Nature Communications, 2019, 10: 2177. |
44 | 刘明浩, 宋武林, 卢照, 等. 纳米二氧化钛固相载体研究进展[J]. 材料导报, 2021, 35(9): 9108-9114. |
LIU Minghao, SONG Wulin, LU Zhao, et al. Research progress of the nano titanium dioxide solid support[J]. Materials Reports, 2021, 35(9): 9108-9114. | |
45 | PAL A, PEHKONEN S O, YU L E, et al. Photocatalytic inactivation of Gram-positive and Gram-negative bacteria using fluorescent light[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 186(2/3): 335-341. |
46 | DEHGHAN S F, GOLBABAEI F, MOUSAVI T, et al. Production of nanofibers containing magnesium oxide nanoparticles for the purpose of bioaerosol removal[J]. Pollution, 2020, 6(1): 185-196. |
47 | GORVEL L, YVER M, ROBERT E, et al. Innovative germicidal UV and photocatalytic system dedicated to aircraft cabin eliminates volatile organic compounds and pathogenic micro-organisms[J]. Clean-Soil, Air, Water, 2014, 42(6): 703-712. |
48 | ZHAO Y, AARNINK A J A, XIN H W. Inactivation of airborne Enterococcus faecalis and infectious bursal disease virus using a pilot-scale ultraviolet photocatalytic oxidation scrubber[J]. Journal of the Air & Waste Management Association, 2014, 64(1): 38-46. |
49 | 陈崧哲, 张彭义, 祝万鹏, 等. 可见光响应光催化剂研究进展[J]. 化学进展, 2004, 16(4): 613-619. |
CHEN Songzhe, ZHANG Pengyi, ZHU Wanpeng, et al. Progress in visible light responding photocatalysts[J]. Progress in Chemistry, 2004, 16(4): 613-619. | |
50 | MOHAMED E F, AWAD G. Photodegradation of gaseous toluene and disinfection of airborne microorganisms from polluted air using immobilized TiO2 nanoparticle photocatalyst-based filter[J]. Environmental Science and Pollution Research International, 2020, 27(19): 24507-24517. |
51 | 孔亚东, 石磊, 柳蒙蒙, 等. 混合基质3D打印可见光催化系统对病毒气溶胶的去除 [J]. 中国环境科学, 2020, 40(11): 5055-5062. |
KONG Yadong, SHI Lei, LIU Mengmeng, et al. Visible light photocatalytic system made by polymer matrix composites 3D printing for virus aerosol removal[J]. China Environmental Science, 2020, 40(11): 5055-5062. | |
52 | LUNA V A, CANNONS A C, AMUSO P T, et al. The inactivation and removal of airborne Bacillus atrophaeus endospores from air circulation systems using UVC and HEPA filters[J]. Journal of Applied Microbiology, 2008, 104(2): 489-498. |
[1] | SHENG Weiwu, CHENG Yongpan, CHEN Qiang, LI Xiaoting, WEI Jia, LI Linge, CHEN Xianfeng. Operating condition analysis of the microbubble and microdroplet dual-enhanced desulfurization reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 142-147. |
[2] | HUANG Yiping, LI Ting, ZHENG Longyun, QI Ao, CHEN Zhenglin, SHI Tianhao, ZHANG Xinyu, GUO Kai, HU Meng, NI Zeyu, LIU Hui, XIA Miao, ZHU Kai, LIU Chunjiang. Hydrodynamics and mass transfer characteristics of a three-stage internal loop airlift reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 175-188. |
[3] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[4] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[5] | LUO Cheng, FAN Xiaoyong, ZHU Yonghong, TIAN Feng, CUI Louwei, DU Chongpeng, WANG Feili, LI Dong, ZHENG Hua’an. CFD simulation of liquid distribution in different distributors in medium-low temperature coal tar hydrogenation reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4538-4549. |
[6] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[7] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[8] | SHI Tianxi, SHI Yonghui, WU Xinying, ZHANG Yihao, QIN Zhe, ZHAO Chunxia, LU Da. Effects of Fe2+ on the performance of Anammox EGSB reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5003-5010. |
[9] | DENG Jian, WANG Kai, LUO Guangsheng. Development and consideration of adiabatic continuous microreaction technology for safe production of nitro compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3923-3925. |
[10] | LI Dong, WANG Qianqian, ZHANG Liang, LI Jun, FU Qian, ZHU Xun, LIAO Qiang. Performance of series stack of non-aqueous nano slurry thermally regenerative flow batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4238-4246. |
[11] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[12] | GUO Lixing, PANG Weiying, MA Keyao, YANG Jiahan, SUN Zehui, ZHANG Pan, FU Dong, ZHAO Kun. Hierarchically multilayered TiO2 with spatial pore-structure for efficient photocatalytic CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3643-3651. |
[13] | LU Shaojie, LIU Jia, JI Qianzhu, LI Ping, HAN Yueyang, TAO Min, LIANG Wenjun. Preparation of diatomaceous earth-based composite filler and its xylene removal performance by a biotrickling filter [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3884-3892. |
[14] | WANG Songsong, LIU Peiqiao, TAO Changyuan, WANG Yundong, CHEN Enzhi, MIAO Yingbin, ZHAO Fengxuan, LIU Zuohua. Application of industrial internet of things technology in stirred reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3331-3339. |
[15] | LIU Weixiao, LIU Yang, GAO Fulei, WANG Wei, WANG Yinglei. Application of microreactor in synthesis and quality improvement of energetic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3349-3364. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |