Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (4): 1982-1993.DOI: 10.16085/j.issn.1000-6613.2021-0937
• Materials science and technology • Previous Articles Next Articles
REN Shoulong1(), LU Tingzhong2, TANG Bo1(), GAO Ying1(), DAI Yuanzhe1, JI li1, ZHAO Shengwu1
Received:
2021-05-05
Revised:
2021-06-28
Online:
2022-04-25
Published:
2022-04-23
Contact:
TANG Bo,GAO Ying
任首龙1(), 陆庭中2, 唐波1(), 高颖1(), 戴远哲1, 吉利1, 赵胜悟1
通讯作者:
唐波,高颖
作者简介:
任首龙(1997—),男,硕士研究生,研究方向为高发射率陶瓷材料。E-mail:基金资助:
CLC Number:
REN Shoulong, LU Tingzhong, TANG Bo, GAO Ying, DAI Yuanzhe, JI li, ZHAO Shengwu. Research progress on radiative cooling materials[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1982-1993.
任首龙, 陆庭中, 唐波, 高颖, 戴远哲, 吉利, 赵胜悟. 辐射冷却材料研究进展[J]. 化工进展, 2022, 41(4): 1982-1993.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0937
辐射冷却材料种类 | 反射率 | 红外发射率 | 辐射冷却功率 /W·m-2 | 降温幅度 /℃ | 文献 来源 |
---|---|---|---|---|---|
超材料 | 接近1 | 0.99 | 116.6 | 12.2 | [ |
0.9 | >0.92 | 95.84 | 11.14 | [ | |
0.95 | >0.8 | 107 | 12 | [ | |
0.965 | >0.93 | >105 | 40 | [ | |
— | 0.96 | — | 5.6 | [ | |
— | 0.9 | — | 13 | [ | |
— | >0.93 | 93 | — | [ | |
聚合物 | 0.9 | >0.9 | 127 | 8.7 | [ |
— | — | 120 | 9.5 | [ | |
— | — | 300 | 2 | [ | |
0.96±0.03 | 0.97±0.02 | 96 | 6 | [ | |
0.96 | 0.95 | — | 6.2 | [ | |
0.963 | 0.78 | — | 5 | [ | |
0.51 | 0.89 | — | 15.6 | [ | |
0.95 | 0.98 | 85 | 6~8.9 | [ | |
多层薄膜材料 | 0.97 | 0.8 | 40.1±4.1 | 4.9 | [ |
0.95 | 0.85 | 88 | 20 | [ | |
0.97 | 0.75~0.77 | 100 | — | [ | |
— | — | 50~100 | 12.6 | [ | |
0.95 | 0.87 | — | 8.2 | [ | |
0.88 | — | 43 | 2.5 | [ |
辐射冷却材料种类 | 反射率 | 红外发射率 | 辐射冷却功率 /W·m-2 | 降温幅度 /℃ | 文献 来源 |
---|---|---|---|---|---|
超材料 | 接近1 | 0.99 | 116.6 | 12.2 | [ |
0.9 | >0.92 | 95.84 | 11.14 | [ | |
0.95 | >0.8 | 107 | 12 | [ | |
0.965 | >0.93 | >105 | 40 | [ | |
— | 0.96 | — | 5.6 | [ | |
— | 0.9 | — | 13 | [ | |
— | >0.93 | 93 | — | [ | |
聚合物 | 0.9 | >0.9 | 127 | 8.7 | [ |
— | — | 120 | 9.5 | [ | |
— | — | 300 | 2 | [ | |
0.96±0.03 | 0.97±0.02 | 96 | 6 | [ | |
0.96 | 0.95 | — | 6.2 | [ | |
0.963 | 0.78 | — | 5 | [ | |
0.51 | 0.89 | — | 15.6 | [ | |
0.95 | 0.98 | 85 | 6~8.9 | [ | |
多层薄膜材料 | 0.97 | 0.8 | 40.1±4.1 | 4.9 | [ |
0.95 | 0.85 | 88 | 20 | [ | |
0.97 | 0.75~0.77 | 100 | — | [ | |
— | — | 50~100 | 12.6 | [ | |
0.95 | 0.87 | — | 8.2 | [ | |
0.88 | — | 43 | 2.5 | [ |
1 | YU X X, CHEN C. Coupling spectral-dependent radiative cooling with building energy simulation[J]. Building and Environment, 2021, 197: 107841. |
2 | LIM X. The super-cool materials that send heat to space[J]. Nature, 2020, 577(7788): 18-20. |
3 | XU Y P, XUAN Y M, LIU X L. Broadband selective tailoring of spectral features with multiple-scale and multi-material metasurfaces[J]. Optics Communications, 2020, 467: 125691. |
4 | GRANQVIST C G, HJORTSBERG A. Radiative cooling to low temperatures: general considerations and application to selectively emitting SiO films[J]. Journal of Applied Physics, 1981, 52(6): 4205-4220. |
5 | LIU L, ZHANG S Y, MA Z, et al. Effects of Ca2+-Sr2+ doping on the infrared emissivity of LaCrO3 [J]. Ceramics International, 2020, 46(12): 19738-19742. |
6 | ERIKSSON T S, HJORTSBERG A, GRANQVIST C G. Solar absorptance and thermal emittance of Al2O3 films on Al: a theoretical assessment[J]. Solar Energy Materials, 1982, 6(2): 191-199. |
7 | HARRISON A W, WALTON M R. Radiative cooling of TiO2 white paint[J]. Solar Energy, 1978, 20(2): 185-188. |
8 | BERDAHL P. Radiative cooling with MgO and/or LiF layers[J]. Applied Optics, 1984, 23(3): 370-372. |
9 | ERIKSSON T S, JIANG S J, GRANQVIST C G. Surface coatings for radiative cooling applications: silicon dioxide and silicon nitride made by reactive RF-sputtering[J]. Solar Energy Materials, 1985, 12(5): 319-325. |
10 | DIATEZUA D M, THIRY P A, DEREUX A, et al. Silicon oxynitride multilayers as spectrally selective material for passive radiative cooling applications[J]. Solar Energy Materials and Solar Cells, 1996, 40(3): 253-259. |
11 | ZHANG H W, LY K C S, LIU X H, et al. Biologically inspired flexible photonic films for efficient passive radiative cooling[J]. PNAS, 2020, 117(26): 14657-14666. |
12 | YANG J N, GAO X D, WU Y Q, et al. Nanoporous silica microspheres-ploymethylpentene (TPX) hybrid films toward effective daytime radiative cooling[J]. Solar Energy Materials and Solar Cells, 2020, 206: 110301. |
13 | HOSSAIN M M, JIA B H, GU M. A metamaterial emitter for highly efficient radiative cooling[J]. Advanced Optical Materials, 2015, 3(8): 1047-1051. |
14 | ZOU C J, REN G H, HOSSAIN M M, et al. Metal-loaded dielectric resonator metasurfaces for radiative cooling[J]. Advanced Optical Materials, 2017, 5(20): 1700460. |
15 | LIU Y N, WENG X L, ZHANG P, et al. Broadband absorption of infrared dielectric resonators for passive radiative cooling[J]. Journal of Optics, 2021, 23(2): 025102. |
16 | REPHAELI E, RAMAN A, FAN S H. Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling[J]. Nano Letters, 2013, 13(4): 1457-1461. |
17 | WU W C, LIN S H, WEI M M, et al. Flexible passive radiative cooling inspired by Saharan silver ants[J]. Solar Energy Materials and Solar Cells, 2020, 210: 110512. |
18 | ZHU L X, RAMAN A P, FAN S H. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody[J]. PNAS, 2015, 112(40): 12282-12287. |
19 | LI W, SHI Y, CHEN Z, et al. Photonic thermal management of coloured objects[J]. Nature Communications, 2018, 9(1): 4240. |
20 | ZHAI Y, MA Y G, DAVID S N, et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling[J]. Science, 2017, 355(6329): 1062-1066. |
21 | KOU J L, JURADO Z, CHEN Z, et al. Daytime radiative cooling using near-black infrared emitters[J]. ACS Photonics, 2017, 4(3): 626-630. |
22 | ZHOU L, SONG H M, LIANG J W, et al. A polydimethylsiloxane-coated metal structure for all-day radiative cooling[J]. Nature Sustainability, 2019, 2(8): 718-724. |
23 | MENG S, LONG L S, WU Z X, et al. Scalable dual-layer film with broadband infrared emission for sub-ambient daytime radiative cooling[J]. Solar Energy Materials and Solar Cells, 2020, 208: 110393. |
24 | MANDAL J, FU Y K, OVERVIG A C, et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling[J]. Science, 2018, 362(6412): 315-319. |
25 | XIANG B, ZHANG R, LUO Y L, et al. 3D porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling[J]. Nano Energy, 2021, 81: 105600. |
26 | LI D, LIU X, LI W, et al. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling[J]. Nature Nanotechnology, 2021, 16(2): 153-158. |
27 | CHEN Y J, MANDAL J, LI W X, et al. Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling[J]. Science Advances, 2020, 6(17): eaaz5413. |
28 | ZHAO D L, AILI A, ZHAI Y, et al. Subambient cooling of water: toward real-world applications of daytime radiative cooling[J]. Joule, 2019, 3(1): 111-123. |
29 | WANG T, WU Y, SHI L, et al. A structural polymer for highly efficient all-day passive radiative cooling[J]. Nature Communications, 2021, 12: 365. |
30 | ENGELHARD T, JONES E D, VINEY I, et al. Deposition of tellurium films by decomposition of electrochemically-generated H2Te: application to radiative cooling devices[J]. Thin Solid Films, 2000, 370(1/2): 101-105. |
31 | NAGHSHINE B B, SABOONCHI A. Optimized thin film coatings for passive radiative cooling applications[J]. Optics Communications, 2018, 410: 416-423. |
32 | RAMAN A P, ANOMA M A, ZHU L X, et al. Passive radiative cooling below ambient air temperature under direct sunlight[J]. Nature, 2014, 515(7528): 540-544. |
33 | MABCHOUR G, BENLATTAR M, SAADOUNI K, et al. Daytime radiative cooling purposes with selective multilayer design based on Ta2O5 [J]. Optik, 2020, 214: 164811. |
34 | KECEBAS M A, MENGUC M P, KOSAR A, et al. Passive radiative cooling design with broadband optical thin-film filters[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 198: 179-186. |
35 | ZHU Y Q, WANG D, FANG C, et al. A multilayer emitter close to ideal solar reflectance for efficient daytime radiative cooling[J]. Polymers, 2019, 11(7): 1203. |
36 | CHAE D, KIM M, JUNG P H, et al. Spectrally selective inorganic-based multilayer emitter for daytime radiative cooling[J]. ACS Applied Materials & Interfaces, 2020, 12(7): 8073-8081. |
37 | FAN X C, SHI K L, XIA Z L. Using multi-layer structure to improve the radiative cooling performance[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 251: 107052. |
38 | CUNHA N F, AL-RJOUB A, REBOUTA L, et al. Multilayer passive radiative selective cooling coating based on Al/SiO2/SiN x /SiO2/TiO2/SiO2 prepared by dc magnetron sputtering[J]. Thin Solid Films, 2020, 694: 137736. |
39 | WU J Y, CHEN Y X. Broadband radiative cooling and decoration for passively dissipated portable electronic devices by aperiodic photonic multilayers[J]. Annalen Der Physik, 2020, 532(5): 2000001. |
40 | YOU P, LI X, HUANG Y J, et al. High-performance multilayer radiative cooling films designed with flexible hybrid optimization strategy[J]. Materials, 2020, 13(13): 2885. |
41 | LEE G J, KIM Y J, KIM H M, et al. Colored, daytime radiative coolers with thin-film resonators for aesthetic purposes[J]. Advanced Optical Materials, 2018, 6(22): 1800707. |
42 | CAI L L, PENG Y C, XU J W, et al. Temperature regulation in colored infrared-transparent polyethylene textiles[J]. Joule, 2019, 3(6): 1478-1486. |
43 | ZHANG X A, YU S J, XU B B, et al. Dynamic gating of infrared radiation in a textile[J]. Science, 2019, 363(6427): 619-623. |
44 | WEI W, ZHU Y, LI Q, et al. An Al2O3-cellulose acetate-coated textile for human body cooling[J]. Solar Energy Materials and Solar Cells, 2020, 211: 110525. |
45 | DOBSON K D, HODES G, MASTAI Y. Thin semiconductor films for radiative cooling applications[J]. Solar Energy Materials and Solar Cells, 2003, 80(3): 283-296. |
46 | PENG Y C, CHEN J, SONG A Y, et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric[J]. Nature Sustainability, 2018, 1(2): 105-112. |
47 | CAI L L, SONG A Y, LI W, et al. Spectrally selective nanocomposite textile for outdoor personal cooling[J]. Advanced Materials, 2018, 30(35): 1802152. |
48 | GULMINE J V, JANISSEK P R, HEISE H M, et al. Polyethylene characterization by FTIR[J]. Polymer Testing, 2002, 21(5): 557-563. |
49 | 朱丽, 陈萨如拉, 杨洋, 等. 太阳能太阳电池冷却散热技术研究进展[J]. 化工进展, 2017, 36(1): 10-19. |
ZHU Li, CHEN Sarula, YANG Yang, et al. Research progress on heat dissipation technology of photovoltaic cells[J]. Chemical Industry and Engineering Progress, 2017, 36(1): 10-19. | |
50 | ZHU L X, RAMAN A, WANG K X, et al. Radiative cooling of solar cells[J]. Optica, 2014, 1(1): 32-38. |
51 | LONG L S, YANG Y, WANG L P. Simultaneously enhanced solar absorption and radiative cooling with thin silica micro-grating coatings for silicon solar cells[J]. Solar Energy Materials and Solar Cells, 2019, 197: 19-24. |
52 | ZHU L X, RAMAN A P, FAN S H. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody[J]. PNAS, 2015, 112(40): 12282-12287. |
53 | LI W, SHI Y, CHEN K F, et al. A comprehensive photonic approach for solar cell cooling[J]. ACS Photonics, 2017, 4(4): 774-782. |
54 | KUMAR A, CHOWDHURY A. Effect of multilayer selective radiative anti-reflective coating on crystalline silicon photovoltaics for operating temperature reduction[J]. International Journal of Sustainable Energy, 2020, 39(10): 982-996. |
55 | KUMAR A, CHOWDHURY A. Advanced radiative cooler for multi-crystalline silicon solar module[J]. Solar Energy, 2020, 201: 751-759. |
56 | 戴远哲, 唐波, 张振宇, 等. 多孔载体基水合盐相变材料热物性研究进展[J]. 精细化工, 2020, 37(9): 1755-1761, 1824. |
DAI Yuanzhe, TANG Bo, ZHANG Zhenyu, et al. Research progress of thermophysical properties of porous carrier-based hydrated salts phase change materials[J]. Fine Chemicals, 2020, 37(9): 1755-1761, 1824. | |
57 | FANG H, ZHAO D L, YUAN J C, et al. Performance evaluation of a metamaterial-based new cool roof using improved Roof Thermal Transfer Value model[J]. Applied Energy, 2019, 248: 589-599. |
58 | MANDAL J, YANG Y, YU N F, et al. Paints as a scalable and effective radiative cooling technology for buildings[J]. Joule, 2020, 4(7): 1350-1356. |
59 | ROMEO C, ZINZI M. Impact of a cool roof application on the energy and comfort performance in an existing non-residential building. A sicilian case study[J]. Energy and Buildings, 2013, 67: 647-657. |
60 | KOLOKOTRONI M, SHITTU E, SANTOS T, et al. Cool roofs: high tech low cost solution for energy efficiency and thermal comfort in low rise low income houses in high solar radiation countries[J]. Energy and Buildings, 2018, 176: 58-70. |
61 | YANG Z B, SUN H X, XI Y L, et al. Bio-inspired structure using random, three-dimensional pores in the polymeric matrix for daytime radiative cooling[J]. Solar Energy Materials and Solar Cells, 2021, 227: 111101. |
62 | VOORTHUYSEN E D M V, ROES R. Blue sky cooling for parabolic trough plants[J]. Energy Procedia, 2014, 49: 71-79. |
63 | ZEYGHAMI M, KHALILI F. Performance improvement of dry cooled advanced concentrating solar power plants using daytime radiative cooling[J]. Energy Conversion and Management, 2015, 106: 10-20. |
64 | ZHAO D L, YIN X B, XU J T, et al. Radiative sky cooling-assisted thermoelectric cooling system for building applications[J]. Energy, 2020, 190: 116322. |
65 | MATSUTA M, TERADA S, ITO H. Solar heating and radiative cooling using a solar collector-sky radiator with a spectrally selective surface[J]. Solar Energy, 1987, 39(3): 183-186. |
66 | HU M K, PEI G, WANG Q L, et al. Field test and preliminary analysis of a combined diurnal solar heating and nocturnal radiative cooling system[J]. Applied Energy, 2016, 179: 899-908. |
67 | VALL S, MEDRANO M, SOLÉ C, et al. Combined radiative cooling and solar thermal collection: experimental proof of concept[J]. Energies, 2020, 13(4): 893. |
68 | ONO M, CHEN K F, LI W, et al. Self-adaptive radiative cooling based on phase change materials[J]. Optics Express, 2018, 26(18): A777-A787. |
[1] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[2] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[3] | LI Mengyuan, GUO Fan, LI Qunsheng. Simulation and optimization of the third and fourth distillation columns in the recovery section of polyvinyl alcohol production [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 113-123. |
[4] | ZHANG Ruijie, LIU Zhilin, WANG Junwen, ZHANG Wei, HAN Deqiu, LI Ting, ZOU Xiong. On-line dynamic simulation and optimization of water-cooled cascade refrigeration system [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 124-132. |
[5] | XU Chenyang, DU Jian, ZHANG Lei. Chemical reaction evaluation based on graph network [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 205-212. |
[6] | WANG Fu'an. Consumption and emission reduction of the reactor of 300kt/a propylene oxide process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 213-218. |
[7] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[8] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[9] | LI Chunli, HAN Xiaoguang, LIU Jiapeng, WANG Yatao, WANG Chenxi, WANG Honghai, PENG Sheng. Research progress of liquid distributors in packed columns [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4479-4495. |
[10] | DONG Jiayu, WANG Simin. Experimental on ultrasound enhancement of para-xylene crystallization characteristics and regulation mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4504-4513. |
[11] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[12] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[13] | ZHU Chuanqiang, RU Jinbo, SUN Tingting, XIE Xingwang, LI Changming, GAO Shiqiu. Characteristics of selective non-catalytic reduction of NO x with solid polymer denitration agent [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4939-4946. |
[14] | WU Zhenghao, ZHOU Tianhang, LAN Xingying, XU Chunming. AI-driven innovative design of chemicals in practice and perspective [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3910-3916. |
[15] | YANG Zhiqiang, ZENG Jijun, MA Yiding, YU Tao, ZHAO Bo, LIU Yingzhe, ZHANG Wei, LYU Jian, LI Xingwen, ZHANG Boya, TANG Nian, LI Li, SUN Dongwei. Research status and future trend of sulfur hexafluoride alternatives [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4093-4107. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |