Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (4): 2216-2225.DOI: 10.16085/j.issn.1000-6613.2021-0921
• Resources and environmental engineering • Previous Articles Next Articles
FU Jie1(), QIU Chunsheng1,2, WANG Chenchen1,2(), ZHENG Jinxin1, LIU Nannan1,2, WANG Dong1,2, WANG Shaopo1,2, SUN Liping1,2
Received:
2021-04-29
Revised:
2021-05-27
Online:
2022-04-25
Published:
2022-04-23
Contact:
WANG Chenchen
付杰1(), 邱春生1,2, 王晨晨1,2(), 郑金鑫1, 刘楠楠1,2, 王栋1,2, 王少坡1,2, 孙力平1,2
通讯作者:
王晨晨
作者简介:
付杰(1996—),男,硕士研究生,研究方向为废弃物资源化。E-mail:基金资助:
CLC Number:
FU Jie, QIU Chunsheng, WANG Chenchen, ZHENG Jinxin, LIU Nannan, WANG Dong, WANG Shaopo, SUN Liping. Migration, transformation and risk assessment of heavy metals in municipal sludge treated by thermal hydrolysis[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2216-2225.
付杰, 邱春生, 王晨晨, 郑金鑫, 刘楠楠, 王栋, 王少坡, 孙力平. 污泥热水解处理过程重金属的迁移转化与风险评价[J]. 化工进展, 2022, 41(4): 2216-2225.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0921
理化指标 | 值 |
---|---|
TS/g·L-1 | 21.73±0.21 |
VS/g·L-1 | 11.92±0.21 |
pH | 7.75±0.01 |
TCOD/mg·L-1 | 17078.56±55.55 |
SCOD/mg·L-1 | 125.52±17.23 |
NH | 19.11±4.34 |
溶解性蛋白质/mg·L-1 | 32.603±1.48 |
溶解性多糖/mg·L-1 | 12.38±1.64 |
理化指标 | 值 |
---|---|
TS/g·L-1 | 21.73±0.21 |
VS/g·L-1 | 11.92±0.21 |
pH | 7.75±0.01 |
TCOD/mg·L-1 | 17078.56±55.55 |
SCOD/mg·L-1 | 125.52±17.23 |
NH | 19.11±4.34 |
溶解性蛋白质/mg·L-1 | 32.603±1.48 |
溶解性多糖/mg·L-1 | 12.38±1.64 |
Cf | 重金属污染 风险 | Er | 潜在生态 风险 | RI | 污泥污染风险 |
---|---|---|---|---|---|
Cf<1 | 无 | Er<40 | 低 | RI<150 | 低 |
1<Cf<3 | 低 | 40<Er<80 | 中等 | 150<RI<300 | 中等 |
3<Cf<6 | 中等 | 80<Er<160 | 较高 | 300<RI<600 | 较高 |
6<Cf<9 | 较高 | 160<Er<320 | 高 | RI>600 | 高 |
Cf>9 | 高 | Er>320 | 极高 |
Cf | 重金属污染 风险 | Er | 潜在生态 风险 | RI | 污泥污染风险 |
---|---|---|---|---|---|
Cf<1 | 无 | Er<40 | 低 | RI<150 | 低 |
1<Cf<3 | 低 | 40<Er<80 | 中等 | 150<RI<300 | 中等 |
3<Cf<6 | 中等 | 80<Er<160 | 较高 | 300<RI<600 | 较高 |
6<Cf<9 | 较高 | 160<Er<320 | 高 | RI>600 | 高 |
Cf>9 | 高 | Er>320 | 极高 |
1 | 戴晓虎. 城镇污水处理厂污泥稳定化处理的必要性和迫切性的思考[J]. 给水排水, 2017, 53(12): 1-5. |
DAI X H. The necessity and urgency of sludge stabilization treatment in municipal sewage treatment plant[J]. Water & Wastewater Engineering, 2017, 53(12): 1-5. | |
2 | LIU X X, WANG Y W, GUI C M, et al. Chemical forms and risk assessment of heavy metals in sludge-biochar produced by microwave-induced low temperature pyrolysis[J]. RSC Advances, 2016, 6(104): 101960-101967. |
3 | XU Y, ZHANG C S, ZHAO M H, et al. Comparison of bioleaching and electrokinetic remediation processes for removal of heavy metals from wastewater treatment sludge[J]. Chemosphere, 2017, 168: 1152-1157. |
4 | ZHEN G Y, LU X Q, KATO H, et al. Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: current advances, full-scale application and future perspectives[J]. Renewable and Sustainable Energy Reviews, 2017, 69: 559-577. |
5 | YUAN X Z, HUANG H J, ZENG G M, et al. Total concentrations and chemical speciation of heavy metals in liquefaction residues of sewage sludge[J]. Bioresource Technology, 2011, 102(5): 4104-4110. |
6 | 解道雷, 孔慈明, 徐龙乾, 等. 城市污泥中重金属存在形态、去除及稳定化研究进展[J]. 化工进展, 2018, 37(1): 330-342. |
XIE D L, KONG C M, XU L Q, et al. Developments of the speciation, removal and stabilization of heavy metals in municipal sludge[J]. Chemical Industry and Engineering Progress, 2018, 37(1): 330-342. | |
7 | 郑金鑫, 邱春生, 王晨晨, 等. Fenton处理对污泥脱水性、重金属形态及生物淋滤效率影响[J]. 化工进展, 2020, 39(2): 805-811. |
ZHENG J X, QIU C S, WANG C C, et al. Effects of Fenton treatment on sewage sludge dewaterability, heavy metal speciation and leaching efficiency[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 805-811. | |
8 | LIN K, KUO J H, LIN C L, et al. Sequential extraction for heavy metal distribution of bottom ash from fluidized bed co-combusted phosphorus-rich sludge under the agglomeration/defluidization process[J]. Waste Management & Research, 2020, 38(2): 122-133. |
9 | RAURET G, LÓPEZ-SÁNCHEZ J F, SAHUQUILLO A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J]. Journal of Environmental Monitoring, 1999, 1(1): 57-61. |
10 | ZHANG J, TIAN Y, ZHANG J, et al. Distribution and risk assessment of heavy metals in sewage sludge after ozonation[J]. Environmental Science and Pollution Research, 2017, 24(6): 5118-5125. |
11 | 陈思思, 杨殿海, 庞维海, 等. 我国剩余污泥厌氧转化的主要影响因素及影响机制研究进展[J]. 化工进展, 2020, 39(4): 1511-1520. |
CHEN S S, YANG D H, PANG W H, et al. Main influencing factors and mechanisms of anaerobic transformation of excess sludge in China[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1511-1520. | |
12 | 卓杨, 韩芸, 程瑶, 等. 高含固污泥水热预处理中碳、氮、磷、硫转化规律[J]. 环境科学, 2015, 36(3): 1006-1012. |
ZHUO Y, HAN Y, CHEN Y, et al. Transformation characteristics of carbon, nitrogen, phosphorus and sulfur during thermal hydrolysis pretreatment of sludge with high solid content[J]. Environmental Science, 2015, 36(3): 1006-1012. | |
13 | ZHENG J X, QIU C S, WANG C C, et al. Influence of thermal hydrolysis treatment on chemical speciation and bioleaching behavior of heavy metals in the sewage sludge[J]. Water Science and Technology, 2021, 83(2): 372-380. |
14 | 孙雪萍, 王安亭, 李新豪, 等. 热水解法处理污泥过程中重金属的迁移规律[J]. 中国给水排水, 2010, 26(17): 66-68, 72. |
SUN X P, WANG A T, LI X H, et al. Migration of heavy metals in sludge treatment by thermal hydrolysis process[J]. China Water & Wastewater, 2010, 26(17): 66-68, 72. | |
15 | 王兴栋, 林景江, 李智伟, 等. 水热处理时间对污泥中氮磷钾及重金属迁移的影响[J]. 环境科学, 2016, 37(3): 1048-1054. |
WANG X D, LIN J J, LI Z W, et al. Effects of hydrothermal treatment time on the transformations of N, P, K and heavy metals in sewage sludge[J]. Environmental Science, 2016, 37(3): 1048-1054. | |
16 | WU H M, LI M, ZHANG L, et al. Research on the stability of heavy metals (Cu, Zn) in excess sludge with the pretreatment of thermal hydrolysis[J]. Water Science and Technology, 2016, 73(4): 890-898. |
17 | 国家环境保护总局《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. |
State Environmental Protection Administration Determination methods for examination of water and wastewater Editorial Board. Determination methods for examination of water and wastewater[M]. 4th ed. Beijing: China Environmental Science Press, 2002. | |
18 | FR/OLUND B, GRIEBE T, NIELSEN P H. Enzymatic activity in the activated-sludge floc matrix[J]. Applied Microbiology and Biotechnology, 1995, 43(4): 755-761. |
19 | DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 1956, 28(3): 350-356. |
20 | MARCHIORETTO M M, BRUNING H, RULKENS W. Heavy metals precipitation in sewage sludge[J]. Separation Science and Technology, 2005, 40(16): 3393-3405. |
21 | HAKANSON L. An ecological risk index for aquatic pollution control—A sedimentological approach[J]. Water Research, 1980, 14(8): 975-1001. |
22 | HUANG H J, YUAN X Z, ZENG G M, et al. Quantitative evaluation of heavy metals’ pollution hazards in liquefaction residues of sewage sludge[J]. Bioresource Technology, 2011, 102(22): 10346-10351. |
23 | ZHANG Q, ZHANG L, SANG W J, et al. Chemical speciation of heavy metals in excess sludge treatment by thermal hydrolysis and anaerobic digestion process[J]. Desalination and Water Treatment, 2016, 57(27): 12770-12776. |
24 | 乔玮, 王伟, 黎攀, 等. 城市污水污泥微波热水解特性研究[J]. 环境科学, 2008, 29(1): 152-157. |
QIAO W, WANG W, LI P, et al. Sewage sludge microwave thermal hydrolysis process[J]. Environment Science, 2008, 29(1): 152-157. | |
25 | JEONG S Y, CHANG S W, NGO H H, et al. Influence of thermal hydrolysis pretreatment on physicochemical properties and anaerobic biodegradability of waste activated sludge with different solids content[J]. Waste Management, 2019, 85: 214-221. |
26 | ZHANG D, FENG Y M, HUANG H B, et al. Recalcitrant dissolved organic nitrogen formation in thermal hydrolysis pretreatment of municipal sludge[J]. Environment International, 2020, 138: 105629. |
27 | YOSHIDA T, ANTAL M J. Sewage sludge carbonization for terra preta applications[J]. Energy & Fuels, 2009, 23(11): 5454-5459. |
28 | WEI L L, LI J J, XUE M, et al. Adsorption behaviors of Cu2+, Zn2+ and Cd2+ onto proteins, humic acid, and polysaccharides extracted from sludge EPS: sorption properties and mechanisms[J]. Bioresource Technology, 2019, 291: 121868. |
29 | 于贺, 邱春生, 王晨晨, 等. Fenton预处理对城市污泥重金属形态及生物淋滤溶出影响[J]. 环境工程学报, 2019, 13(3): 725-731. |
YU H, QIU C S, WANG C C, et al. Influence of Fenton pretreatment on heavy metal speciation and bioleaching efficiency in municipal sludge[J]. Chinese Journal of Environmental Engineering, 2019, 13(3): 725-731. | |
30 | WOO S, YUM S, JUNG J H, et al. Heavy metal-induced differential gene expression of metallothionein in Javanese medaka, Oryzias javanicus [J]. Marine Biotechnology, 2006, 8(6): 654-662. |
31 | ADAM V, PETRLOVA J, POTESIL D, et al. Study of metallothionein modified electrode surface behavior in the presence of heavy metal ions-biosensor[J]. Electroanalysis, 2005, 17(18): 1649-1657. |
32 | RUDD T, STERRITT R M, LESTER J N. Complexation of heavy metals by extracellular polymers in the activated sludge process [J]. Journal (Water Pollution Control Federation), 1984, 56(12): 1260-1268. |
33 | 甘莉, 刘贺琴, 王清萍, 等. 氧化亚铁硫杆菌生物浸出污泥中的重金属离子[J]. 中国环境科学, 2014, 34(10): 2617-2623. |
GAN L, LIU H Q, WANG Q P, et al. Bioleaching of heavy metals in sewage sludge using Acidithiobacillus ferrooxidans [J]. China Environmental Science, 2014, 34(10): 2617-2623. | |
34 | 朱萍, 李晓晨, 马海涛, 等. 污泥中重金属形态分布与可浸出性的相关性研究[J]. 河海大学学报(自然科学版), 2007, 35(2): 121-124. |
ZHU P, LI X C, MA H T, et al. Correlation between chemical forms and leachability of heavy metals in sludge samples[J]. Journal of Hohai University(Natural Sciences), 2007, 35(2): 121-124. | |
35 | ZHENG X R, LIU Y Q, HUANG J M, et al. The influence of variables on the bioavailability of heavy metals during the anaerobic digestion of swine manure[J]. Ecotoxicology and Environmental Safety, 2020, 195: 110457. |
[1] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[2] | LI Zhiyuan, HUANG Yaji, ZHAO Jiaqi, YU Mengzhu, ZHU Zhicheng, CHENG Haoqiang, SHI Hao, WANG Sheng. Characterization of heavy metals during co-pyrolysis of sludge with PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4947-4956. |
[3] | SHI Tianxi, SHI Yonghui, WU Xinying, ZHANG Yihao, QIN Zhe, ZHAO Chunxia, LU Da. Effects of Fe2+ on the performance of Anammox EGSB reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5003-5010. |
[4] | YANG Ziyu, ZHU Ling, WANG Wenlong, YU Chaofan, SANG Yimin. Research and application progress of smoldering combustion technology for oily sludge [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3760-3769. |
[5] | ZHENG Xin, JIA Li, WANG Yanlin, ZHANG Jingchao, CHEN Shihu, QIAO Xiaolei, FAN Baoguo. Effect of sewage sludge mixed with coal slime on heavy metal retention characteristics [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3233-3241. |
[6] | XIU Haoran, WANG Yungang, BAI Yanyuan, ZOU Li, LIU Yang. Combustion characteristics and ash melting behavior of Zhundong coal/municipal sludge blended combustion [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3242-3252. |
[7] | ZHAN Yong, WANG Hui, WEI Tingting, ZHU Xingyu, WANG Xiankai, CHEN Sisi, DONG Bin. In situ reduction effect of Mn2+ enhanced ozone conditioning on sludge in biological treatment process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3253-3260. |
[8] | CHANG Zhankun, ZHANG Chi, SU Bingqin, ZHANG Congzheng, WANG Jian, QUAN Xiaohui. Effect of H2S gaseous substrate on sludge bioleaching treatment efficiency [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2733-2743. |
[9] | YANG Ziqiang, LI Fenghai, GUO Weijie, MA Mingjie, ZHAO Wei. Review on phosphorus migration and transformation during municipal sewage sludge heat treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2081-2090. |
[10] | ZHAO Jiaqi, HUANG Yaji, LI Zhiyuan, DING Xueyu, QI Shuaijie, ZHANG Yuyao, LIU Jun, GAO Jiawei. Characteristics of three-phase products from co-pyrolysis of sewage sludge and PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2122-2129. |
[11] | WANG Yu, YU Guangwei, LIN Jiajia, LI Changjiang, JIANG Ruqing, XING Zhenjiao, YU Cheng. Preparation of building ceramsite from food waste digestate residues, incineration fly ash and sludge biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1039-1050. |
[12] | ZHANG Han, ZHANG Xiaojing, MA Bingbing, NAI Can, LIU Shuoshuo, MA Yongpeng, SONG Yali. Feasibility of starting anammox process with municipal waste sludge as seed sludge [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1080-1088. |
[13] | GUO Yuchen, LIU Qinglin, JIANG Jinyang, ZONG Yongzhong, WANG Jinwei, LI Zhen, LYU Shuxiang. Research progress on recycling methods of chromium-containing sludge [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 575-584. |
[14] | SUN Qianqian, LIU Zhen, LI Rui, ZHANG Xi, YANG Mingde, WU Yulong. Low temperature hydrothermal coupling of ferrous ion activated persulfate to improve the dewatering performance of waste activated sludge [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 595-602. |
[15] | DUAN Yihang, GAO Ningbo, QUAN Cui. Effect of hydrothermal treatment on pyrolysis characteristics and kinetics of oily sludge [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 603-613. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |