Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (4): 1781-1792.DOI: 10.16085/j.issn.1000-6613.2021-0903
• Chemical processes and equipment • Previous Articles Next Articles
JIANG Ning(), ZHANG Yuanyi, FAN Wei, ZHAO Shichao, XU Xinjie, XU Yingjie
Received:
2021-04-27
Revised:
2021-06-02
Online:
2022-04-25
Published:
2022-04-23
Contact:
JIANG Ning
通讯作者:
蒋宁
作者简介:
蒋宁(1977—),副教授,硕士生导师,研究方向为过程能量集成。E-mail:基金资助:
CLC Number:
JIANG Ning, ZHANG Yuanyi, FAN Wei, ZHAO Shichao, XU Xinjie, XU Yingjie. Cleaning decision of heat exchanger network based on intelligent prediction and mechanism[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1781-1792.
蒋宁, 张元毅, 范伟, 赵世超, 徐新杰, 徐英杰. 基于智能预测和机理模型的换热网络清洗决策[J]. 化工进展, 2022, 41(4): 1781-1792.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0903
项目 | 均值 | 最小值 | 最大值 | 中值 |
---|---|---|---|---|
时间/h | 32.5 | 5 | 60 | 32.5 |
流速/m·s-1 | 0.481 | 0.481 | 0.484 | 0.482 |
Re | 2559 | 2553 | 2573 | 2558 |
管壁温度/℃ | 252 | 246 | 264 | 251 |
腔体温度/℃ | 76.7 | 74.4 | 78.8 | 76.73 |
污垢热阻变化率/m2·K·kW-1·h-1 | 0.0002 | -0.0007 | 0.0014 | 0.0001 |
项目 | 均值 | 最小值 | 最大值 | 中值 |
---|---|---|---|---|
时间/h | 32.5 | 5 | 60 | 32.5 |
流速/m·s-1 | 0.481 | 0.481 | 0.484 | 0.482 |
Re | 2559 | 2553 | 2573 | 2558 |
管壁温度/℃ | 252 | 246 | 264 | 251 |
腔体温度/℃ | 76.7 | 74.4 | 78.8 | 76.73 |
污垢热阻变化率/m2·K·kW-1·h-1 | 0.0002 | -0.0007 | 0.0014 | 0.0001 |
物流 | 进口温度Tin/°C | 出口温度Tout/°C | 热容流率CP/kW·K-1 | 单位费用UC/USD·kW-1·a-1 |
---|---|---|---|---|
H1 | 140 | 40 | 470 | — |
H2 | 160 | 120 | 825 | — |
H3 | 210 | 45 | 42.42 | — |
H4 | 260 | 60 | 100 | — |
H5 | 280 | 210 | 357.14 | — |
H6 | 350 | 170 | 50 | — |
H7 | 380 | 160 | 136.36 | — |
C1 | 270 | 385 | 826.09 | — |
C2 | 130 | 270 | 500 | — |
C3 | 20 | 130 | 363.64 | — |
HU | 500 | 499 | — | 60 |
CU | 20 | 40 | — | 5 |
物流 | 进口温度Tin/°C | 出口温度Tout/°C | 热容流率CP/kW·K-1 | 单位费用UC/USD·kW-1·a-1 |
---|---|---|---|---|
H1 | 140 | 40 | 470 | — |
H2 | 160 | 120 | 825 | — |
H3 | 210 | 45 | 42.42 | — |
H4 | 260 | 60 | 100 | — |
H5 | 280 | 210 | 357.14 | — |
H6 | 350 | 170 | 50 | — |
H7 | 380 | 160 | 136.36 | — |
C1 | 270 | 385 | 826.09 | — |
C2 | 130 | 270 | 500 | — |
C3 | 20 | 130 | 363.64 | — |
HU | 500 | 499 | — | 60 |
CU | 20 | 40 | — | 5 |
1 | 蒋宁, 谢小东, 范伟, 等. 数据驱动的固定拓扑结构换热网络优化改造方法[J]. 化工进展, 2019, 38(10): 4452-4460. |
JIANG Ning, XIE Xiaodong, FAN Wei, et al. Data-driven optimization retrofit method with fixed topology structure for heat exchanger network[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4452-4460. | |
2 | 吴敏, 肖武, 贺高红. 基于遗传/模拟退火算法考虑压降的换热网络优化改造[J]. 化工进展, 2015, 34(4): 1171-1177. |
WU Min, XIAO Wu, HE Gaohong. Retrofit of heat exchanging network considering pressure drop based on GA/SA[J]. Chemical Industry and Engineering Progress, 2015, 34(4): 1171-1177. | |
3 | KERN D. A theoretical analysis of thermal surface fouling[J]. British Chemical Engineering, 1959, 4: 258-262. |
4 | EBERT W, PANCHAL C B. Analysis of Exxon crude-oil-slip stream coking data[R]. 1995. |
5 | KNUDSEN J G, LIN D, EBERT W A. The determination of the threshold fouling curve for a crude oil[J]. Understanding Heat Exchanger Fouling and its Mitigation, 1999, 265: 272. |
6 | POLLEY G T, WILSON D I, YEAP B L, et al. Evaluation of laboratory crude oil threshold fouling data for application to refinery pre-heat trains[J]. Applied Thermal Engineering, 2002, 22(7): 777-788. |
7 | 樊绍胜. 冷凝器污垢的灰色预测[J]. 电力科学与技术学报, 2007, 22(2): 12-15. |
FAN Shaosheng. Gray theory based prediction for condenser fouling[J]. Journal of Electric Power Science and Technology, 2007, 22(2): 12-15. | |
8 | 徐志明, 刘艳, 文孝强. 基于灰色理论模型的交叉缩放椭圆管污垢特性预测[J]. 华北电力大学学报(自然科学版), 2011, 38(4): 96-100. |
XU Zhiming, LIU Yan, WEN Xiaoqiang. Forecasting fouling characteristics of alternating elliptical axis tube based on grey theory model[J]. Journal of North China Electric Power University (Natural Science Edition), 2011, 38(4): 96-100. | |
9 | SUN Lingfang, ZHANG Yingying, RINA Saqi. Fouling prediction of heat exchanger based on genetic optimal SVM algorithm[C]//2009 Third International Conference on Genetic and Evolutionary Computing. October 14-17, 2009, Guilin, China. IEEE, 2009: 112-116. |
10 | AMINIAN J, SHAHHOSSEINI S. Evaluation of ANN modeling for prediction of crude oil fouling behavior[J]. Applied Thermal Engineering, 2008, 28(7): 668-674. |
11 | SUNDAR S, RAJAGOPAL M C, ZHAO H Y, et al. Fouling modeling and prediction approach for heat exchangers using deep learning[J]. International Journal of Heat and Mass Transfer, 2020, 159: 120112. |
12 | SMAÏLI F, ANGADI D K, HATCH C M, et al. Optimization of scheduling of cleaning in heat exchanger networks subject to fouling: sugar industry case study[J]. Food and Bioproducts Processing, 1999, 77(2): 159-164. |
13 | BOTT R, MÜLLER-STEINHAGEN H. Fouling in heat exchangers. Rugby: IChemE[J]. Chemical Engineering Research and Design, 2001, 79(2): 216. |
14 | ISHIYAMA E M, PATERSON W R, WILSON D IAN. Optimum cleaning cycles for heat transfer equipment undergoing fouling and ageing[J]. Chemical Engineering Science, 2011, 66(4): 604-612. |
15 | POGIATZIS T, ISHIYAMA E M, PATERSON W R, et al. Identifying optimal cleaning cycles for heat exchangers subject to fouling and ageing[J]. Applied Energy, 2012, 89(1): 60-66. |
16 | POGIATZIS T A, WILSON D I, VASSILIADIS V S. Scheduling the cleaning actions for a fouled heat exchanger subject to ageing: MINLP formulation[J]. Computers & Chemical Engineering, 2012, 39: 179-185. |
17 | GEORGIADIS M C, PAPAGEORGIOU L G. Optimal energy and cleaning management in heat exchanger networks under fouling[J]. Chemical Engineering Research and Design, 2000, 78(2): 168-179. |
18 | 樊婕, 李继龙, 刘琳琳, 等. 换热器网络设备面积与清洗时序同步优化[J]. 化工学报, 2014, 65(11): 4484-4489. |
FAN Jie, LI Jilong, LIU Linlin, et al. Simultaneous optimization of areas and cleaning schedule for heat exchanger networks[J]. CIESC Journal, 2014, 65(11): 4484-4489. | |
19 | BIYANTO T R, KHAIRANSYAH M D, BAYUAJI R, et al. Imperialist competitive algorithm (ICA) for heat exchanger network (HEN) cleaning schedule optimization[J]. Procedia Computer Science, 2015, 72: 5-12. |
20 | XIAO Feng, DU Jian, LIU Linlin, et al. Simultaneous optimization of synthesis and scheduling of cleaning in flexible heat exchanger networks[J]. Chinese Journal of Chemical Engineering, 2010, 18(3): 402-411. |
21 | DIABY A L, MIKLAVCIC S J, ADDAI-MENSAH J. Optimization of scheduled cleaning of fouled heat exchanger network under ageing using genetic algorithm[J]. Chemical Engineering Research and Design, 2016, 113: 223-240. |
22 | ZUBAIR S M, QURESHI B A. A probabilistic fouling and cost model for plate-and-frame heat exchangers[J]. International Journal of Energy Research, 2006, 30(1): 1-17. |
23 | SALEH Z, SHEIKHOLESLAMI R, WATKINSON A P. Heat exchanger fouling by a light Australian crude oil[C]//Heat Exchanger Fouling and Cleaning Fundamentals and Applications, Santa Fe, 2003. |
24 | JAFARI NASR M R, MAJIDI GIVI M. Modeling of crude oil fouling in preheat exchangers of refinery distillation units[J]. Applied Thermal Engineering, 2006, 26(14/15): 1572-1577. |
25 | SUNDARAM B N. The effects of oxygen on synthetic crude oil fouling[D]. British Columbia: University of British Columbia, 1998. |
26 | AHMAD S, PATELA E. Supertarget: applications software for oil refinery retrofit[R]. American Institute of Chemical Engineers, New York, 1987. |
27 | CHEN P C, DU J. Synthesis of heat exchanger network subject to fouling and ageing with the cleaning schedule optimized[C]//Proceedings of the 6th International Conference on Process Systems Engineering (PSE ASIA). 2013: 27. |
[1] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[2] | WANG Yungang, JIAO Jian, DENG Shifeng, ZHAO Qinxin, SHAO Huaishuang. Experimental analysis of condensation heat transfer and synergistic desulfurization [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4230-4237. |
[3] | ZHAO Jian, ZHUO Zewen, DONG Hang, GAO Wenjian. A new method for observation of microstructure of waxy crude oil and its emulsion system [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4372-4384. |
[4] | WU Ya, ZHAO Dan, FANG Rongmiao, LI Jingyao, CHANG Nana, DU Chunbao, WANG Wenzhen, SHI Jun. Research progress on highly efficient demulsifiers for complex crude oil emulsions and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4398-4413. |
[5] | SUN Zhengnan, LI Hongjing, JING Guolin, ZHANG Funing, YAN Biao, LIU Xiaoyan. Application of EVA and its modified polymer in crude oil pour point depressant field [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2987-2998. |
[6] | QI Chenglu, ZHANG Zhongliang, WANG Mingchao, LI Yaopeng, GONG Xiaohui, SUN Peng, ZHENG Bin. Effects of built-in tube bundle arrangements on solid particle flow characteristics in heat exchangers [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2306-2314. |
[7] | ZHU Tianyu, SUN Lin, REN Chao, LUO Xionglin. Sliding window analysis and slow-release margin optimal control for heat exchanger networks based on full cycle sustainable energy saving [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1195-1205. |
[8] | SUN Chongzheng, FAN Xin, LI Yuxing, XU Jie, HAN Hui, LIU Liang. Coupling characteristics of hydrogen heat transfer and normal-parahydrogen conversion in offshore porous media channels [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1281-1290. |
[9] | GUAN Yongxin, ZHOU Qiang, CHEN Liyi, LI Hui, LIU Xiaonan. Research progress of organic silicon and organic fluorine low surface energy antifouling coatings [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5286-5298. |
[10] | LIU Junkang, WANG Hongchao, XIONG Tong, YAN Gang, GUO Ning, LIU Rui. Review on research status of circuit optimization of finned tube heat exchanger in heat pump and air conditioning [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 107-117. |
[11] | LIU Yajuan. Research status of membrane fouling mitigation by PAC in submerged PAC-AMBRs [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 457-468. |
[12] | YANG Junling, LI Ao, CHEN Yue, ZHU Guangcan, LI Shuping, LU Yongze. Infrared spectroscopy-multivariate curve resolution analysis of aluminum-based coagulants to mitigate membrane fouling [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5132-5141. |
[13] | GU Xin, ZHANG Qianxin, WANG Chaopeng, FANG Yunge, LI Ning, WANG Yongqing. Analysis of heat transfer and resistance performance of U-shaped baffle heat exchanger [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3465-3474. |
[14] | LIU Shijie, MO Xun, TU Aimin, ZHU Dongsheng, TAN Lianyuan. Shell-side heat transfer enhancement of a novel longitudinal flow oil cooler [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3475-3482. |
[15] | WANG Yujing, ZHANG Nan, LIU Shejiang, MIAO Chen, LIU Xiuli. Performance and mechanism of thermochemical technology for oily sludge cleaning [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3333-3340. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |