Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (11): 5756-5763.DOI: 10.16085/j.issn.1000-6613.2023-0020
• Industrial catalysis • Previous Articles Next Articles
XIE Youwei1(), CHEN Jing1, YU Feng1, SHI Xiufeng2, FAN Binbin1(), LI Ruifeng1
Received:
2023-01-06
Revised:
2023-02-11
Online:
2023-12-15
Published:
2023-11-20
Contact:
FAN Binbin
谢有为1(), 陈静1, 于峰1, 史秀锋2, 范彬彬1(), 李瑞丰1
通讯作者:
范彬彬
作者简介:
谢有为(1997—),男,硕士研究生,研究方向为MOFs合成及催化性能。E-mail:1039258083@qq.com。
基金资助:
CLC Number:
XIE Youwei, CHEN Jing, YU Feng, SHI Xiufeng, FAN Binbin, LI Ruifeng. Effect of regulators on the catalytic performance of UiO-66 in furfural transfer hydrogenation to furfuryl alcohol[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5756-5763.
谢有为, 陈静, 于峰, 史秀锋, 范彬彬, 李瑞丰. 调节剂对UiO-66在糠醛转移加氢制糠醇反应中催化性能的影响[J]. 化工进展, 2023, 42(11): 5756-5763.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0020
样品 | BET比表面积/m2·g-1 | 微孔面积/m2·g-1 | 外表面积/m2·g-1 | 总孔体积/cm2·g-1 | 微孔体积/cm2·g-1 | 介孔体积/cm2·g-1 |
---|---|---|---|---|---|---|
UiO-66-FD | 942 | 882 | 60 | 0.39 | 0.34 | 0.05 |
UiO-66-AA | 862 | 794 | 68 | 0.39 | 0.30 | 0.09 |
UiO-66-FA | 938 | 876 | 62 | 0.42 | 0.34 | 0.09 |
UiO-66-TA | 1034 | 957 | 77 | 0.42 | 0.36 | 0.07 |
样品 | BET比表面积/m2·g-1 | 微孔面积/m2·g-1 | 外表面积/m2·g-1 | 总孔体积/cm2·g-1 | 微孔体积/cm2·g-1 | 介孔体积/cm2·g-1 |
---|---|---|---|---|---|---|
UiO-66-FD | 942 | 882 | 60 | 0.39 | 0.34 | 0.05 |
UiO-66-AA | 862 | 794 | 68 | 0.39 | 0.30 | 0.09 |
UiO-66-FA | 938 | 876 | 62 | 0.42 | 0.34 | 0.09 |
UiO-66-TA | 1034 | 957 | 77 | 0.42 | 0.36 | 0.07 |
样品 | 脱附峰温度/℃ | NH3-TPD峰面积 | 总酸量 |
---|---|---|---|
UiO-66-FD | 124 | 4.3(45.7) | 9.4 |
177 | 5.1(54.3) | ||
UiO-66-AA | 123 | 6.1(35.5) | 17.2 |
195 | 11.1(64.5) | ||
UiO-66-FA | 129 | 7.7(37.9) | 20.3 |
198 | 12.6(62.1) | ||
UiO-66-TA | 123 | 2.8(26.2) | 10.7 |
190 | 7.9(73.8) |
样品 | 脱附峰温度/℃ | NH3-TPD峰面积 | 总酸量 |
---|---|---|---|
UiO-66-FD | 124 | 4.3(45.7) | 9.4 |
177 | 5.1(54.3) | ||
UiO-66-AA | 123 | 6.1(35.5) | 17.2 |
195 | 11.1(64.5) | ||
UiO-66-FA | 129 | 7.7(37.9) | 20.3 |
198 | 12.6(62.1) | ||
UiO-66-TA | 123 | 2.8(26.2) | 10.7 |
190 | 7.9(73.8) |
催化剂 | 溶剂 | 氢供体与糠醛摩尔比 | 反应温度/K | 氢气压力/MPa | 反应时间/h | 糠醛转化率/% | 糠醛转化率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
质量分数5% Pd/Al2O3 | 异丙醇 | 25.1 | 453 | — | 5 | 78 | 63 | [ |
质量分数0.3% Pt-4 | 异丙醇 | 26 | 393 | — | 7.5 | 98.8 | 79.5 | [ |
AuRu/La-ZrO2 | 异丙醇 | 43.5 | 423 | — | 5 | 83 | 84 | [ |
Cu/AC-SO3H | 异丙醇 | 65.3 | 378 | 0.4 | 2 | 99.9 | 99.9 | [ |
Ni/AC-SO3H | 异丙醇 | 81.6 | 333 | 4 | 8 | 99.9 | 99.9 | [ |
Fe3O4-12 | 异丙醇 | 389.9 | 433 | — | 5 | 97.5 | 92.5 | [ |
UiO-66-FA | 异丙醇 | 43.5 | 433 | — | 1 | 99.4 | 98.9 | 本工作 |
催化剂 | 溶剂 | 氢供体与糠醛摩尔比 | 反应温度/K | 氢气压力/MPa | 反应时间/h | 糠醛转化率/% | 糠醛转化率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
质量分数5% Pd/Al2O3 | 异丙醇 | 25.1 | 453 | — | 5 | 78 | 63 | [ |
质量分数0.3% Pt-4 | 异丙醇 | 26 | 393 | — | 7.5 | 98.8 | 79.5 | [ |
AuRu/La-ZrO2 | 异丙醇 | 43.5 | 423 | — | 5 | 83 | 84 | [ |
Cu/AC-SO3H | 异丙醇 | 65.3 | 378 | 0.4 | 2 | 99.9 | 99.9 | [ |
Ni/AC-SO3H | 异丙醇 | 81.6 | 333 | 4 | 8 | 99.9 | 99.9 | [ |
Fe3O4-12 | 异丙醇 | 389.9 | 433 | — | 5 | 97.5 | 92.5 | [ |
UiO-66-FA | 异丙醇 | 43.5 | 433 | — | 1 | 99.4 | 98.9 | 本工作 |
1 | CHO E J, TRINH L T P, SONG Y H, et al. Bioconversion of biomass waste into high value chemicals[J]. Bioresource Technology, 2020, 298: 122386. |
2 | 王久臣, 戴林, 田宜水, 等. 中国生物质能产业发展现状及趋势分析[J]. 农业工程学报, 2007, 23(9): 276-282. |
WANG Jiuchen, DAI Lin, TIAN Yishui, et al. Analysis of the development status and trends of biomass energy industry in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(9): 276-282. | |
3 | 杜海凤, 闫超. 生物质转化利用技术的研究进展[J]. 能源化工, 2016, 37(2): 41-46. |
DU Haifeng, YAN Chao. Study progress on technologies of biomass conversion and utilization[J]. Energy Chemical Industry, 2016, 37(2): 41-46. | |
4 | MORAVVEJ Z, TABRIZI F F, RAHIMPOUR M R, et al. Exploiting the potential of cobalt molybdenum catalyst in elevated hydrodeoxygenation of furfural to 2-methyl furan[J]. Fuel, 2023, 332: 126193. |
5 | 海雪清, 谭静静, 何静, 等. CuCo双金属催化剂催化糠醛加氢制备1,5-戊二醇的研究[J]. 燃料化学学报, 2023, 51(7): 959-969. |
Xueqing HAI, TAN Jingjing, HE Jing, et al. Hydrogenation of furfural to 1,5-pentanediol over CuCo bimetallic catalysts[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 959-969. | |
6 | 李玉成, 朱礼玉, 赵静养, 等. 新型NaNi/C催化剂合成及对糠醛选择性加氢的研究[J]. 北京林业大学学报, 2023, 45(1): 140-147. |
LI Yucheng, ZHU Liyu, ZHAO Jingyang, et al. Synthesis of novel NaNi/C catalyst and selective hydrogenation study of furfural[J]. Journal of Beijing Forestry University, 2023, 45(1): 140-147. | |
7 | 萧垚鑫, 张军, 胡升, 等. 甲醇供氢体系铜锌双金属催化糠醛加氢转化[J]. 化工进展, 2023, 42(3): 1341-1352. |
XIAO Yaoxin, ZHANG Jun, HU Sheng, et al. Cu-Zn catalyzed hydrogenation of furfural with methanol as hydrogen donor[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1341-1352. | |
8 | WANG Zhuangqing, WANG Xinchao, ZHANG Chao, et al. Selective hydrogenation of furfural to furfuryl alcohol over Pd/TiH2 catalyst[J]. Molecular Catalysis, 2021, 508: 111599. |
9 | CHEN Junjie, SUN Weixiao, WANG Yongxing, et al. Performant Au hydrogenation catalyst cooperated with Cu-doped Al2O3 for selective conversion of furfural to furfuryl alcohol at ambient pressure[J]. Green Energy & Environment, 2021, 6(4): 546-556. |
10 | 刘思乐, 卜义夫, 吴静, 等. 非均相Pd/mpg-C3N4催化糠醛选择性加氢制糠醇[J]. 化学工程, 2022, 50(12): 22-26. |
LIU Sile, BU Yifu, WU Jing, et al. Selective hydrogenation of furfural to furfuryl alcohol catalyzed by heterogeneous Pd/mpg-C3N4 [J]. Chemical Engineering (China), 2022, 50(12): 22-26. | |
11 | HE J, LI H, RIISAGER A, et al. Catalytic transfer hydrogenation of furfural to furfuryl alcohol with recyclable Al-Zr@Fe mixed oxides[J]. ChemCatChem, 2018, 10(2): 430-438. |
12 | HE J, SCHILL L, YANG S, et al. Catalytic transfer hydrogenation of bio-based furfural with NiO nanoparticles[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 17220-17229. |
13 | Chinh NGUYEN-HUY, KIM Ji Sun, YOON Sinmyung, et al. Supported Pd nanoparticle catalysts with high activities and selectivities in liquid-phase furfural hydrogenation[J]. Fuel, 2018, 226: 607-617. |
14 | ALIBEGOVIC K, MORGAN D G, LOSOVYJ Y, et al. Efficient furfuryl alcohol synthesis from furfural over magnetically recoverable catalysts: Does the catalyst stabilizing medium matter?[J]. ChemistrySelect, 2017, 2(20): 5485-5491. |
15 | MORANDI S, MANZOLI M, CHAN-THAW C E, et al. Unraveling the effect of ZrO2 modifiers on the nature of active sites on AuRu/ZrO2 catalysts for furfural hydrogenation[J]. Sustainable Energy & Fuels, 2020, 4(3): 1469-1480. |
16 | GONG Wanbing, CHEN Chun, ZHANG Yong, et al. Efficient synthesis of furfuryl alcohol from H2-hydrogenation/transfer hydrogenation of furfural using sulfonate group modified Cu catalyst[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(3): 2172-2180. |
17 | GONG Wanbing, CHEN Chun, WANG Haojie, et al. Sulfonate group modified Ni catalyst for highly efficient liquid-phase selective hydrogenation of bio-derived furfural[J]. Chinese Chemical Letters, 2018, 29(11): 1617-1620. |
18 | MA Mingwei, HOU Pan, ZHANG Peng, et al. Magnetic Fe3O4 nanoparticles as easily separable catalysts for efficient catalytic transfer hydrogenation of biomass-derived furfural to furfuryl alcohol[J]. Applied Catalysis A: General, 2020, 602: 117709. |
19 | CHEN S, WOJCIESZAK R, DUMEIGNIL F, et al. How catalysts and experimental conditions determine the selective hydroconversion of furfural and 5-hydroxymethylfurfural[J]. Chemical Reviews, 2018, 118(22): 11023-11117. |
20 | GAO Xing, TIAN Suyang, JIN Yunyun, et al. Bimetallic PtFe-catalyzed selective hydrogenation of furfural to furfuryl alcohol: Solvent effect of isopropanol and hydrogen activation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(33): 12722-12730. |
21 | WENG M W, ZHANG Z H, OKEJIRI F, et al. Encapsulation of CuO nanoparticles within silicalite-1 as a regenerative catalyst for transfer hydrogenation of furfural[J]. iScience, 2021, 24(8): 102884. |
22 | JIANG Shanshan, HUANG Jin, WANG Yue, et al. Metal-organic frameworks derived magnetic Fe3O4/C for catalytic transfer hydrogenation of furfural to furfuryl alcohol[J]. Journal of Chemical Technology & Biotechnology, 2021, 96(3): 639-649. |
23 | AN Zhidong, LI Jiang. Recent advances in the catalytic transfer hydrogenation of furfural to furfuryl alcohol over heterogeneous catalysts[J]. Green Chemistry, 2022, 24(5): 1780-1808. |
24 | YANG Dong, GATES Bruce C. Catalysis by metal organic frameworks: Perspective and suggestions for future research[J]. ACS Catalysis, 2019, 9(3): 1779-1798. |
25 | NGUYEN H G T, MAO L, PETERS A W, et al. Comparative study of titanium-functionalized UiO-66: Support effect on the oxidation of cyclohexene using hydrogen peroxide[J]. Catalysis Science & Technology, 2015, 5(9): 4444-4451. |
26 | QIU Mo, GUO Tianmeng, XI Ran, et al. Highly efficient catalytic transfer hydrogenation of biomass-derived furfural to furfuryl alcohol using UiO-66 without metal catalysts[J]. Applied Catalysis A: General, 2020, 602: 117719. |
27 | 李佩, 秦品典, 汪艳艳, 等. 缺陷改性UiO-66糠醛催化转移加氢研究[J]. 能源化工, 2022, 43(4): 1-5. |
LI Pei, QIN Pindian, WANG Yanyan, et al. Study on catalytic transfer hydrogenation of furfural by defects modified UiO-66[J]. Energy Chemical Industry, 2022, 43(4): 1-5. | |
28 | LIANG W B, COGHLAN C J, RAGON F, et al. Defect engineering of UiO-66 for CO2 and H2O uptake—A combined experimental and simulation study[J]. Dalton Transactions, 2016, 45(11): 4496-4500. |
29 | 杜峰, 李鹂. UiO-66(Zr)系列MOFs催化材料的制备及在乳酸乙酯合成中的应用[J]. 化工进展, 2015, 34(11): 3938-3943. |
DU Feng, LI Li. Preparation of UiO-66(Zr)MOFs and their application as catalysts for the synthesis of ethyl lactate[J]. Chemical Industry and Engineering Progress, 2015, 34(11): 3938-3943. | |
30 | SHEARER G C, CHAVAN S, ETHIRAJ J, et al. Tuned to perfection: Ironing out the defects in metal-organic framework UiO-66[J]. Chemistry of Materials, 2014, 26(14): 4068-4071. |
31 | SHEARER G C, CHAVAN S, BORDIGA S, et al. Defect engineering: Tuning the porosity and composition of the metal-organic framework UiO-66 via modulated synthesis[J]. Chemistry of Materials, 2016, 28(11): 3749-3761. |
32 | KLET R C, LIU Y Y, WANG T C, et al. Evaluation of Brønsted acidity and proton topology in Zr- and Hf-based metal-organic frameworks using potentiometric acid-base titration[J]. Journal of Materials Chemistry A, 2016, 4(4): 1479-1485. |
33 | LING S L, SLATER B. Dynamic acidity in defective UiO-66[J]. Chemical Science, 2016, 7(7): 4706-4712. |
34 | VANDICHEL M, HAJEK J, VERMOORTELE F, et al. Active site engineering in UiO-66 type metal-organic frameworks by intentional creation of defects: A theoretical rationalization[J]. CrystEngComm, 2015, 17(2): 395-406. |
35 | VERMOORTELE F, BUEKEN B, LE BARS G, et al. Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks: The unique case of UiO-66(Zr)[J]. Journal of the American Chemical Society, 2013, 135(31): 11465-11468. |
36 | XUAN Keng, PU Yanfeng, LI Feng, et al. Direct synthesis of dimethyl carbonate from CO2 and methanol over trifluoroacetic acid modulated UiO-66[J]. Journal of CO2 Utilization, 2018, 27: 272-282. |
37 | GONELL F, BORONAT M, CORMA A. Structure-reactivity relationship in isolated Zr sites present in Zr-zeolite and ZrO2 for the Meerwein-Ponndorf-Verley reaction[J]. Catalysis Science & Technology, 2017, 7(13): 2865-2873. |
38 | WU Jingcheng, LIANG Dong, SONG Xiangbo, et al. Sulfonic groups functionalized Zr-metal organic framework for highly catalytic transfer hydrogenation of furfural to furfuryl alcohol[J]. Journal of Energy Chemistry, 2022, 71: 411-417. |
[1] | LI Mengyuan, GUO Fan, LI Qunsheng. Simulation and optimization of the third and fourth distillation columns in the recovery section of polyvinyl alcohol production [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 113-123. |
[2] | SHENG Weiwu, CHENG Yongpan, CHEN Qiang, LI Xiaoting, WEI Jia, LI Linge, CHEN Xianfeng. Operating condition analysis of the microbubble and microdroplet dual-enhanced desulfurization reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 142-147. |
[3] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[4] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[5] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[6] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[7] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[8] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[9] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[10] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[11] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[12] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[13] | WU Ya, ZHAO Dan, FANG Rongmiao, LI Jingyao, CHANG Nana, DU Chunbao, WANG Wenzhen, SHI Jun. Research progress on highly efficient demulsifiers for complex crude oil emulsions and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4398-4413. |
[14] | ZHENG Mengqi, WANG Chengye, WANG Yan, WANG Wei, YUAN Shoujun, HU Zhenhu, HE Chunhua, WANG Jie, MEI Hong. Application and prospect of algal-bacterial symbiosis technology in zero liquid discharge of industrial wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4424-4431. |
[15] | GUO Lixing, PANG Weiying, MA Keyao, YANG Jiahan, SUN Zehui, ZHANG Pan, FU Dong, ZHAO Kun. Hierarchically multilayered TiO2 with spatial pore-structure for efficient photocatalytic CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3643-3651. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |