Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (9): 4754-4766.DOI: 10.16085/j.issn.1000-6613.2021-2344
• Industrial catalysis • Previous Articles Next Articles
HU Wende(), WANG Yangdong, WANG Chuanming()
Received:
2021-11-15
Revised:
2022-02-15
Online:
2022-09-27
Published:
2022-09-25
Contact:
WANG Chuanming
通讯作者:
王传明
作者简介:
胡文德(1991—),男,博士,研究方向为计算催化。E-mail:huwd.sshy@sinopec.com。
基金资助:
CLC Number:
HU Wende, WANG Yangdong, WANG Chuanming. Research progress on the direct catalytic conversion of syngas to light olefins[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4754-4766.
胡文德, 王仰东, 王传明. 合成气直接催化转化制低碳烯烃研究进展[J]. 化工进展, 2022, 41(9): 4754-4766.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2344
CO活化组分 | C—C耦合组分 | 温度/℃ | 压力/MPa | 空速 /mL·g-1· h-1 | H2/CO比 | CO 转化率/% | CO2选择性/% | 烃类产物选择性/% | 参考文献 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CH4 | C2=~C4= | C2~C4 | C5+ | |||||||||
ZnCrO x | SAPO-34 | 400 | 2.5 | 4800 | 2.5 | 17 | 41 | 2 | 80 | 14 | 4 | [ |
ZnO-ZrO2 | SAPO-34 | 400 | 1.0 | 3600 | 2 | 7 | 43 | 4 | 69 | 25 | 2 | [ |
Zr-In2O3 | SAPO-34 | 400 | 2.5 | 3600 | 1 | 28 | 40 | 4 | 74 | 20 | 2 | [ |
Cr-ZnO x | SAPO-34 | 400 | 2.0 | 1125 | 1 | 30 | 52 | 16 | 38 | 45 | — | [ |
ZnAlO x | SAPO-34 | 390 | 4.0 | 12000 | 1 | 7 | 33 | 5 | 78 | 13 | 4 | [ |
Zr-Zn/Al2O3 | SAPO-34 | 400 | 1.0 | 3600 | 2 | 8 | 46 | 13 | 70 | 17 | — | [ |
Zn/Al2O3 | SAPO-34 | 370 | 1.0 | 3600 | 2 | 5 | 45 | 10 | 77 | 13 | 0 | [ |
MnGaO x | SAPO-34 | 400 | 2.5 | 4875 | 2 | 14 | 45 | 2 | 88 | 8 | 2 | [ |
Zn x Ce2–y Zr y O4 | SAPO-34 | 300 | 1.0 | 5400 | 2 | 6 | 6 | 5 | 83 | 4 | 9 | [ |
ZnGa2O4 | SAPO-34 | 400 | 3.0 | 3600 | 2 | 30 | 41 | 5 | 77 | 17 | 2 | [ |
ZnAl2O4 | SAPO-34 | 400 | 3.0 | 3600 | 2 | 24 | 44 | 4 | 80 | 14 | 2 | [ |
Zn-CrO x | SAPO-34 | 400 | 2.0 | 6480 | 2 | 11 | 36 | 8 | 64 | 25 | 3 | [ |
MnO x | SAPO-34 | 400 | 2.5 | 4800 | 2.5 | 7 | 43 | 1 | 79 | 15 | 5 | [ |
ZnO | SAPO-34 | 400 | 4.0 | 1600 | 2.5 | 32 | 42 | 3 | 77 | 15 | 5 | [ |
Zn-ZrO2 | SSZ-13 | 400 | 3.0 | 3000 | 2 | 29 | 42 | 2 | 77 | 18 | 3 | [ |
ZnCrO x | SSZ-13 | 380 | 1.0 | 6000 | 2 | 20 | 49 | 6 | 72 | 15 | 7.5 | [ |
ZnCrO x | MOR | 360 | 2.0 | 1600 | 1 | 26 | 48 | 1 | 91 | 4 | 5 | [ |
ZnAl2O4 | MOR | 370 | 3.0 | 1500 | 1 | 10 | 44 | 5 | 77 | 12 | 6 | [ |
ZnCrO x | AlPO-18 | 390 | 10.0 | 3600 | 1 | 49 | 49 | 2 | 83 | 4 | 11 | [ |
ZnAlO x | SAPO-17 | 400 | 3.0 | 3000 | 2 | 23 | 42 | 13 | 66 | 14 | 7 | [ |
ZnAlO x | SAPO-18 | 400 | 3.0 | 3000 | 2 | 21 | 44 | 3 | 71 | 16 | 10 | [ |
ZnAlO x | SAPO-34 | 400 | 3.0 | 3000 | 2 | 24 | 44 | 4 | 81 | 14 | 1 | [ |
ZnCrO x | SAPO-18/34 | 390 | 4.0 | 6000 | 1 | 27 | 45-48 | 1 | 88 | 2 | 8 | [ |
K-MoS2 | SAPO-34 | 400 | 4.0 | 4000 | 1 | 20 | 50 | 15 | 59 | 22 | 4 | [ |
K-CoMoS | SAPO-34 | 400 | 4.0 | 4000 | 1 | 9 | 45 | 6 | 65 | 26 | 3 | [ |
CO活化组分 | C—C耦合组分 | 温度/℃ | 压力/MPa | 空速 /mL·g-1· h-1 | H2/CO比 | CO 转化率/% | CO2选择性/% | 烃类产物选择性/% | 参考文献 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CH4 | C2=~C4= | C2~C4 | C5+ | |||||||||
ZnCrO x | SAPO-34 | 400 | 2.5 | 4800 | 2.5 | 17 | 41 | 2 | 80 | 14 | 4 | [ |
ZnO-ZrO2 | SAPO-34 | 400 | 1.0 | 3600 | 2 | 7 | 43 | 4 | 69 | 25 | 2 | [ |
Zr-In2O3 | SAPO-34 | 400 | 2.5 | 3600 | 1 | 28 | 40 | 4 | 74 | 20 | 2 | [ |
Cr-ZnO x | SAPO-34 | 400 | 2.0 | 1125 | 1 | 30 | 52 | 16 | 38 | 45 | — | [ |
ZnAlO x | SAPO-34 | 390 | 4.0 | 12000 | 1 | 7 | 33 | 5 | 78 | 13 | 4 | [ |
Zr-Zn/Al2O3 | SAPO-34 | 400 | 1.0 | 3600 | 2 | 8 | 46 | 13 | 70 | 17 | — | [ |
Zn/Al2O3 | SAPO-34 | 370 | 1.0 | 3600 | 2 | 5 | 45 | 10 | 77 | 13 | 0 | [ |
MnGaO x | SAPO-34 | 400 | 2.5 | 4875 | 2 | 14 | 45 | 2 | 88 | 8 | 2 | [ |
Zn x Ce2–y Zr y O4 | SAPO-34 | 300 | 1.0 | 5400 | 2 | 6 | 6 | 5 | 83 | 4 | 9 | [ |
ZnGa2O4 | SAPO-34 | 400 | 3.0 | 3600 | 2 | 30 | 41 | 5 | 77 | 17 | 2 | [ |
ZnAl2O4 | SAPO-34 | 400 | 3.0 | 3600 | 2 | 24 | 44 | 4 | 80 | 14 | 2 | [ |
Zn-CrO x | SAPO-34 | 400 | 2.0 | 6480 | 2 | 11 | 36 | 8 | 64 | 25 | 3 | [ |
MnO x | SAPO-34 | 400 | 2.5 | 4800 | 2.5 | 7 | 43 | 1 | 79 | 15 | 5 | [ |
ZnO | SAPO-34 | 400 | 4.0 | 1600 | 2.5 | 32 | 42 | 3 | 77 | 15 | 5 | [ |
Zn-ZrO2 | SSZ-13 | 400 | 3.0 | 3000 | 2 | 29 | 42 | 2 | 77 | 18 | 3 | [ |
ZnCrO x | SSZ-13 | 380 | 1.0 | 6000 | 2 | 20 | 49 | 6 | 72 | 15 | 7.5 | [ |
ZnCrO x | MOR | 360 | 2.0 | 1600 | 1 | 26 | 48 | 1 | 91 | 4 | 5 | [ |
ZnAl2O4 | MOR | 370 | 3.0 | 1500 | 1 | 10 | 44 | 5 | 77 | 12 | 6 | [ |
ZnCrO x | AlPO-18 | 390 | 10.0 | 3600 | 1 | 49 | 49 | 2 | 83 | 4 | 11 | [ |
ZnAlO x | SAPO-17 | 400 | 3.0 | 3000 | 2 | 23 | 42 | 13 | 66 | 14 | 7 | [ |
ZnAlO x | SAPO-18 | 400 | 3.0 | 3000 | 2 | 21 | 44 | 3 | 71 | 16 | 10 | [ |
ZnAlO x | SAPO-34 | 400 | 3.0 | 3000 | 2 | 24 | 44 | 4 | 81 | 14 | 1 | [ |
ZnCrO x | SAPO-18/34 | 390 | 4.0 | 6000 | 1 | 27 | 45-48 | 1 | 88 | 2 | 8 | [ |
K-MoS2 | SAPO-34 | 400 | 4.0 | 4000 | 1 | 20 | 50 | 15 | 59 | 22 | 4 | [ |
K-CoMoS | SAPO-34 | 400 | 4.0 | 4000 | 1 | 9 | 45 | 6 | 65 | 26 | 3 | [ |
1 | 王建明. 催化裂解生产低碳烯烃技术和工业应用的进展[J]. 化工进展, 2011, 30(5): 911-917. |
WANG Jianming. Development of catalytic cracking to produce low carbon olefins and its commercialization[J]. Chemical Industry and Engineering Progress, 2011, 30(5): 911-917. | |
2 | 吴宇凡, 王丽霞, 田辉平, 等. 新型分子筛上石脑油催化裂解多产低碳烯烃研究[J]. 石油炼制与化工, 2019, 50(10): 31-37. |
WU Yufan, WANG Lixia, TIAN huiping, et al. Catalytic cracking of naphtha over novel zeolites for maximizing light olefins yield[J]. Petroleum Processing and Petrochemicals, 2019, 50(10): 31-37. | |
3 | CHANG Clarence D, SILVESTRI Anthony J. The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts[J]. Journal of Catalysis, 1977, 47(2): 249-259. |
4 | Michael STÖCKER. Methanol-to-hydrocarbons: catalytic materials and their behavior[J]. Microporous and Mesoporous Materials, 1999, 29(1/2): 3-48. |
5 | TIAN Peng, WEI Yingxu, YE Mao, et al. Methanol to olefins (MTO): from fundamentals to commercialization[J]. ACS Catalysis, 2015, 5(3): 1922-1938. |
6 | OLSBYE Unni, SVELLE Stian, BJORGEN Morten, et al. Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity[J]. Angewandte Chemie International Edition, 2012, 51(24): 5810-5831. |
7 | QINGLING Chen, WEIMIN Yang, JIAWEI Teng. Recent advances in coal to chemicals technologydeveloped by SINOPEC[J]. Chinese Journal of Catalysis, 2013, 34(1): 217-224. |
8 | 杨学萍, 董丽. 合成气直接制低碳烯烃技术进展与经济性分析[J]. 化工进展, 2012, 31(8): 1726-1731. |
YANG Xueping, DONG Li. Technical progress and economical ananysis on the direct production of light olefins from syngas[J]. Chemical Industry and Engineering Progress, 2012, 31(8): 1726-1731. | |
9 | 程金燮, 胡志彪, 王科, 等. 我国合成气一步法制低碳烯烃催化剂研究新进展[J]. 化工进展, 2016, 35(8): 2439-2445. |
CHENG Jinxie, HU Zhibiao, WANG Ke, et al. New advances in the catalysts for one-step light olefins production from syngas in China[J]. Chemical Industry and Engineering Progress, 2016, 35(8): 2439-2445. | |
10 | 马光远, 徐艳飞, 王捷, 等. 合成气直接法制取低碳烯烃铁基催化体系研究进展[J]. 化工进展, 2018, 37(3): 992-1000. |
MA Guangyuan, XU Yanfei, WANG Jie, et al. Research progress of iron-based catalyst for converting syngas directly to light olefins[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 992-1000. | |
11 | DE SMIT Emiel, WECKHUYSEN Bert M. The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour[J]. Chemical Society Reviews, 2008, 37(12): 2758-2781. |
12 | KHODAKOV A Y, CHU W, FONGARLAND P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels[J]. Chemical Reviews, 2007, 107(5): 1692-1744. |
13 | TORRES GALVIS Hirsa M, BITTER Johannes H, KHARE Chaitanya B, et al. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science, 2012, 335(6070): 835-838. |
14 | TORRES GALVIS Hirsa M, DE JONG Krijn P. Catalysts for production of lower olefins from synthesis gas: a review[J]. ACS Catalysis, 2013, 3(9): 2130-2149. |
15 | YANG Jung-Il, YANG Jung Hoon, KIM Hak-Joo, et al. Highly effective cobalt catalyst for wax production in Fischer-Tropsch synthesis[J]. Fuel, 2010, 89(1): 237-243. |
16 | ZHONG Liangshu, YU Fei, AN Yunlei, et al. Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J]. Nature, 2016, 538(7623): 84-87. |
17 | ZHAO Ziang, LU Wei, YANG Ruoou, et al. Insight into the formation of Co@Co2C catalysts for direct synthesis of higher alcohols and olefins from syngas[J]. ACS Catalysis, 2017, 8(1): 228-241. |
18 | ZHOU Wei, CHENG Kang, KANG Jincan, et al. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Catalysis Science and Technology, 2019, 48(12): 3193-3228. |
19 | PAN Xiulian, JIAO Feng, MIAO Dengyun, et al. Oxide-zeolite-based composite catalyst concept that enables syngas chemistry beyond Fischer-Tropsch synthesis[J]. Chemical Reviews, 2021, 121(11): 6588-6609. |
20 | 李娟, 吴梁鹏, 邱勇, 等. 费托合成催化剂的研究进展 [J]. 化工进展, 2013, 32(S1): 100-109. |
LI Juan, WU Liangpeng, QIU Yong, et al. Research advances in catalysts for Fischer-Tropsch synthesis[J]. Chemical Industry and Engineering Progress, 2013, 32(S1): 100-109. | |
21 | CIOBÎCĂ I M, KRAMER G J, GE Q, et al. Mechanisms for chain growth in Fischer-Tropsch synthesis over Ru(0001)[J]. Journal of Catalysis, 2002, 212(2): 136-144. |
22 | GUAL Aitor, GODARD Cyril, Sergio CASTILLÓN, et al. Colloidal Ru, Co and Fe-nanoparticles: synthesis and application as nanocatalysts in the Fischer-Tropsch process[J]. Catalysis Today, 2012, 183(1): 154-171. |
23 | ZHANG Qinghong, DENG Weiping, WANG Ye. Recent advances in understanding the key catalyst factors for Fischer-Tropsch synthesis[J]. Journal of Energy Chemistry, 2013, 22(1): 27-38. |
24 | RYTTER Erling, HOLMEN Anders. Deactivation and regeneration of commercial type Fischer-Tropsch Co-catalysts: a mini-review[J]. Catalysts, 2015, 5(2): 478-499. |
25 | WANG Di, CHEN Bingxu, DUAN Xuezhi, et al. Iron-based Fischer-Tropsch synthesis of lower olefins: the nature of χ-Fe5C2 catalyst and why and how to introduce promoters[J]. Journal of Energy Chemistry, 2016, 25(6): 911-916. |
26 | LI Zhengjia, ZHONG Liangshu, YU Fei, et al. Effects of sodium on the catalytic performance of CoMn catalysts for Fischer-Tropsch to olefin reactions[J]. ACS Catalysis, 2017, 7(5): 3622-3631. |
27 | CHEN Wen, LIN Tiejun, DAI Yuanyuan, et al. Recent advances in the investigation of nanoeffects of Fischer-Tropsch catalysts[J]. Catalysis Today, 2018, 311: 8-22. |
28 | LIN Tiejun, LIU Peigong, GONG Kun, et al. Designing silica-coated CoMn-based catalyst for Fischer-Tropsch synthesis to olefins with low CO2 emission[J]. Applied Catalysis B: Environmental, 2021, 299. |
29 | LIN Tiejun, GONG Kun, WANG Caiqi, et al. Fischer-Tropsch synthesis to olefins: catalytic performance and structure evolution of Co2C-based catalysts under a CO2 environment[J]. ACS Catalysis, 2019, 9(10): 9554-9567. |
30 | FRIEDEL R A, ANDERSON R B. Composition of synthetic liquid fuels. I. Product distribution and analysis of C5~C8 paraffin isomers from cobalt catalyst[J]. Journal of the American Chemical Society, 2002, 72(3): 1212-1215. |
31 | CHENG Jun, HU P, ELLIS Peter, et al. Chain growth mechanism in Fischer-Tropsch synthesis: a DFT study of C—C coupling over Ru, Fe, Rh, and Re surfaces[J]. The Journal of Physical Chemistry C, 2008, 112(15): 6082-6086. |
32 | 崔登科, 陈崧哲, 陈靖, 等. 钌基费托催化剂研究进展[J]. 化工进展, 2017, 36(S1): 228-234. |
CUI Dengke, CHEN Songzhe, CHEN Jing, et al. Research progress in ruthenium-based catalysts for Fischer-Tropsch synthesis[J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 228-234. | |
33 | LI Tingzhen, WANG Hulin, YANG Yong, et al. Study on an iron–nickel bimetallic Fischer-Tropsch synthesis catalyst[J]. Fuel Processing Technology, 2014, 118: 117-124. |
34 | 刘润雪, 刘任杰, 徐艳, 等. 铁基费托合成催化剂研究进展[J]. 化工进展, 2016, 35(10): 3169-3179. |
LIU Runxue, LIU Renjie, XU Yan, et al. Recent advances in the development of iron-based catalysts for Fischer-Tropsch synthesis[J]. Chemical Industry and Engineering Progress, 2016, 35(10): 3169-3179. | |
35 | XU Yanfei, LI Xiangyang, GAO Junhu, et al. A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products[J]. Science, 2021, 371(6529): 610-613. |
36 | XIONG Jianmin, DING Yunjie, WANG Tao, et al. The formation of Co2C species in activated carbon supported cobalt-based catalysts and its impact on Fischer-Tropsch reaction[J]. Catalysis Letters, 2005, 102(3): 265-269. |
37 | FEI TAN Kong, XU Jing, CHANG Jie, et al. Carbon deposition on Co catalysts during Fischer-Tropsch synthesis: a computational and experimental study[J]. Journal of Catalysis, 2010, 274(2): 121-129. |
38 | CLAEYS M, DRY M E, VAN STEEN E, et al. In situ magnetometer study on the formation and stability of cobalt carbide in Fischer-Tropsch synthesis[J]. Journal of Catalysis, 2014, 318: 193-202. |
39 | LI Zhengjia, LIN Tiejun, YU Fei, et al. Mechanism of the Mn promoter via CoMn spinel for morphology control: formation of Co2C nanoprisms for Fischer-Tropsch to olefins reaction[J]. ACS Catalysis, 2017, 7(12): 8023-8032. |
40 | AN Yunlei, ZHAO Yonghui, YU Fei, et al. Morphology control of Co2C nanostructures via the reduction process for direct production of lower olefins from syngas[J]. Journal of Catalysis, 2018, 366: 289-299. |
41 | DAI Yuanyuan, ZHAO Yonghui, LIN Tiejun, et al. Particle size effects of cobalt carbide for Fischer-Tropsch to olefins[J]. ACS Catalysis, 2018, 9(2): 798-809. |
42 | ZAFFRAN Jeremie, YANG Bo. Theoretical insights into the formation mechanism of methane, ethylene and methanol in Fischer-Tropsch synthesis at Co2C surfaces[J]. ChemCatChem, 2021, 13(11): 2674-2682. |
43 | GU Bang, ORDOMSKY Vitaly V, BAHRI Mounib, et al. Effects of the promotion with bismuth and lead on direct synthesis of light olefins from syngas over carbon nanotube supported iron catalysts[J]. Applied Catalysis B: Environmental, 2018, 234: 153-166. |
44 | JIAO Feng, LI Jinjing, PAN Xiulian, et al. Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277): 1065-1068. |
45 | CHENG Kang, GU Bang, LIU Xiaoliang, et al. Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angewandte Chemie International Edition, 2016, 55(15): 4725-4728. |
46 | KIRILIN Alexey V, DEWILDE Joseph F, SANTOS Vera, et al. Conversion of synthesis gas to light olefins: impact of hydrogenation activity of methanol synthesis catalyst on the hybrid process selectivity over Cr–Zn and Cu–Zn with SAPO-34[J]. Industrial and Engineering Chemistry Research, 2017, 56(45): 13392-13401. |
47 | ZHU Yifeng, PAN Xiulian, JIAO Feng, et al. Role of manganese oxide in syngas conversion to light olefins[J]. ACS Catalysis, 2017, 7(4): 2800-2804. |
48 | LI Na, JIAO Feng, PAN Xiulian, et al. Size Effects of ZnO nanoparticles in bifunctional catalysts for selective syngas sonversion[J]. ACS Catalysis, 2018, 9(2): 960-966. |
49 | JIAO Feng, PAN Xiulian, GONG Ke, et al. Shape-selective zeolites promote ethylene formation from syngas via a ketene intermediate[J]. Angewandte Chemie International Edition, 2018, 57(17): 4692-4696. |
50 | LIU Xiaoliang, ZHOU Wei, YANG Yudan, et al. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates[J]. Chemical Science, 2018, 9(20): 4708-4718. |
51 | RAVEENDRA G, LI Congming, CHENG Yang, et al. Direct transformation of syngas to lower olefins synthesis over hybrid Zn-Al2O3/SAPO-34 catalysts[J]. New Journal of Chemistry, 2018, 42(6): 4419-4431. |
52 | RAVEENDRA G, LI Congming, LIU Bin, et al. Synthesis of lower olefins from syngas over Zn/Al2O3–SAPO-34 hybrid catalysts: role of doped Zr and influence of the Zn/Al2O3 ratio[J]. Catalysis Science and Technology, 2018, 8(14): 3527-3538. |
53 | ZHOU Haibo, LIU Su, SU Junjie, et al. Light olefin synthesis from syngas over sulfide-zeolite composite catalyst[J]. Industrial and Engineering Chemistry Research, 2018, 57(20): 6815-6820. |
54 | ZHOU Wei, KANG Jincan, CHENG Kang, et al. Direct conversion of syngas into methyl acetate, ethanol, and ethylene by relay catalysis via the intermediate dimethyl ether[J]. Angewandte Chemie International Edition, 2018, 57(37): 12012-12016. |
55 | MA Sicong, HUANG Sida, LIU Zhipan. Dynamic coordination of cations and catalytic selectivity on zinc-chromium oxide alloys during syngas conversion[J]. Nature Catalysis, 2019, 2(8): 671-677. |
56 | SU Junjie, WANG Dong, WANG Yangdong, et al. Direct conversion of syngas into light olefins over zirconium-doped indium(Ⅲ) oxide and SAPO-34 bifunctional catalysts: design of oxide component and construction of reaction Network[J]. ChemCatChem, 2018, 10(7): 1536-1541. |
57 | NI Youming, LIU Yong, CHEN Zhiyang, et al. Realizing and recognizing syngas-to-olefins reaction via a dual-bed catalyst[J]. ACS Catalysis, 2018, 9(2): 1026-1032. |
58 | ZHANG Peng, MENG Fanhui, LI Xiaojing, et al. Excellent selectivity for direct conversion of syngas to light olefins over a Mn-Ga oxide and SAPO-34 bifunctional catalyst[J]. Catalysis Science and Technology, 2019, 9(20): 5577-5581. |
59 | SU Junjie, ZHOU Haibo, LIU Su, et al. Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrO x /AlPO-18 bifunctional catalysts[J]. Nature Communications, 2019, 10(1): 1297. |
60 | DANG Shanshan, LI Shenggang, YANG Chengguang, et al. Selective transformation of CO2 and H2 into lower olefins over In2O3-ZnZrO x /SAPO-34 bifunctional catalysts[J]. ChemSusChem, 2019, 12(15): 3582-3591. |
61 | JIAO Wenqian, SU Junjie, ZHOU Haibo, et al. Dual template synthesis of SAPO-18/34 zeolite intergrowths and their performances in direct conversion of syngas to olefins[J]. Microporous and Mesoporous Materials, 2020, 306: 110444. |
62 | LIU Xiaoliang, WANG Mengheng, YIN Haoren, et al. Tandem catalysis for hydrogenation of CO and CO2 to lower olefins with bifunctional catalysts composed of spinel oxide and SAPO-34[J]. ACS Catalysis, 2020, 10(15): 8303-8314. |
63 | TAN Li, WANG Fan, ZHANG Peipei, et al. Design of a core-shell catalyst: an effective strategy for suppressing side reactions in syngas for direct selective conversion to light olefins[J]. Chemical Science, 2020, 11(16): 4097-4105. |
64 | WANG Sen, WANG Pengfei, SHI Dezhi, et al. Direct conversion of syngas into light olefins with low CO2 emission[J]. ACS Catalysis, 2020, 10(3): 2046-2059. |
65 | FU Xiaoyan, LI Jiayi, LONG Jun, et al. Understanding the product selectivity of syngas conversion on ZnO surfaces with complex reaction network and structural evolution[J]. ACS Catalysis, 2021, 11(19): 12264-12273. |
66 | DING Yi, JIAO Feng, PAN Xiulian, et al. Effects of proximity-dependent metal migration on bifunctional composites catalyzed syngas to olefins[J]. ACS Catalysis, 2021, 11(15): 9729-9737. |
67 | HUANG Yuxuan, MA Hongfang, XU Zhiqiang, et al. Direct conversion of syngas to light olefins over a ZnCrO x +H-SSZ-13 bifunctional catalyst[J]. ACS Omega, 2021, 6(16): 10953-10962. |
68 | ZHANG Peng, MENG Fanhui, YANG Langlang, et al. Syngas to olefins over a CrMnGa/SAPO-34 bifunctional catalyst: effect of Cr and Cr/Mn ratio[J]. Industrial and Engineering Chemistry Research, 2021, 60(36): 13214-13222. |
69 | ZHANG Zhengli, HUANG Yuxuan, MA Hongfang, et al. Syngas-to-olefins over MOF-derived ZnZrO x and SAPO-34 bifunctional catalysts[J]. Catalysis Communications, 2021, 152. |
70 | REN Li, ZHANG Jingyan, WANG Bowen, et al. Syngas to light olefins over ZnAlO x and high-silica CHA prepared by boron-assisted hydrothermal synthesis[J]. Fuel, 2022, 307. |
71 | HUANG Yuxuan, MA Hongfang, XU Zhiqiang, et al. Utilization of SAPO-18 or SAPO-35 in the bifunctional catalyst for the direct conversion of syngas to light olefins[J]. RSC Advances, 2021, 11(23): 13876-13884. |
72 | LIU Zhaopeng, NI Youming, FANG Xudong, et al. Highly converting syngas to lower olefins over a dual-bed catalyst[J]. Journal of Energy Chemistry, 2021, 58: 573-576. |
73 | LUO Yaoya, WANG Sen, GUO Shujia, et al. Conversion of syngas into light olefins over bifunctional ZnCeZrO/SAPO-34 catalysts: regulation of the surface oxygen vacancy concentration and its relation to the catalytic performance[J]. Catalysis Science and Technology, 2021, 11(1): 338-348. |
74 | MENG Fanhui, LI Xiaojing, ZHANG Peng, et al. A facile approach for fabricating highly active ZrCeZnO in combination with SAPO-34 for the conversion of syngas into light olefins[J]. Applied Surface Science, 2021, 542. |
75 | RAVEENDRA G., MA Baorun, LIU Xiaohui, et al. Syngas to light olefin synthesis over La doped Zn x Al y O z composite and SAPO-34 hybrid catalysts[J]. Catalysis Science and Technology, 2021, 11(9): 3231-3240. |
76 | YANG Guinan, MENG Fanhui, ZHANG Peng, et al. Effects of preparation method and precipitant on Mn-Ga oxide in combination with SAPO-34 for syngas conversion into light olefins[J]. New Journal of Chemistry, 2021, 45(18): 7967-7976. |
77 | WANG Mengheng, KANG Jincan, XIONG Xuewei, et al. Effect of zeolite topology on the hydrocarbon distribution over bifunctional ZnAlO/SAPO catalysts in syngas conversion[J]. Catalysis Today, 2021, 371: 85-92. |
78 | WANG Yuhao, WANG Genyuan, LARS I van der Wal,et al. Visualizing element migration over bifunctional metal-zeolite catalysts and its impact on catalysis[J]. Angewandte Chemie International Edition, 2021, 60(32): 17735-17743. |
79 | YARULINA Irina, CHOWDHURY Abhishek Dutta, MEIRER Florian, et al. Recent trends and fundamental insights in the methanol-to-hydrocarbons process[J]. Nature Catalysis, 2018, 1(6): 398-411. |
80 | YANG Miao, FAN Dong, WEI Yingxu, et al. Recent progress in methanol-to-olefins (MTO) catalysts[J]. Advanced Materials, 2019, 31(50): e1902181. |
81 | LI Gen, JIAO Feng, MIAO Dengyun, et al. Selective conversion of syngas to propane over ZnCrO x -SSZ-39 OX-ZEO catalysts[J]. Journal of Energy Chemistry, 2019, 36: 141-147. |
82 | WANG Chuanming, WANG Yangdong, XIE Zaiku. Methylation of olefins with ketene in zeotypes and its implications for the direct conversion of syngas to light olefins: a periodic DFT study[J]. Catalysis Science and Technology, 2016, 6(17): 6644-6649. |
83 | LAI Zhuangzhuang, SUN Ningling, JIN Jiamin, et al. Resolving the intricate mechanism and selectivity of syngas conversion on reduced ZnCr2O x : a quantitative study from DFT and microkinetic simulations[J]. ACS Catalysis, 2021, 11(21): 12977-12988. |
84 | RASMUSSEN Dominik B, CHRISTENSEN Jakob M, TEMEL Burcin, et al. Ketene as a reaction intermediate in the carbonylation of dimethyl ether to methyl acetate over mordenite[J]. Angewandte Chemie International Edition, 2015, 54(25): 7261-7264. |
85 | YE Aiai, LI Zhaorui, DING Jieqiong, et al. Synergistic catalysis of Al and Zn sites of spinel ZnAl2O4 catalyst for CO hydrogenation to methanol and dimethyl ether[J]. ACS Catalysis, 2021, 11(15): 10014-10019. |
86 | 马思聪, 刘智攀. 神经网络全局势函数在多相催化中的应用 [J]. 化工进展, 2020, 39(9): 3433-3443. |
MA Sicong, LIU Zhipan. Global neural network potential applications in heterogeneous catalysis[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3433-3443. | |
87 | CHEN Siyue, MA Sicong, LIU Zhipan. Zirconia-supported ZnO single layer for syngas conversion revealed from machine-learning atomic simulation[J]. Journal of Physical Chemistry Letters, 2021, 12(13): 3328-3334. |
88 | HU Wende, WANG Chuanming, WANG Yangdong, et al. First-principles-based microkinetic simulations of syngas to methanol conversion on ZnAl2O4 spinel oxide[J]. Applied Surface Science, 2021, 569: 151064. |
89 | F Le PELTIER, CHAUMETTE P, SAUSSEY J, et al. In-situ FTIR spectroscopy and kinetic study of methanol synthesis from CO/H2 over ZnAl2O4 and Cu-ZnAl2O4 catalysts[J]. Journal of Molecular Catalysis A: Chemical, 1997, 122(2/3): 131-139. |
[1] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[2] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[3] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[4] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[5] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[6] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[7] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[8] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[9] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[10] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[11] | GUO Lixing, PANG Weiying, MA Keyao, YANG Jiahan, SUN Zehui, ZHANG Pan, FU Dong, ZHAO Kun. Hierarchically multilayered TiO2 with spatial pore-structure for efficient photocatalytic CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3643-3651. |
[12] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
[13] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
[14] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[15] | DONG Xiaoshan, WANG Jian, LIN Fawei, YAN Beibei, CHEN Guanyi. Exsolved metal nanoparticles on perovskite oxides: exsolution, driving force and control strategy [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3049-3065. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |