1 |
黄黎明. 高含硫气藏安全清洁高效开发技术新进展[J]. 天然气工业, 2015, 35(4): 1-6.
|
|
HUANG Liming. New progresses in safe, clean and efficient development technologies for high-sulfur gas reservoirs[J]. Natural Gas Industry, 2015, 35(4): 1-6.
|
2 |
张婧, 张铁, 孙峰, 等. 硫化氢直接分解制取氢气和硫黄研究进展[J]. 化工进展, 2017, 36(4): 1448-1459.
|
|
ZHANG Jing, ZHANG Tie, SUN Feng, et al. Research progress on hydrogen and sulfur production from direct decomposition of hydrogen sulfide[J]. Chemical Industry and Engineering Progress, 2017, 36(4): 1448-1459.
|
3 |
FELLMUTH P, LUTZ W, BÜLOW M. Influence of weakly coordinated cations and basic sites upon the reaction of H2S and CO2 on zeolites[J]. Zeolites, 1987, 7(4): 367-371.
|
4 |
LUTZ W, SEIDEL A, BODDENBERG B. On the formation of COS from H2S and CO2 in the presence of zeolite/salt compounds[J]. Adsorption Science & Technology, 1998, 16(7): 577-581.
|
5 |
BOWMAN M G. Thermochemical cycle for splitting hydrogen sulfide: US4999178[P]. 1991-03-12.
|
6 |
TOWLER G P, LYNN S. Development of a zero-emissions sulfur-recovery process. 1. Thermochemistry and reaction kinetics of mixtures of hydrogen sulfide and carbon dioxide at high temperature[J]. Industrial & Engineering Chemistry Research, 1993, 32(11): 2800-2811.
|
7 |
TOWLER G P, LYNN S. Development of a zero-emissions sulfur-recovery process. 2. Sulfur-recovery process based on the reactions of hydrogen sulfide and carbon dioxide at high temperature[J]. Industrial & Engineering Chemistry Research, 1993, 32(11): 2812-2819.
|
8 |
TOWLER G P, LYNN S. Sulfur recovery with reduced emissions, low capital investment and hydrogen co-production[J]. Chemical Engineering Communications, 1996, 155(1): 113-143.
|
9 |
BASSANI A, MANENTI F, RANZI E, et al. Novel coal gasification process: Improvement of syngas yield and cut of emissions[J]. Chemical Engineering Transactions, 2015, 43: 1483-1488.
|
10 |
MANENTI. CO2 as feedstock: a new pathway to syngas[M]. Computer Aided Chemical Engineering, 2015, 37: 1049-1054.
|
11 |
BASSANI A, PIROLA C, MAGGIO E, et al. Acid Gas to Syngas (AG2S™) technology applied to solid fuel gasification: Cutting H2S and CO2 emissions by improving syngas production[J]. Applied Energy, 2016, 184: 1284-1291.
|
12 |
EL-MELIH A M, IBRAHIM S, GUPTA A K, et al. Experimental examination of syngas recovery from acid gases[J]. Applied Energy, 2016, 164: 64-68.
|
13 |
SELIM H, IBRAHIM S, SHOAIBI A AL, et al. Investigation of sulfur chemistry with acid gas addition in hydrogen/air flames[J]. Applied Energy, 2014, 113: 1134-1140.
|
14 |
IBRAHIM S, RAJ A. Kinetic simulation of acid gas (H2S and CO2) destruction for simultaneous syngas and sulfur recovery[J]. Industrial & Engineering Chemistry Research, 2016, 55(24): 6743-6752.
|
15 |
闫天兰, 闫玥儿, 张亚红, 等. 二硫化钼加氢脱硫催化剂研究进展[J]. 复旦学报(自然科学版), 2022, 61(6): 683-698.
|
|
YAN Tianlan, YAN Yue’er, ZHANG Yahong, et al. Research progress of MoS2 hydrodesulfurization catalysts[J]. Journal of Fudan University (Natural Science), 2022, 61(6): 683-698.
|
16 |
SORIANO D, KEENER T C, KHANG Soon-Jai. Catalytic production of elemental sulfur from the thermal decomposition of H2S in the presence of CO2 [J]. Chemical Engineering Communications, 1996, 143(1): 73-89.
|
17 |
MALOKA I, ALIWI S, NAMAN S. Thermal reduction of CO2 in the presence of H2S[J]. Petroleum Science and Technology, 2006, 24(1): 117-127.
|
18 |
SU Hui, LI Yuyang, LI Ping, et al. Simultaneous recovery of carbon and sulfur resources from reduction of CO2 with H2S using catalysts[J]. Journal of Energy Chemistry, 2016, 25(1): 110-116.
|
19 |
MA Jun, SUN Nannan, ZHANG Xuelan, et al. A short review of catalysis for CO2 conversion[J]. Catalysis Today, 2009, 148(3/4): 221-231.
|
20 |
SHI Chunkai, ZHANG Peng. Role of MgO over γ-Al2O3-supported Pd catalysts for carbon dioxide reforming of methane[J]. Applied Catalysis B: Environmental, 2015, 170/171: 43-52.
|
21 |
OMAE I. Aspects of carbon dioxide utilization[J]. Catalysis Today, 2006, 115(1/2/3/4): 33-52.
|
22 |
TAIRA K. Dry reforming reactions of CH4 over CeO2/MgO catalysts at high concentrations of H2S, and behavior of CO2 at the CeO2-MgO interface[J]. Journal of Catalysis, 2022, 407: 29-43.
|
23 |
LIU Xiaozhan, ZHAO Lu, LI Ying, et al. Ni-Mo sulfide semiconductor catalyst with high catalytic activity for one-step conversion of CO2 and H2S to syngas in non-thermal plasma[J]. Catalysts, 2019, 9(6): 525.
|
24 |
KARAN K, MEHROTRA A K, BEHIE L A. A high-temperature experimental and modeling study of homogeneous gas-phase COS reactions applied to Claus plants[J]. Chemical Engineering Science, 1999, 54(15/16): 2999-3006.
|
25 |
ALDERMAN N P, PENEAU V, VIASUS C J, et al. Syn-gas from waste: The reduction of CO2 with H2S[J]. Reaction Chemistry & Engineering, 2019, 4(4): 763-771.
|
26 |
ZHANG Fenglian, WEI Zheng, JIANG Guoxia, et al. Synergistic conversion of acid gases (H2S and CO2) to valuable chemicals: Carbonyl sulfide synthesis over vacancy-defective CoMo sulfide catalysts[J]. Applied Catalysis B: Environmental, 2022, 319: 121912.
|
27 |
FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.
|
28 |
BORGARELLO E, KALYANASUNDARAM K, GRÄTZEL M, et al. Visible light induced generation of hydrogen from H2S in CdS-dispersions, hole transfer catalysis by RuO2 [J]. Helvetica Chimica Acta, 1982, 65(1): 243-248.
|
29 |
DAN Meng, YU Shan, LI Yi, et al. Hydrogen sulfide conversion: How to capture hydrogen and sulfur by photocatalysis[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2020, 42: 100339.
|
30 |
DAN Meng, ZHANG Qian, YU Shan, et al. Noble-metal-free MnS/In2S3 composite as highly efficient visible light driven photocatalyst for H2 production from H2S[J]. Applied Catalysis B: Environmental, 2017, 217: 530-539.
|
31 |
DAN Meng, WEI Shiqian, DORONKIN D E, et al. Novel MnS/(In x Cu1- x )2S3 composite for robust solar hydrogen sulphide splitting via the synergy of solid solution and heterojunction[J]. Applied Catalysis B: Environmental, 2019, 243: 790-800.
|
32 |
YU Shan, FAN Xiangbing, WANG Xian, et al. Efficient photocatalytic hydrogen evolution with ligand engineered all-inorganic InP and InP/ZnS colloidal quantum dots[J]. Nature Communications, 2018, 9(1): 4009.
|
33 |
YU Shan, WU Fan, ZOU Pengkun, et al. Highly value-added utilization of H2S in Na2SO3 solution over Ca-CdS nanocrystal photocatalysts[J]. Chemical Communications, 2020, 56(91): 14227-14230.
|
34 |
DAN Meng, XIANG Jianglai, YANG Jian, et al. Beyond hydrogen production: Solar-driven H2S-donating value-added chemical production over Mn x Cd1- x S/Cd y Mn1- y S catalyst[J]. Applied Catalysis B: Environmental, 2021, 284: 119706.
|
35 |
淡猛, 蔡晴, 向将来, 等. 用于光催化分解硫化氢制氢的金属硫化物[J]. 化学进展, 2020, 32(7): 917-926.
|
|
DAN Meng, CAI Qing, XIANG Jianglai, et al. Metal sulfide semiconductors for photocatalytic hydrogen production from waste hydrogen sulfide[J]. Progress in Chemistry, 2020, 32(7): 917-926.
|
36 |
LI Xin, YU Jiaguo, JARONIEC M, et al. Cocatalysts for selective photoreduction of CO2 into solar fuels[J]. Chemical Reviews, 2019, 119(6): 3962-4179.
|
37 |
WANG Yi’ou, CHEN Enqi, TANG Junwang. Insight on reaction pathways of photocatalytic CO2 conversion[J]. ACS Catalysis, 2022, 12(12): 7300-7316.
|
38 |
LIN Huiwen, LUO Shunqin, ZHANG Huabin, et al. Toward solar-driven carbon recycling[J]. Joule, 2022, 6(2): 294-314.
|
39 |
NAVARRO-JAÉN S, VIRGINIE M, BONIN J, et al. Highlights and challenges in the selective reduction of carbon dioxide to methanol[J]. Nature Reviews Chemistry, 2021, 5(8): 564-579.
|
40 |
TRAN Duyen P H, PHAM Minh-Thuan, Xuan-Thanh BUI, et al. CeO2 as a photocatalytic material for CO2 conversion: A review[J]. Solar Energy, 2022, 240: 443-466.
|
41 |
郭立行, 庞蔚莹, 马克遥, 等. 层序空间多孔结构TiO2实现高效光催化CO2还原[J]. 化工进展, 2023, 42(7): 3643-3651.
|
|
GUO Lixing, PANG Weiying, MA Keyao, et al. Hierarchically multilayered TiO2 with spatial pore-structure for efficient photocatalytic CO2 reduction[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3643-3651.
|
42 |
CAO Yuehan, GUO Lan, DAN Meng, et al. Modulating electron density of vacancy site by single Au atom for effective CO2 photoreduction[J]. Nature Communications, 2021, 12(1): 1-10.
|
43 |
BERTON M, MELLO R, GONZÁLEZ-NÚÑEZ M E. Iodide-photocatalyzed reduction of carbon dioxide to formic acid with thiols and hydrogen sulfide[J]. ChemSusChem, 2016, 9(24): 3397-3400.
|
44 |
ZHOU Ruixin, GUZMAN M I. CO2 reduction under periodic illumination of ZnS[J]. The Journal of Physical Chemistry C, 2014, 118(22): 11649-11656.
|
45 |
GONELL F, PUGA A V, JULIÁN-LÓPEZ B, et al. Copper-doped titania photocatalysts for simultaneous reduction of CO2 and production of H2 from aqueous sulfide[J]. Applied Catalysis B: Environmental, 2016, 180: 263-270.
|
46 |
LI Kai, CAI Yanming, YANG Xiaohan, et al. H2S involved photocatalytic system: A novel syngas production strategy by boosting the photoreduction of CO2 while recovering hydrogen from the environmental toxicant[J]. Advanced Functional Materials, 2022, 32(20): 2113002.
|
47 |
段超, 唐春, 吴梦南, 等. 电催化分解硫化氢制氢脱硫研究进展[J]. 天然气化工(C1化学与化工), 2021, 46(S1): 24-30.
|
|
DUAN Chao, TANG Chun, WU Mengnan, et al. Progress in electrocatalytic decomposition of hydrogen sulfide to hydrogen and sulfur[J]. Natural Gas Chemical Industry, 2021, 46(S1): 24-30.
|
48 |
DUAN Chao, TANG Chun, YU Shan, et al. Efficient electrocatalytic desulfuration and synchronous hydrogen evolution from H2S via anti-sulfuretted NiSe nanowire array catalyst[J]. Applied Catalysis B: Environmental, 2023, 324: 122255.
|
49 |
ZHANG Mo, GUAN Jing, TU Yunchuan, et al. Highly efficient H2 production from H2S via a robust graphene-encapsulated metal catalyst[J]. Energy & Environmental Science, 2020, 13(1): 119-126.
|
50 |
WANG Genxiang, CHEN Junxiang, DING Yichun, et al. Electrocatalysis for CO2 conversion: From fundamentals to value-added products[J]. Chemical Society Reviews, 2021, 50(8): 4993-5061.
|
51 |
彭仁杰, 周继承, 罗羽裳, 等. 硫化氢分解制取氢和单质硫研究进展[J]. 天然气化工(C1化学与化工), 2015, 40(1): 89-94.
|
|
PENG Renjie, ZHOU Jicheng, LUO Yushang, et al. Research progress in hydrogen and sulfur production from hydrogen sulfide[J]. Natural Gas Chemical Industry, 2015, 40(1): 89-94.
|
52 |
华亚妮, 冯少广, 党欣悦, 等. CO2电催化还原产合成气研究进展[J]. 化工进展, 2022, 41(3): 1224-1240.
|
|
HUA Yani, FENG Shaoguang, DANG Xinyue, et al. Research progress of CO2 electrocatalytic reduction to syngas[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1224-1240.
|
53 |
MA Weiguang, WANG Hong, YU Wei, et al. Achieving simultaneous CO2 and H2S conversion via a coupled solar-driven electrochemical approach on non-precious-metal catalysts[J]. Angewandte Chemie International Edition, 2018, 57(13): 3473-3477.
|
54 |
ZHANG Bo, BAI Jing, ZHANG Yan, et al. High yield of CO and synchronous S recovery from the conversion of CO2 and H2S in natural gas based on a novel electrochemical reactor[J]. Environmental Science & Technology, 2021, 55(21): 14854-14862.
|
55 |
FU Xianzhong, LI Jie, PAN Xinrong, et al. A single microbial electrochemical system for CO2 reduction and simultaneous biogas purification, upgrading and sulfur recovery[J]. Bioresource Technology, 2020, 297: 122448.
|
56 |
王乾浩, 赵璐, 孙付琳, 等. ZSM-5催化剂与低温等离子体协同转化H2S-CO2制合成气[J]. 化工学报, 2022, 73(1): 255-265.
|
|
WANG Qianhao, ZHAO Lu, SUN Fulin, et al. Production of syngas derived from H2S-CO2 via synergy of ZSM-5 catalyst and non-thermal plasma[J]. CIESC Journal, 2022, 73(1): 255-265.
|
57 |
ZHAO Lu, LIU Xiaozhan, MU Xiaoliang, et al. Highly selective conversion of H2S-CO2 to syngas by combination of non-thermal plasma and MoS2/Al2O3 [J]. Journal of CO2 Utilization, 2020, 37: 45-54.
|
58 |
GUTSOL K, NUNNALLY T, RABINOVICH A, et al. Plasma assisted dissociation of hydrogen sulfide[J]. International Journal of Hydrogen Energy, 2012, 37(2): 1335-1347.
|
59 |
ZHAO Guibing, JOHN Sanil, ZHANG Jijun, et al. Production of hydrogen and sulfur from hydrogen sulfide in a nonthermal-plasma pulsed corona discharge reactor[J]. Chemical Engineering Science, 2007, 62(8): 2216-2227.
|