Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (7): 3947-3956.DOI: 10.16085/j.issn.1000-6613.2021-1619
• Resources and environmental engineering • Previous Articles Next Articles
JIANG Hua1(), ZHANG Zihui1, GONG Wuqi2, CHANG Yueyong1
Received:
2021-08-02
Revised:
2021-09-17
Online:
2022-07-23
Published:
2022-07-25
Contact:
JIANG Hua
通讯作者:
姜华
作者简介:
姜华(1973—),女,博士,副教授,研究方向为流体机械系统及设备。E-mail:基金资助:
CLC Number:
JIANG Hua, ZHANG Zihui, GONG Wuqi, CHANG Yueyong. Design and performance analysis of mechanical vapor recompression salt fractionation evaporation crystallization system[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3947-3956.
姜华, 张子惠, 宫武旗, 常越勇. MVR分质提盐蒸发结晶系统设计及性能分析[J]. 化工进展, 2022, 41(7): 3947-3956.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1619
参数 | 文献[ | 计算数据 | 误差/% |
---|---|---|---|
原料液温度/℃ | 40 | 40 | — |
进料流量/kg·h-1 | 11500 | 11500 | — |
进料质量分数/% | 16 | — | |
出料质量分数/% | 20 | — | |
蒸发温度/℃ | 84.1 | 84.1 | — |
蒸发量/kg·h-1 | 7718 | 7718 | — |
蒸发器传热温差/℃ | 5 | — | |
压缩温升/℃ | 10.1 | 10.1 | — |
蒸发器总换热面积/m2 | 483.2 | 495.8 | -2.6 |
蒸发器总换热量/kW | 5224.5 | 5363.3 | -2.7 |
压缩机总功率/kW | 208.4 | 178.0 | 14.6 |
压缩机压比 | 1.5 | 1.47 | 2.0 |
参数 | 文献[ | 计算数据 | 误差/% |
---|---|---|---|
原料液温度/℃ | 40 | 40 | — |
进料流量/kg·h-1 | 11500 | 11500 | — |
进料质量分数/% | 16 | — | |
出料质量分数/% | 20 | — | |
蒸发温度/℃ | 84.1 | 84.1 | — |
蒸发量/kg·h-1 | 7718 | 7718 | — |
蒸发器传热温差/℃ | 5 | — | |
压缩温升/℃ | 10.1 | 10.1 | — |
蒸发器总换热面积/m2 | 483.2 | 495.8 | -2.6 |
蒸发器总换热量/kW | 5224.5 | 5363.3 | -2.7 |
压缩机总功率/kW | 208.4 | 178.0 | 14.6 |
压缩机压比 | 1.5 | 1.47 | 2.0 |
设计工况 | 数值 |
---|---|
硫酸钠进料质量分数wa0/% | 5 |
氯化钠进料质量分数wb0/% | 8 |
原料液量F0/kg·h-1 | 15900 |
蒸发量W/kg·h-1 | 13500 |
一效降膜蒸发器蒸发温度(预蒸发)/℃ | 100 |
二效强制循环蒸发器蒸发温度(析出硫酸钠)/℃ | 100 |
三效强制循环蒸发器蒸发温度(析出氯化钠)/℃ | 60 |
压缩温升/℃ | 12 |
设计工况 | 数值 |
---|---|
硫酸钠进料质量分数wa0/% | 5 |
氯化钠进料质量分数wb0/% | 8 |
原料液量F0/kg·h-1 | 15900 |
蒸发量W/kg·h-1 | 13500 |
一效降膜蒸发器蒸发温度(预蒸发)/℃ | 100 |
二效强制循环蒸发器蒸发温度(析出硫酸钠)/℃ | 100 |
三效强制循环蒸发器蒸发温度(析出氯化钠)/℃ | 60 |
压缩温升/℃ | 12 |
系统管段编号 | 温度/℃ | 质量分数/% | 流量/kg·h-1 | 焓值/kJ·kg-1 | ?值/kW | 比?/kJ·kg-1 | 介质类型 | |
---|---|---|---|---|---|---|---|---|
硫酸钠 | 氯化钠 | |||||||
1 | 25 | 5 | 8 | 15900 | — | 450.9 | 102.1 | 溶液 |
2 | 100 | 5 | 8 | 15900 | — | 496.0 | 112.3 | |
3 | 101.1 | 12 | 19.2 | 6625 | — | 133.1 | 72.3 | |
4 | 101.1 | 18 | 28.8 | 4416.7 | — | 84.4 | 68.8 | |
5 | — | — | — | 795 | — | 3.1 | 13.9 | 晶体 |
6 | 101.1 | — | 35.1 | 3621.7 | — | 66.7 | 66.3 | 溶液 |
7 | 63.1 | — | 35.1 | 3621.7 | — | 46.8 | 46.5 | |
8 | 63.1 | — | 35.1 | 4134.9 | — | 54.2 | 47.2 | |
9 | 63.1 | — | 35.1 | 513.3 | — | 2.8 | 19.8 | |
10 | 63.1 | — | — | 1605 | — | 21.8 | 48.8 | 晶浆 |
11 | — | — | — | 1091.7 | — | 19.0 | 62.7 | 晶体 |
12 | 112 | — | — | 12631.2 | 2697 | 1920.6 | 547.4 | 蒸汽 |
13 | 112 | — | — | 10202 | 2697 | 1551.3 | 547.4 | |
14 | 112 | — | — | 2429.2 | 2697 | 369.4 | 547.4 | |
15 | 101.1 | — | — | 10269 | 2679.6 | 1407.1 | 493.3 | |
16 | 101.1 | — | — | 2445 | 2679.6 | 335.0 | 493.3 | |
17 | 101.1 | — | — | 12631.2 | 2679.6 | 1730.8 | 493.3 | |
18 | 139.4 | — | — | 12631.2 | 2750.6 | 1963.8 | 559.7 | |
19 | 72 | — | — | 2218.3 | 2628.6 | 204.0 | 331.1 | |
20 | 63.1 | — | — | 2218.3 | 2611.6 | 169.9 | 275.7 | |
21 | 108.4 | — | — | 2218.3 | 2700.2 | 326.5 | 529.9 | |
22 | 112 | — | — | 10202 | 469.8 | 127.5 | 45.0 | 凝水 |
23 | 112 | — | — | 2429.2 | 469.8 | 30.4 | 45.0 | |
24 | 112 | — | — | 12631.2 | 469.8 | 157.9 | 45.0 | |
25 | 21.8 | — | — | 12631.2 | 91.5 | 1.1 | 0.3 | |
26 | 32.5 | — | — | 12631.2 | 136.2 | 3.9 | 1.1 | |
27 | 72 | — | — | 2218.3 | 301.4 | 8.6 | 14.0 | |
28 | 38.4 | — | — | 14849.5 | 160.9 | 29.7 | 7.2 | |
29 | 38.4 | — | — | 331.4 | 160.9 | 0.7 | 7.2 | |
30 | 38.4 | — | — | 267 | 160.9 | 0.5 | 7.2 | |
31 | 38.4 | — | — | 64.4 | 160.9 | 0.1 | 7.2 |
系统管段编号 | 温度/℃ | 质量分数/% | 流量/kg·h-1 | 焓值/kJ·kg-1 | ?值/kW | 比?/kJ·kg-1 | 介质类型 | |
---|---|---|---|---|---|---|---|---|
硫酸钠 | 氯化钠 | |||||||
1 | 25 | 5 | 8 | 15900 | — | 450.9 | 102.1 | 溶液 |
2 | 100 | 5 | 8 | 15900 | — | 496.0 | 112.3 | |
3 | 101.1 | 12 | 19.2 | 6625 | — | 133.1 | 72.3 | |
4 | 101.1 | 18 | 28.8 | 4416.7 | — | 84.4 | 68.8 | |
5 | — | — | — | 795 | — | 3.1 | 13.9 | 晶体 |
6 | 101.1 | — | 35.1 | 3621.7 | — | 66.7 | 66.3 | 溶液 |
7 | 63.1 | — | 35.1 | 3621.7 | — | 46.8 | 46.5 | |
8 | 63.1 | — | 35.1 | 4134.9 | — | 54.2 | 47.2 | |
9 | 63.1 | — | 35.1 | 513.3 | — | 2.8 | 19.8 | |
10 | 63.1 | — | — | 1605 | — | 21.8 | 48.8 | 晶浆 |
11 | — | — | — | 1091.7 | — | 19.0 | 62.7 | 晶体 |
12 | 112 | — | — | 12631.2 | 2697 | 1920.6 | 547.4 | 蒸汽 |
13 | 112 | — | — | 10202 | 2697 | 1551.3 | 547.4 | |
14 | 112 | — | — | 2429.2 | 2697 | 369.4 | 547.4 | |
15 | 101.1 | — | — | 10269 | 2679.6 | 1407.1 | 493.3 | |
16 | 101.1 | — | — | 2445 | 2679.6 | 335.0 | 493.3 | |
17 | 101.1 | — | — | 12631.2 | 2679.6 | 1730.8 | 493.3 | |
18 | 139.4 | — | — | 12631.2 | 2750.6 | 1963.8 | 559.7 | |
19 | 72 | — | — | 2218.3 | 2628.6 | 204.0 | 331.1 | |
20 | 63.1 | — | — | 2218.3 | 2611.6 | 169.9 | 275.7 | |
21 | 108.4 | — | — | 2218.3 | 2700.2 | 326.5 | 529.9 | |
22 | 112 | — | — | 10202 | 469.8 | 127.5 | 45.0 | 凝水 |
23 | 112 | — | — | 2429.2 | 469.8 | 30.4 | 45.0 | |
24 | 112 | — | — | 12631.2 | 469.8 | 157.9 | 45.0 | |
25 | 21.8 | — | — | 12631.2 | 91.5 | 1.1 | 0.3 | |
26 | 32.5 | — | — | 12631.2 | 136.2 | 3.9 | 1.1 | |
27 | 72 | — | — | 2218.3 | 301.4 | 8.6 | 14.0 | |
28 | 38.4 | — | — | 14849.5 | 160.9 | 29.7 | 7.2 | |
29 | 38.4 | — | — | 331.4 | 160.9 | 0.7 | 7.2 | |
30 | 38.4 | — | — | 267 | 160.9 | 0.5 | 7.2 | |
31 | 38.4 | — | — | 64.4 | 160.9 | 0.1 | 7.2 |
设备名称 | 规格 | ?损失/kW | ?效率/% | 其他性能参数 |
---|---|---|---|---|
一级预热器 | 82.6m2 | 111.7 | 81.7 | 换热量:1329.4kW |
二级预热器 | 1.0m2 | 17.1 | 74.8 | 换热量:158.3kW |
一效降膜蒸发器(预蒸发) | 482m2 | 379.6 | 81.5 | 换热量:6314kW 蒸发量:9275kg·h-1 |
二效强制循环蒸发器 | 114.7m2 | 52.7 | 89.5 | 换热量:1503.4kW 蒸发量:2208.3kg·h-1 输入功率:68.8kW |
三效强制循环蒸发器 | 133.6m2 | 57.9 | 77.6 | 换热量:1434.2kW 蒸发量:2016.7kg·h-1 输入功率:80.2kW |
一级蒸汽压缩机 | Δt=12℃ | 124.4 | 73.7 | 输入功率:357.4kW 压缩比:1.5 |
二级蒸汽压缩机 | Δt=12℃ | 82.8 | 74.6 | 输入功率:73.8kW 压缩比:1.7 |
一级气液分离器 | 4.0m3 | — | — | 输入功率:2.0kW |
二级气液分离器 | 0.8m3 | — | — | 输入功率:0.8kW |
一级结晶分离器 | 795kg·h-1 | — | — | 输入功率:2.8kW |
二级结晶分离器 | 1272kg·h-1 | — | — | 输入功率:3.3kW |
设备名称 | 规格 | ?损失/kW | ?效率/% | 其他性能参数 |
---|---|---|---|---|
一级预热器 | 82.6m2 | 111.7 | 81.7 | 换热量:1329.4kW |
二级预热器 | 1.0m2 | 17.1 | 74.8 | 换热量:158.3kW |
一效降膜蒸发器(预蒸发) | 482m2 | 379.6 | 81.5 | 换热量:6314kW 蒸发量:9275kg·h-1 |
二效强制循环蒸发器 | 114.7m2 | 52.7 | 89.5 | 换热量:1503.4kW 蒸发量:2208.3kg·h-1 输入功率:68.8kW |
三效强制循环蒸发器 | 133.6m2 | 57.9 | 77.6 | 换热量:1434.2kW 蒸发量:2016.7kg·h-1 输入功率:80.2kW |
一级蒸汽压缩机 | Δt=12℃ | 124.4 | 73.7 | 输入功率:357.4kW 压缩比:1.5 |
二级蒸汽压缩机 | Δt=12℃ | 82.8 | 74.6 | 输入功率:73.8kW 压缩比:1.7 |
一级气液分离器 | 4.0m3 | — | — | 输入功率:2.0kW |
二级气液分离器 | 0.8m3 | — | — | 输入功率:0.8kW |
一级结晶分离器 | 795kg·h-1 | — | — | 输入功率:2.8kW |
二级结晶分离器 | 1272kg·h-1 | — | — | 输入功率:3.3kW |
性能指标 | MVR分质提盐方案 | 五效蒸发分盐方案 |
---|---|---|
蒸发量/kg·h-1 | 13500 | 13500 |
新鲜蒸汽耗量/kg·h-1 | — | 4125 |
蒸汽耗能/kW | — | 2590 |
冷却水量/t·h-1 | — | 47 |
系统用电量/kW | 580.1 | — |
效能系数COP | 18.5 | 1.2 |
单位能耗/kJ·kg-1 | 154.7 | 690.7 |
?效率/% | 25.9 | 15.2 |
?损失/kW | 881.0 | 1326.5 |
性能指标 | MVR分质提盐方案 | 五效蒸发分盐方案 |
---|---|---|
蒸发量/kg·h-1 | 13500 | 13500 |
新鲜蒸汽耗量/kg·h-1 | — | 4125 |
蒸汽耗能/kW | — | 2590 |
冷却水量/t·h-1 | — | 47 |
系统用电量/kW | 580.1 | — |
效能系数COP | 18.5 | 1.2 |
单位能耗/kJ·kg-1 | 154.7 | 690.7 |
?效率/% | 25.9 | 15.2 |
?损失/kW | 881.0 | 1326.5 |
1 | 国际节能环保网. 2020年中国工业废水处理行业市场现状及发展前景分析, 2025年市场规模将近1300亿元[R/OL]. [2020-10-22]. . |
2 | 张统, 李志颖, 董春宏, 等. 我国工业废水处理现状及污染防治对策[J]. 给水排水, 2020, 56(10): 1-3, 18. |
ZHANG Tong, LI Zhiying, DONG Chunhong, et al. Current situation of industrial wastewater treatment and countermeasures of pollution control in China[J]. Water & Wastewater Engineering, 2020, 56(10): 1-3, 18. | |
3 | 林玲. 探讨高盐废水单质分盐及资源化利用的展望[J]. 皮革制作与环保科技, 2021, 2(4): 30-31. |
LIN Ling. Discussion on the prospects of the elemental salt separation and resource utilization of high-salt wastewater[J]. Leather Manufacture and Environmental Technology, 2021, 2(4): 30-31. | |
4 | HAN Dong, PENG Tao, HE Weifeng, et al. Advanced energy saving in the evaporation system of ammonium sulfate solution with self-heat recuperation technology[J]. Energy Procedia, 2014, 2014, 61: 131-136. |
5 | 杨智盼. 利用多效蒸发装置处理三废排放废水的工艺优化研究[D]. 郑州: 郑州大学, 2018. |
YANG Zhipan. The process parameters optimization of multi-effect evaporating equipment for “Three Wastes” emissions wastewater treatment[D]. Zhengzhou: Zhengzhou University, 2018. | |
6 | 彭赛军, 张传德, 万真华, 等. 一种卤水等效蒸发分离氯化钠和硫酸钠循环工艺技改分析[J]. 中国井矿盐, 2018, 49(2): 1-3, 12. |
PENG Saijun, ZHANG Chuande, WAN Zhenhua, et al. An Analysis of the cyclic process of sodium chloride and sodium sulfate by equivalent evaporation of brine[J]. China Well and Rock Salt, 2018, 49(2): 1-3, 12. | |
7 | 赵文华. 多效蒸发技术在煤化工废水工程领域的应用[J]. 煤炭加工与综合利用, 2018(12): 45-48. |
ZHAO Wenhua. Application of multi-effect evaporation technology in the field of coal chemical wastewater treatment[J]. Coal Processing & Comprehensive Utilization, 2018(12): 45-48. | |
8 | JIANG Y H, KANG L X, LIU Y Z. Simultaneous synthesis of a multiple-effect evaporation system with background process[J]. Chemical Engineering Research and Design, 2018, 133: 79-89. |
9 | DAHMARDEH H, AKHLAGHI AMIRI H A, NOWEE S M. Evaluation of mechanical vapor recompression crystallization process for treatment of high salinity wastewater[J]. Chemical Engineering and Processing - Process Intensification, 2019, 145: 107682. |
10 | 周润发, 刘心志, 张后雷. 机械蒸汽再压缩与多效蒸发在糖汁蒸发过程中的应用对比分析[J]. 能源研究与利用, 2019(1): 20-23, 28. |
ZHOU Runfa, LIU Xinzhi, ZHANG Houlei. Comparative analysis of the application of mechanical vapor recompression and multi-effect evaporation in sugar juice evaporation process[J]. Energy Research & Utilization, 2019(1): 20-23, 28. | |
11 | ETTOUNEY H. Design of single-effect mechanical vapor compression[J]. Desalination, 2006(1/2/3), 190: 1-15. |
12 | 陈金增, 李光华, 李雁飞. 船舶机械蒸汽压缩海水淡化装置性能分析[J]. 舰船科学技术, 2011, 33(12): 66-68. |
CHEN Jinzeng, LI Guanghua, LI Yanfei. Analisis of a marine mechanical vapor compression desalination system[J]. Ship Science and Technology, 2011, 33(12): 66-68. | |
13 | SHEN J B, XING Z W, WANG X L, et al. Analysis of a single-effect mechanical vapor compression desalination system using water injected twin screw compressors[J]. Desalination, 2014, 333(1): 146-153. |
14 | 越云凯, 吴小华, 张振涛. MVR海水淡化系统运行特性分析与优化[J]. 工程热物理学报, 2018, 39(9): 1985-1990. |
YUE Yunkai, WU Xiaohua, ZHANG Zhentao. Operation characteristic analysis and optimization of MVR seawater desalination system[J]. Journal of Engineering Thermophysics, 2018, 39(9): 1985-1990. | |
15 | AI S H, WANG B L, LI X T, et al. Numerical analysis on the performance of mechanical vapor recompression system for strong sodium chloride solution enrichment[J]. Applied Thermal Engineering, 2018, 137: 386-394. |
16 | 张勤灵, 刘晓华, 张涛. 机械蒸气再压缩系统再生高浓度溶液的性能研究[J]. 制冷学报, 2021, 42(3): 19-27. |
ZHANG Qinling, LIU Xiaohua, ZHANG Tao. Regeneration performance of high concentration solution by mechanical vapor recompression system[J]. Journal of Refrigeration, 2021, 42(3): 19-27. | |
17 | JIANG H, ZHANG Z Y, GONG W Q. Design and evaluation of a parallel-connected double-effect mechanical vapor recompression evaporation crystallization system[J]. Applied Thermal Engineering, 2020, 179: 115646. |
18 | 李帅旗, 王汉治, 冯自平, 等. 耦合过热蒸汽干燥的MVR蒸发结晶系统热力性能分析[J]. 化工进展, 2020, 39(2): 439-445. |
LI Shuaiqi, WANG Hanzhi, FENG Ziping, et al. Performance analysis of a MVR evaporative crystallization system coupled with super-heated steam drying technology[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 439-445. | |
19 | 张子尧, 姜华, 宫武旗. 机械蒸汽再压缩蒸发结晶系统优化设计[J]. 西安交通大学学报, 2020, 54(4): 101-109. |
ZHANG Ziyao, JIANG Hua, GONG Wuqi. Optimization design for mechanical vapor recompression evaporation crystallization system[J]. Journal of Xi’an Jiaotong University, 2020, 54(4): 101-109. | |
20 | 王汉治, 李帅旗, 黄冲, 等. 喷气增焓型单级MVR蒸发结晶系统性能分析[J]. 化工进展, 2018, 37(9): 3312-3319. |
WANG Hanzhi, LI Shuaiqi, HUANG Chong, et al. Performance analysis of single-effect MVR evaporative crystallization system using vapor injected compressor[J]. Chemical Industry and Engineering Progress, 2018, 37(9): 3312-3319. | |
21 | LIANG L, HAN D, MA R, et al. Treatment of high-concentration wastewater using double-effect mechanical vapor recompression[J]. Desalination, 2013, 314(4):139-146. |
22 | 孙文. 两级机械蒸汽再压缩系统热力特性与优化研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
SUN Wen. Research on thermodynamic characteristics and optimization of two-stage mechanical vapor re-compression system[D]. Harbin: Harbin Institute of Technology, 2018. | |
23 | XIONG R H, WEI C. Current status and technology trends of zero liquid discharge at coal chemical industry in China[J]. Journal of Water Process Engineering, 2017, 19: 346-351. |
24 | 周艳丽. 硫酸钠和氯化钠高盐废水分盐工艺研究[J]. 煤炭与化工, 2020, 43(6): 134-136, 140. |
ZHOU Yanli. Study on salt separation technology of sodium sulfate and sodium chloride high salt wastewater[J]. Coal and Chemical Industry, 2020, 43(6): 134-136, 140. | |
25 | 乐晨, 张其盛, 张林, 等. 煤化工高盐废水综合分盐技术研究[J]. 贵州科学, 2020, 38(2): 81-84. |
LE Chen, ZHANG Qisheng, ZHANG Lin, et al. Study on comprehensive salt separation technology of high-salt wastewater in coal chemical industry[J]. Guizhou Science, 2020, 38(2): 81-84. | |
26 | 李川军. 高含盐废水分盐结晶处理工艺技术组合对比[J]. 化工管理, 2020(27): 166-167. |
LI Chuanjun. Comparison of technology combination of salt separation crystallization process for high salinity wastewater[J]. Chemical Enterprise Management, 2020(27): 166-167. | |
27 | 刘金勇, 李林. 废水MVR蒸发结晶中分盐的工艺分析[J]. 山东化工, 2019, 48(6): 249-250. |
LIU Jinyong, LI Lin. Process analysis of salt separation in MVR evaporation crystallization of wastewater[J]. Shandong Chemical Industry, 2019, 48(6): 249-250. | |
28 | 刘金红. 混合溶剂稀溶液的沸点升高及其常数的推算[J]. 南通职业大学学报(综合版), 1999, 13(3): 47-49. |
LIU Jinhong. The boiling point rising of the mixed solvent dilute solution and its constants’ calculation[J]. Journal of Nantong Vocational College, 1999, 13(3): 47-49. | |
29 | 石成君. 机械蒸汽再压缩蒸发技术在高盐度废水处理中的性能研究[D]. 上海: 东华大学, 2014. |
SHI Chengjun. Research of mechanical vapor recompression evaporation technology in high salinity wastewater treatment system[D]. Shanghai: Donghua University, 2014. | |
30 | 席华. 氯化钠溶液物性关系式[J]. 天津轻工业学院学报, 1997, 12(2): 74-76. |
XI Hua. Physical property equation of sodium chloride solution[J]. Journal of Tianjin University of Science and Technology, 1997, 12(2): 74-76. | |
31 | 大连理工大学. 化工原理: 上册[M]. 2版. 北京: 高等教育出版社, 2009: 337-338. |
Dalian University of Technology. Unit operation of chemical engineering: volume I[M]. Zed. Beijing: Higher Education Press, 2009: 337-338. | |
32 | 朱跃钊, 廖传华, 史勇春. 传热过程与设备[M]. 北京: 中国石化出版社, 2008: 113, 284. |
ZHU Yuezhao, LIAO Chuanhua, SHI Yongchun. Heat transfer process and equipment[M]. Beijing: China Petrochemical Press, 2008: 113, 284. | |
33 | 李强平. 机械蒸汽再压缩系统在高浓度含盐废水处理中的应用研究[D]. 杭州: 浙江工业大学, 2019. |
LI Qiangping. Research and application of mechanical vapor recompression system for treating high concentration saline wastewater[D]. Hangzhou: Zhejiang University of Technology, 2019. | |
34 | 于养信, 陆九芳, 李以圭. NaCl-Na2SO4-H2O体系活度系数的测定与预测[J]. 清华大学学报(自然科学版), 1995, 4(3): 59-65. |
YU Yangxin, LU Jiufang, LI Yigui. Determination and prediction of activity coefficients for NaCl-Na2SO4-H2O system at 25℃[J]. Journal of Tsinghua University(Science and Technology), 1995, 4(3): 59-65. |
[1] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[2] | DONG Jiayu, WANG Simin. Experimental on ultrasound enhancement of para-xylene crystallization characteristics and regulation mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4504-4513. |
[3] | SHI Keke, LIU Muzi, ZHAO Qiang, LI Jinping, LIU Guang. Properties and research progress of magnesium based hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4731-4745. |
[4] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[5] | YANG Hongmei, GAO Tao, YU Tao, QU Chengtun, GAO Jiapeng. Treatment of refractory organics sulfonated phenolic resin with ferrate [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3302-3308. |
[6] | WU Xia, JIANG Xuntao, ZHANG Yuxiao, LYU Huiyuan, HUANG Fang, YU Xiaoxi. Protein crystallization research based on droplet microfluidics [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2024-2030. |
[7] | LIU Dan, FAN Yunjie, WANG Huimin, YAN Zheng, LI Pengfei, LI Jiacheng, CAO Xuebo. High value-added functional porous carbon materials from waste PET and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 969-984. |
[8] | ZHANG Han, ZHANG Xiaojing, MA Bingbing, NAI Can, LIU Shuoshuo, MA Yongpeng, SONG Yali. Feasibility of starting anammox process with municipal waste sludge as seed sludge [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1080-1088. |
[9] | ZHANG Yingjie, LU Jiayue, WANG Fanggang. Synthesis of a new MCER and its performance in removing Cu(Ⅱ) from water [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5558-5566. |
[10] | SUN Mengwei, LIU Zhuang, XIE Rui, JU Xiaojie, WANG Wei, CHU Liangyin. Preparation of Lanthanum ion intercalated MoS2 membrane for treating dyeing wastewater with high brine [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 346-353. |
[11] | QI Yabing, JIA Honglei. Progress on separation and purification for organic compounds by melt crystallization [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 373-385. |
[12] | FAN Jiahao, ZHANG Yang, FAN Binqiang, ZHANG Hedong, ZHENG Shili, ZOU Xing. Crystallization kinetics of (NH4)2SO4 in mixed solution of (NH4)2SO4 and Na2SO4 and the influence of Fe/Al/Mn/Cr ions on crystallization [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 488-496. |
[13] | HU Jinwen, MENG Guangyuan, ZHANG Zhijie, ZHANG Ning, ZHANG Xinwan, CHEN Peng, LI Tong, LIU Yongdi, ZHANG Lehua. Application of artificial intelligence model in electrochemical water treatment process [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 497-506. |
[14] | XU Yabing, WANG Baoshan, WANG Guangzong, ZHANG Yang. Degradation of refractory organics in the pharmaceutical wastewater by bioelectrochemical system [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5055-5064. |
[15] | YANG Chengyu, LIU Min, YUAN Lin, HU Xuan, CHEN Ying. Adsorption of low-concentration phosphorus after cross-linked modification of bamboo-based cellulose nanofibrils [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5074-5084. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |