Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (5): 2536-2545.DOI: 10.16085/j.issn.1000-6613.2020-1285
• Energy processes and technology • Previous Articles Next Articles
JIANG Kunqing1,4(), HUANG Sihao1,4, LI Huashan1,2,3, BU Xianbiao1,2,3()
Received:
2020-07-07
Online:
2021-05-24
Published:
2021-05-06
Contact:
BU Xianbiao
蒋坤卿1,4(), 黄思浩1,4, 李华山1,2,3, 卜宪标1,2,3()
通讯作者:
卜宪标
作者简介:
蒋坤卿(1996—),男,硕士研究生,研究方向为地热能利用。E-mail:基金资助:
CLC Number:
JIANG Kunqing, HUANG Sihao, LI Huashan, BU Xianbiao. Performance analysis of single well enhanced geothermal system[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2536-2545.
蒋坤卿, 黄思浩, 李华山, 卜宪标. 单井增强型地热系统性能分析[J]. 化工进展, 2021, 40(5): 2536-2545.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1285
物质 | 密度/kg·m-3 | 热导率/W·m-1·K-1 | 比热容/J·kg-1·K-1 |
---|---|---|---|
水泥 | 2140 | 0.8 | 1900 |
岩石 | 2800 | 3.5 | 920 |
内管 | 910 | 0.21 | 1900 |
外管 | 8030 | 43.75 | 502.48 |
水 | 998.2 | 0.6 | 4182 |
物质 | 密度/kg·m-3 | 热导率/W·m-1·K-1 | 比热容/J·kg-1·K-1 |
---|---|---|---|
水泥 | 2140 | 0.8 | 1900 |
岩石 | 2800 | 3.5 | 920 |
内管 | 910 | 0.21 | 1900 |
外管 | 8030 | 43.75 | 502.48 |
水 | 998.2 | 0.6 | 4182 |
网格数量 | 出口温度/K |
---|---|
84234 | 307.92 |
105084 | 308.02 |
130284 | 308.03 |
231634 | 308.01 |
308334 | 308.01 |
535634 | 308.01 |
网格数量 | 出口温度/K |
---|---|
84234 | 307.92 |
105084 | 308.02 |
130284 | 308.03 |
231634 | 308.01 |
308334 | 308.01 |
535634 | 308.01 |
1 | TEMPLETON J D, GHOREISHI-MADISEH S A, HASSANI F, et al. Abandoned petroleum wells as sustainable sources of geothermal energy[J]. Energy, 2014, 70: 366-373. |
2 | RYBACH L. Geothermal energy: sustainability and the environment[J]. Geothermics, 2003, 32(4-6): 463-470. |
3 | OLASOLO P, JUÁREZ M C, MORALES M P, et al. Enhanced geothermal systems (EGS): a review[J]. Renewable and Sustainable Energy Reviews, 2016, 56: 133-144. |
4 | BARBIER E. Geothermal energy technology and current status: an overview[J]. Renewable and Sustainable Energy Reviews, 2002, 6(1/2): 3-65. |
5 | 许天福, 袁益龙, 姜振蛟, 等. 干热岩资源和增强型地热工程: 国际经验和我国展望[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1139-1152. |
XU Tianfu, YUAN Yilong, JIANG Zhenjiao, et al. Hot dry rock and enhanced geothermal engineering: international experience and China prospect[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(4): 1139-1152. | |
6 | 廖志杰, 万天丰, 张振国. 增强型地热系统: 潜力大、开发难[J]. 地学前缘, 2015, 22(1): 335-344. |
LIAO Zhijie, WAN Tianfeng, ZHANG Zhenguo. The enhanced geothermal system(EGS): huge capacity and difficult exploitation[J]. Earth Science Frontiers, 2015, 22(1): 335-344. | |
7 | KUJAWA T, NOWAK W, STACHEL A A. Utilization of existing deep geological wells for acquisitions of geothermal energy[J]. Energy, 2006, 31: 650-664. |
8 | 李克文, 王磊, 毛小平, 等. 油田伴生地热资源评价与高效开发[J]. 科技导报, 2012, 30(32): 32-41. |
LI Kewen, WANG Lei, MAO Xiaoping, et al. Evaluation and efficient development of geothermal resource associated with oilfield[J]. Science & Technology Review, 2012, 30(32): 32-41. | |
9 | MORITA K, BOLLMEIER W S, MIZOGAMI H. An experiment to prove the concept of the downhole coaxial heat-exahanger (DCHE) in Hawaii[C]//MATA G. Anniversary-Geothermal Resources Council. 20th. Davis: Geothermal Resources Council, 1992: 9-16. |
10 | BU Xianbiao, JIANG Kunqing, LI Huashan. Performance of geothermal single well for intermittent heating[J]. Energy, 2019, 186: 115858. |
11 | SONG Xianzhi, WANG Gaosheng, SHI Yu, et al. Numerical analysis of heat extraction performance of a deep coaxial borehole heat exchanger geothermal system[J]. Energy, 2018, 164: 1298-1310. |
12 | DENG Jiewen, WEI Qingpeng, HE Shi, et al. Simulation analysis on the heat performance of deep borehole heat exchangers in medium-depth geothermal heat pump systems[J]. Energies, 2020, 13: 28. |
13 | DENG Jiewen, HE Shi, WEI Qingpeng, et al. Field test and optimization of heat pumps and water distribution systems in medium-depth geothermal heat pump systems[J]. Energy and Buildings, 2020, 209: 14. |
14 | LIU Jun, WANG Fenghao, CAI Wanlong, et al. Numerical investigation on the effects of geological parameters and layered subsurface on the thermal performance of medium-deep borehole heat exchanger[J]. Renewable Energy, 2020, 149: 384-399. |
15 | LUO Yongqiang, YU Jinghua, YAN Tian, et al. Improved analytical modeling and system performance evaluation of deep coaxial borehole heat exchanger with segmented finite cylinder-source method[J]. Energy and Buildings, 2020, 212: 16. |
16 | PAN Sheng, KONG Yanlong, CHEN Chaofan, et al. Optimization of the utilization of deep borehole heat exchangers[J]. Geothermal Energy, 2020, 8(1): 1-20. |
17 | MOKHTARI H, HADIANNASAB H, MOSTAFAVI M, et al. Determination of optimum geothermal Rankine cycle parameters utilizing coaxial heat exchanger[J]. Energy, 2016, 102: 260-275. |
18 | CHENG Wenlong, LI Tongtong, NIAN Yongle, et al. Evaluation of working fluids for geothermal power generation from abandoned oil wells[J]. Applied Energy, 2014, 118: 238-245. |
19 | WIGHT N M, BENNETT N S. Geothermal energy from abandoned oil and gas wells using water in combination with a closed wellbore[J]. Applied Thermal Engineering, 2015, 89: 908-915. |
20 | BU Xianbiao, MA Weibin, LI Huashan. Geothermal energy production utilizing abandoned oil and gas wells[J]. Renewable Energy, 2012, 41: 80-85. |
21 | DAVIS A P, MICHAELIDES E E. Geothermal power production from abandoned oil wells[J]. Energy, 2009, 34(7): 866-872. |
22 | CHENG Wenlong, LI Tongtong, NIAN Yongle, et al. Studies on geothermal power generation using abandoned oil wells[J]. Energy, 2013, 59: 248-254. |
23 | ALIMONTI C, SOLDO E. Study of geothermal power generation from a very deep oil well with a wellbore heat exchanger[J]. Renewable Energy, 2016, 86: 292-301. |
24 | 孔彦龙, 陈超凡, 邵亥冰, 等. 深井换热技术原理及其换热量评估[J]. 地球物理学报, 2017, 60: 4741-4752. |
KONG Yanlong, CHEN Chaofan, SHAO Haibing, et al. Principle and capacity quantification of deep-borehole heat exchangers[J]. Chinese Journal of Geophysics, 2017, 60: 4741-4752. | |
25 | WANG Zhe, MCCLURE M W, HORNE R N. A single-well EGS configuration using a thermosiphon[C]//Thirty-Fourth Workshop on Geothermal Reservoir Engineering, 2009. |
26 | HUANG Wenbo, CAO Wenjiong, JIANG Fangming. A novel single-well geothermal system for hot dry rock geothermal energy exploitation[J]. Energy, 2018, 162: 630-644. |
27 | DAI Chuanshan, LI Jiashu, SHI Yu, et al. An experiment on heat extraction from a deep geothermal well using a downhole coaxial open loop design[J]. Applied Energy, 2019, 252: 113447. |
28 | CHENG Wenlong, LIU Jian, NIAN Yongle, et al. Enhancing geothermal power generation from abandoned oil wells with thermal reservoirs[J]. Energy, 2016, 109: 537-545. |
29 | FENG Y, TYAGI M, WHITE C D. A downhole heat exchanger for horizontal wells in low-enthalpy geopressured geothermal brine reservoirs[J]. Geothermics, 2015, 53: 368-378. |
30 | PANEL M L. The future of geothermal energy: impact of enhanced geothermal systems[EGS] on the united states in the 21st century[EB/OL]. 2006. |
31 | HOLZBECHER E O. Modeling density-driven flow in porous media[M]. Berlin, Heidelberg: Springer, 1998. |
32 | BATAILLE A, GENTHON P, RABINOWICZ M, et al. Modeling the coupling between free and forced convection in a vertical permeable slot: implications for the heat production of an enhanced geothermal system[J]. Geothermics, 2006, 35(5/6): 654-682. |
33 | BU Xianbiao, RAN Yunmin, ZHANG Dongdong. Experimental and simulation studies of geothermal single well for building heating[J]. Renewable Energy, 2019, 143: 1902-1909. |
34 | LI J, DAI C, LI F. Experiment and modeling of heat extraction from a cylindrical saturated porous tank with a coaxial open loop[C]// Proceedings World Geothermal Congress. Reykjavik, Iceland, 2020. |
35 | BECKERMANN C, VISKANTA R, RAMADHYANI S. Natural convection in vertical enclosures containing simultaneously fluid and porous layers[J]. Journal of Fluid Mechanics, 1988, 186: 257-284. |
36 | CHEN Jiliang, JIANG Fangming. Designing multi-well layout for enhanced geothermal system to better exploit hot dry rock geothermal energy[J]. Renewable Energy, 2015, 74: 37-48. |
37 | FANG Liang, DIAO Nairen, SHAO Zhukun, et al. A computationally efficient numerical model for heat transfer simulation of deep borehole heat exchangers[J]. Energy and Buildings, 2018, 167: 79-88. |
38 | KALMÁR L, MEDGYES T, SZANYI J. Specifying boundary conditions for economical closed loop deep geothermal heat production[J]. Energy, 2020, 196: 117068. |
39 | CAO Wenjiong, HUANG Wenbo, JIANG Fangming. Numerical study on variable thermophysical properties of heat transfer fluid affecting EGS heat extraction[J]. International Journal of Heat and Mass Transfer, 2016, 92: 1205-1217. |
40 | 陈雁. 地热井下换热器的模拟试验与理论研究[D]. 天津: 天津大学, 2009. |
CHEN Yan. Experimental simulation and theoretical investigation on downhole heat exchanger[D]. Tianjin: Tianjin University, 2009. |
[1] | XIAO Hui, ZHANG Xianjun, LAN Zhike, WANG Suhao, WANG Sheng. Advances in flow and heat transfer research of liquid metal flowing across tube bundles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 10-20. |
[2] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[3] | ZHAO Chen, MIAO Tianze, ZHANG Chaoyang, HONG Fangjun, WANG Dahai. Heat transfer characteristics of ethylene glycol aqueous solution in slit channel under negative pressure [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 148-157. |
[4] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[5] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[6] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[7] | LI Ning, LI Jinke, DONG Jinshan. Research and development of porous medium burner in ethylene cracking furnace [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 73-83. |
[8] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[9] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[10] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[11] | XU Maoyu, TAO Shuai, QI Cong, LIANG Lin. Start-up and temperature fluctuation of loop heat pipe with flat disk evaporator [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4531-4537. |
[12] | ZHANG Fan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Initializing distillation column simulation based on the improved constant heat transport model [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4550-4558. |
[13] | ZHAO Xi, MA Haoran, LI Ping, HUANG Ailing. Simulation analysis and optimization design of mixing performance of staggered impact micromixer [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4559-4572. |
[14] | BU Zhicheng, JIAO Bo, LIN Haihua, SUN Hongyuan. Review on computational fluid dynamics (CFD) simulation and advances in pulsating heat pipes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4167-4181. |
[15] | WANG Jiansheng, ZHANG Huipeng, LIU Xueling, FU Yuguo, ZHU Jianxiao. Analysis of flow and heat transfer characteristics in porous media reservoir [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4212-4220. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |