Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (4): 2278-2289.DOI: 10.16085/j.issn.1000-6613.2020-0994
• Resources and environmental engineering • Previous Articles Next Articles
NIE Yudong1,2(), LI Jin1, ZHANG Xianming1
Received:
2020-06-04
Online:
2021-04-14
Published:
2021-04-05
Contact:
NIE Yudong
通讯作者:
聂煜东
作者简介:
聂煜东(1987—),男,工学博士,助理研究员,研究方向为水污染处理。E-mail:基金资助:
CLC Number:
NIE Yudong, LI Jin, ZHANG Xianming. Research progress on membrane fouling and its pretreatment technology in water treatment[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2278-2289.
聂煜东, 李金, 张贤明. 水处理过程中膜污染问题及其预处理技术研究进展[J]. 化工进展, 2021, 40(4): 2278-2289.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0994
分类依据 | 膜污染类型 | 污染类型介绍 |
---|---|---|
膜类型[ | 微滤膜污染 | 过滤精度一般在0.1~5μm,用于简单的粗过滤,难以去除大分子有机物、无机盐,但能阻挡悬浮颗粒、部分微生物、大尺寸胶体穿透[ |
超滤膜污染 | 过滤精度在0.001~0.1μm,是一种利用压差的膜法分离技术,能够截留住分子量≥10000的有机物、全部胶体及微生物等[ | |
纳滤膜污染 | 过滤精度介于超滤和反渗透之间,运行压力为0.3~1.4MPa,能有效去除水中的二价及高价离子、无机盐及低分子有机化合物[ | |
反渗透膜污染 | 过滤精度为0.0001μm左右,能够截留大部分无机离子[ | |
可逆性[ | 可逆膜污染 | 由污染物颗粒所引起的浓差极化和表面附着等污染,可以通过水力冲洗、气泡冲刷等物理方式去除污染物,恢复透水能力[ |
不可逆膜污染 | 由溶解性有机物所引起的吸附、附着等污染只能采用化学方式才会恢复膜的初始性能[ | |
污染产生位置[ | 膜表面覆盖污染 | 一般是指胶体颗粒物质、大分子有机物等污染物在膜表面堆积形成的污染 |
膜内部堵塞污染 | 指部分小分子有机物通过堵塞和吸附的形式沉积于膜孔内部 | |
污染物种类[ | 颗粒物污染 | 悬浮颗粒及胶体颗粒在膜表面上聚集,主要造成膜孔堵塞以及后续形成滤饼层 |
有机污染 | 主要是蛋白质、多糖、脂质等有机聚合物在膜表面附着,且水体中的溶解性有机物发生浓度极化现象,在膜表面积累[ | |
无机污染 | 主要污染源是含钙和镁等的硫酸盐或碳酸盐,是盐溶液在膜表面浓缩的结果。水体中无机污染物的增加将会加速颗粒污染物、有机物等在膜表面的积累[ | |
微生物污染 | 主要是微生物及其代谢产物组成的生物粘泥黏附在膜表面,主要引起纳滤(NF)和反渗透(RO)膜污染[ |
分类依据 | 膜污染类型 | 污染类型介绍 |
---|---|---|
膜类型[ | 微滤膜污染 | 过滤精度一般在0.1~5μm,用于简单的粗过滤,难以去除大分子有机物、无机盐,但能阻挡悬浮颗粒、部分微生物、大尺寸胶体穿透[ |
超滤膜污染 | 过滤精度在0.001~0.1μm,是一种利用压差的膜法分离技术,能够截留住分子量≥10000的有机物、全部胶体及微生物等[ | |
纳滤膜污染 | 过滤精度介于超滤和反渗透之间,运行压力为0.3~1.4MPa,能有效去除水中的二价及高价离子、无机盐及低分子有机化合物[ | |
反渗透膜污染 | 过滤精度为0.0001μm左右,能够截留大部分无机离子[ | |
可逆性[ | 可逆膜污染 | 由污染物颗粒所引起的浓差极化和表面附着等污染,可以通过水力冲洗、气泡冲刷等物理方式去除污染物,恢复透水能力[ |
不可逆膜污染 | 由溶解性有机物所引起的吸附、附着等污染只能采用化学方式才会恢复膜的初始性能[ | |
污染产生位置[ | 膜表面覆盖污染 | 一般是指胶体颗粒物质、大分子有机物等污染物在膜表面堆积形成的污染 |
膜内部堵塞污染 | 指部分小分子有机物通过堵塞和吸附的形式沉积于膜孔内部 | |
污染物种类[ | 颗粒物污染 | 悬浮颗粒及胶体颗粒在膜表面上聚集,主要造成膜孔堵塞以及后续形成滤饼层 |
有机污染 | 主要是蛋白质、多糖、脂质等有机聚合物在膜表面附着,且水体中的溶解性有机物发生浓度极化现象,在膜表面积累[ | |
无机污染 | 主要污染源是含钙和镁等的硫酸盐或碳酸盐,是盐溶液在膜表面浓缩的结果。水体中无机污染物的增加将会加速颗粒污染物、有机物等在膜表面的积累[ | |
微生物污染 | 主要是微生物及其代谢产物组成的生物粘泥黏附在膜表面,主要引起纳滤(NF)和反渗透(RO)膜污染[ |
类型[ | 常用手段 | 优点 | 缺点 | 能耗及成本 | 适用膜类型 | |||
---|---|---|---|---|---|---|---|---|
微滤膜[ | 超滤膜[ | 纳滤膜[ | 反渗透膜[ | |||||
混凝预处理 | 投加混凝剂(铝、铁、钛系 混凝剂等) | 高效去除有机污染物和颗粒物,降低工艺成本[ | 具有选择性,难以去除亲水性有机物[ | 运行成本低,但传统混凝剂混凝后会产生大量化学污泥,导致多余成本及能耗[ | ** | *** | ** | * |
吸附预处理 | 添加吸附材料(粉末活性炭、树脂、热化氧化铝颗粒等) | 高效去除低分子有机污染物,减少消毒副产物[ | 基建投资费用高、占地面积大[ | 基建投资费用高[ | *** | *** | ** | * |
氧化预处理 | 添加氧化剂(臭氧、液氯等)[ | 高效去除水体中的颜色及悬浮固体和微生物[ | 残留氧化剂会破坏膜材料[ | 运行成本低,但残留氧化剂会破坏膜材料[ | ** | *** | ** | * |
化学沉淀 预处理 | 投加化学药剂 | 去除水中有机物、无机物、操作简便[ | 造成二次污染、处理效率低[ | 成本低[ | ** | ** | *** | * |
电化学 预处理 | 添加电极[ | 去除难降解有机污染物,工艺灵活、环境友好型预处理法[ | 电催化效率低影响防污性能、电极易腐蚀[ | 成本较低,能耗较高[ | * | ** | * | * |
生物预处理 | 膜前培养微生物 | 有效去除“三致”前体物、绿色低碳[ | 不能去除难生物降解性物质;易堵塞滤头和曝气头[ | 成本低,低能耗[ | * | ** | ** | * |
组合工艺 | 各种预处理方法进行组合 | 最大限度发挥各个预处理方法的优点 | 工艺较复杂,各预处理方法之间可能存在互斥现象 | 根据组合工艺 不同,成本有较 大差异 | ** | ** | * | ** |
类型[ | 常用手段 | 优点 | 缺点 | 能耗及成本 | 适用膜类型 | |||
---|---|---|---|---|---|---|---|---|
微滤膜[ | 超滤膜[ | 纳滤膜[ | 反渗透膜[ | |||||
混凝预处理 | 投加混凝剂(铝、铁、钛系 混凝剂等) | 高效去除有机污染物和颗粒物,降低工艺成本[ | 具有选择性,难以去除亲水性有机物[ | 运行成本低,但传统混凝剂混凝后会产生大量化学污泥,导致多余成本及能耗[ | ** | *** | ** | * |
吸附预处理 | 添加吸附材料(粉末活性炭、树脂、热化氧化铝颗粒等) | 高效去除低分子有机污染物,减少消毒副产物[ | 基建投资费用高、占地面积大[ | 基建投资费用高[ | *** | *** | ** | * |
氧化预处理 | 添加氧化剂(臭氧、液氯等)[ | 高效去除水体中的颜色及悬浮固体和微生物[ | 残留氧化剂会破坏膜材料[ | 运行成本低,但残留氧化剂会破坏膜材料[ | ** | *** | ** | * |
化学沉淀 预处理 | 投加化学药剂 | 去除水中有机物、无机物、操作简便[ | 造成二次污染、处理效率低[ | 成本低[ | ** | ** | *** | * |
电化学 预处理 | 添加电极[ | 去除难降解有机污染物,工艺灵活、环境友好型预处理法[ | 电催化效率低影响防污性能、电极易腐蚀[ | 成本较低,能耗较高[ | * | ** | * | * |
生物预处理 | 膜前培养微生物 | 有效去除“三致”前体物、绿色低碳[ | 不能去除难生物降解性物质;易堵塞滤头和曝气头[ | 成本低,低能耗[ | * | ** | ** | * |
组合工艺 | 各种预处理方法进行组合 | 最大限度发挥各个预处理方法的优点 | 工艺较复杂,各预处理方法之间可能存在互斥现象 | 根据组合工艺 不同,成本有较 大差异 | ** | ** | * | ** |
1 | NIDAL H, WRIGHT C J. Exploring the current state of play for cost-effective water treatment by membranes[J]. npj Clean Water, 2018, 8: 1-8. |
2 | LEE S, IHARA M, YAMASHITA N, et al. Improvement of virus removal by pilot-scale coagulation-ultrafiltration process for wastewater reclamation: effect of optimization of pH in secondary effluent[J]. Water Research, 2017, 114: 23-30. |
3 | SINCLAIR T R, ROBLES D, RAZA B, et al. Virus reduction through microfiltration membranes modified with a cationic polymer for drinking water applications[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 551: 33-41. |
4 | 彭婷, 史载锋, 林强, 等. PVC超滤膜处理生活污水及膜污染控制研究[J]. 膜科学与技术, 2015, 35(2): 75-81. |
PENG Ting, SHI Zaifeng, LIN Qiang, et al. Research on PVC ultrafiltration membrane treatment of domestic sewage and membrane pollution control[J]. Membrane Science and Technology, 2015, 35(2): 75-81. | |
5 | LI K, WEN G, LI S, et al. Effect of pre-oxidation on low pressure membrane (LPM) for water and wastewater treatment: a review[J]. Chemosphere, 2019, 231: 287-300. |
6 | GAO Y H, QIN J, WANG Z W, et al. Backpulsing technology applied in MF and UF processes for membrane fouling mitigation: a review[J]. Journal of Membrane Science, 2019, 587: 117136. |
7 | PENG H W, TANG Q Q, TANG S H, et al. Surface modified polyamide nanofiltration membranes with high permeability and stability[J]. Journal of Membrane Science, 2019, 592: 117386. |
8 | YANG Y, QIAO S, ZHOU J T, et al. A novel porous-carbon-based hollow fiber membrane with electrochemical reduction mediated by in-situ hydroxyl radical generation for fouling control and water treatment[J]. Applied Catalysis B: Environmental, 2019, 255: 117772. |
9 | NINOMIYA Y, KIMURA K, SATO T, et al. High-flux operation of MBRs with ceramic flat-sheet membranes made possible by intensive membrane cleaning: tests with real domestic wastewater under low-temperature conditions[J]. Water Research, 2020, 181: 115881. |
10 | YIN X F, LI X F, HUA Z Z, et al. The growth process of the cake layer and membrane fouling alleviation mechanism in a MBR assisted with the self-generated electric field[J]. Water Research, 2019, 171: 115452. |
11 | JIANG W B, XU X S, LIN L, et al. A pilot study of an electromagnetic field for control of rverse osmosis membrane fouling and scaling during brackish groundwater desalination[J]. Water, 2019, 11(5): 1015. |
12 | HONG S P, BAE T H, TAK T M, et al. Fouling control in activated sludge submerged hollow fiber membrane bioreactors[J]. Desalination, 2002, 143(3): 219-228. |
13 | GUO D, WANG H L, FU P B, et al. Diatomite precoat filtration for wastewater treatment: filtration performance and pollution mechanisms[J]. Chemical Engineering Research and Design, 2018, 137: 403-411. |
14 | BILAD M R, MEZOHEGYI G, DECLERCK P, et al. Novel magnetically induced membrane vibration (MMV) for fouling control in membrane bioreactors[J]. Water Research, 2012, 46(1): 63-72. |
15 | YUAN B B, LI P F, WANG P, et al. Novel aliphatic polyamide membrane with high mono-/divalent ion selectivity, excellent Ca2+, Mg2+ rejection, and improved antifouling properties[J]. Separation and Purification Technology, 2019, 224: 443-455. |
16 | WANG J C, TIAN J Y, GAO S S, et al. Dopamine triggered one step polymerization and codeposition of reactive surfactant on PES membrane surface for antifouling modification[J]. Separation and Purification Technology, 2020, 249: 117148. |
17 | HUANG H T, YU J Y, GUO H X, et al. Improved antifouling performance of ultrafiltration membrane via preparing novel zwitterionic polyimide[J]. Applied Surface Science, 2018, 427: 38-47. |
18 | HOU Z G, CAO X M, CAO L L, et al. The removal of phospholipid from crude rapeseed oil by enzyme-membrane binding[J]. Journal of Food Engineering, 2020, 280: 109910. |
19 | TRAN T, CHEN X Y, DOSHI S, et al. Grafting polysiloxane onto ultrafiltration membranes to optimize surfaceenergy and mitigate fouling[J]. Soft Matter, 2020, 16(21): 5044-5033. |
20 | 王毅凡. 多糖官能团诱导吸附性膜污染机制研究[D]. 西安: 西安理工大学, 2019. |
WANG Yifan. Study on the mechanism of polysaccharide functional group-induced adsorption membrane fouling[D]. Xi’an: Xi’an University of Technology, 2019. | |
21 | 郜玉楠, 王信之, 周历涛, 等. 混凝-超滤短流程工艺低温运行膜污染机理研究[J].水处理技术, 2018, 44(5): 119-122. |
GAO Yunan, WANG Xinzhi, ZHOU Litao, et al. Study on the mechanism of membrane fouling at low temperature during the coagulation-ultrafiltration short process[J]. Water Treatment Technology, 2018, 44(5): 119-122. | |
22 | SINGH G, SONG L F. Impact of feed water acidification with weak and strong acids on colloidal silica fouling in ultrafiltration membrane processes[J]. Water Research, 2008, 42(3): 707-713. |
23 | WANG Q, WEN Q X, CHEN Z Q. Long term effects of Pb2+ on the membrane fouling in a hydrolytic-anoxic-oxic-membrane bioreactor treating synthetic electroplating wastewater[J]. Chemosphere, 2019, 232: 430-438. |
24 | METZGER U, LE-CLECH P, STUETZ R M, et al. Characterisation of polymeric fouling in membrane bioreactors and the effect of different filtration modes[J]. Journal of Membrane Science, 2007, 301(1/2): 180-189. |
25 | 郝书云, 陆茵. 过滤模式和条件对PVC中空纤维膜过滤性能的影响[J]. 中国给水排水, 2017, 33(19): 85-89. |
HAO Shuyun, LU Yin. The effect of filtration mode and conditions on the filtration performance of PVC hollow fiber membranes[J]. China Water & Wastewater, 2017, 33(19): 85-89. | |
26 | GHAFFOUR N, QAMAR A. Membrane fouling quantification by specific cake resistance and flux enhancement using helical cleaners[J]. Separation and Purification Technology, 2020, 239: 116587. |
27 | 刘忠洲, 续曙光, 李锁定. 微滤、超滤过程中的膜污染与清洗[J]. 水处理技术, 1997, 23(4): 3-9. |
LIU Zhongzhou, XU Shuguang, LI Suoding. Membrane fouling and cleaning during microfiltration and ultrafiltration[J]. Water Treatment Technology, 1997, 23(4): 3-9. | |
28 | HERMANS P H, BREDËË H L. Principles of the mathematic treatment of constant-pressure filtration[J]. Journal of the Society of Chemical Industry, 1936, 55: 1-4. |
29 | GONSALVES V E. A critical investigation on the viscose filtration process[J]. Recueil des Travaux Chimiques des Pays-Bas, 1950, 69(7): 873-903. |
30 | GRACE H P. Structure and performance of filter media[J]. AIChE Journal, 1956, 2(3): 307-315. |
31 | HERMIA J. Constant pressure blocking filtration law application to powder-law non-Newtonian fluid[J]. Transactions of the Institution of Chemical Engineers, 1982, 60: 183-187. |
32 | HEIDARI S, AMIRINEJAD M, JAHANGIRIAN H. Investigation of fouling mechanisms using surface morphology and physicochemical membrane features[J]. Chemical Engineering & Technology, 2019, 42(6): 1310-1320. |
33 | KABSCH-KORBUTOWICZ M. Impact of pre-coagulation on ultrafiltration process performance[J]. Desalination, 2006, 194(1/2/3): 232-238. |
34 | 刘可. 超滤膜法微污染原水处理技术研究[D]. 青岛: 青岛理工大学, 2008. |
LIU Ke. Research on ultra-filtration membrane micro-polluted raw water treatment technology[D]. Qingdao: Qingdao University of Technology, 2008. | |
35 | HUANG H O, YOUNG T A, JACANGELO J G. Unified membrane fouling index for low pressure membrane filtration of natural waters: principles and methodology[J]. Environmental Science & Technology, 2008, 42(3): 714-720. |
36 | VARJANI S, JOSHI R, SRIVASTAVA V K, et al. Treatment of wastewater from petroleum industry: current practices and perspectives[J]. Environmental Science and Pollution Research, 2019, 27(22): 27127-27180. |
37 | 薛书雅, 高云霞.饮用水深度处理研究现状及发展对策[J]. 河北建筑工程学院学报, 2016, 34(3): 111-115. |
XUE Shuya, GAO Yunxia. Research status and development countermeasures of advanced drinking water treatment[J]. Journal of Hebei Institute of Civil Engineering, 2016, 34(3): 111-115. | |
38 | ZHAO X T, ZHANG R N, LIU Y N, et al. Antifouling membrane surface construction: chemistry plays a critical role[J]. Journal of Membrane Science, 2018, 551: 145-171. |
39 | BAGHERI M, MIRBAGHERI S A. Critical review of fouling mitigation strategies in membrane bioreactors treating water and wastewater[J]. Bioresource Technology, 2018, 258: 318-334. |
40 | CHANG H Q, LIANG H, QU F S, et al. Role of backwash water composition in alleviating ultrafiltration membrane fouling by sodium alginate and the effectiveness of salt backwashing[J]. Journal of Membrane Science, 2016, 499: 429-441. |
41 | NGUYEN T, RODDICK F A, FAN L H. Biofouling of water treatment membranes: a review of the underlying causes, monitoring techniques and control measures[J]. Membranes, 2012, 2(4): 804-840. |
42 | MENG F G, CHAE S R, DREWS A, et al. Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material[J]. Water Research, 2009, 43(6): 1489-1512. |
43 | YANG Y, QIAO S, JIN R F, et al. A novel aerobic electrochemical membrane bioreactor with CNTs hollow fiber membrane by electrochemical oxidation to improve water quality and mitigate membrane fouling[J]. Water Research, 2019, 151: 54-63. |
44 | JEPSEN K L, BRAM M V, HANSEN L, et al. Online backwash optimization of membrane filtration for produced water treatment[J]. Membranes, 2019, 9(6): 68. |
45 | MATSUYAMA H, TERAMOTO M, NAKATANI R, et al. Membrane formation via phase separation induced by penetration of nonsolvent from vapor phase. Ⅱ. Membrane morphology[J]. Journal of Applied Polymer Science, 1999, 74(1): 171-178. |
46 | QIU Y R, MATSUYAMA H, ZHONG H, et al. Effects of F127 on properties of PVB/F127 blend hollow fiber membrane via thermally induced phase separation[J]. Chinese Journal of Chemical Engineering, 2010, 18(2): 207-216. |
47 | RAHMAN N A, MARUYAMA T, MATSUYAMA H. Performance of polyethersulfone/tetronic1307 hollow fiber membrane for drinking water production[J]. Journal of Applied Sciences in Environmental Sanitation, 2008, 3(1): 1-7. |
48 | DU L, QUAN X, FAN X F, et al. Conductive CNT/nanofiber composite hollow fiber membranes with electrospun support layer for water purification[J]. Journal of Membrane Science, 2019, 596: 117613. |
49 | HUANG Z H, ZHANG X, WANG Y X, et al. Fe3O4/PVDF catalytic membrane treatment organic wastewater with simultaneously improved permeability, catalytic property and anti-fouling[J]. Environmental Research, 2020, 187: 109617. |
50 | LOH I H, MOODY R A, HUANG J C. Electrically conductive membranes: synthesis and applications[J]. Journal of Membrane Science, 1990, 50(1): 31-49. |
51 | BYU Y J, KIM J H, KIM S S. Surface modification of PVDF membranes for water treatment via hydrophilic thermal cross-linking method[J]. Desalination and Water Treatment, 2013, 51(25/26/27): 5371-5378. |
52 | 曹宏杰. PVDF-DCOIT复合中空纤维膜的制备与性能评价[D]. 大连: 大连理工大学, 2019. |
CAO Hongjie. Preparation and performance evaluation of PVDF-DCOIT composite hollow fiber membrane[D]. Dalian: Dalian University of Technology, 2019. | |
53 | 李丽. 直接超滤工艺处理微污染水源水的净水效能及膜污染控制研究[D]. 青岛: 青岛理工大学, 2018. |
LI Li. Research on water purification efficiency and membrane pollution control of direct ultrafiltration process for micro-polluted source water[D]. Qingdao: Qingdao Institute of Technology, 2018. | |
54 | XING J J, LIANG H, CHUAH C J, et al. Insight into Fe()/UV/chlorine pretreatment for reducing ultrafiltration (UF) membrane fouling: effects of different natural organic fractions and comparison with coagulation[J]. Water Research, 2019, 167: 115112. |
55 | HUANG W W, ZHOU W Z, LYU W Z, et al. Performance of PAC treatments on MF membrane fouling behavior and mechanism by various algogenic organic matter[J]. Desalination and Water Treatment, 2020, 190: 28-43. |
56 | KIM K J, JANG A. Effect of heated aluminum oxide particles dynamic membranes on polymeric and ceramic microfiltration membrane[J]. Desalination and Water Treatment, 2018, 135: 314-322. |
57 | ZHAO Y J, KITAJIMA R, SHIRASAKI N, et al. Precoating membranes with submicron super-fine powdered activated carbon after coagulation prevents transmembrane pressure rise: straining and high adsorption capacity effects[J]. Water Research, 2020, 177: 115757. |
58 | DEKA B J, GUO J, JEONG S, et al. Emerging investigator series: control of membrane fouling by dissolved algal organic matter using pre-oxidation with coagulation as seawater pretreatment[J]. Environmental Science: Water Research & Technology, 2020, 6(4): 935-944. |
59 | AMARAL M C S, PEREIRA H V, NANI E, et al. Treatment of landfill leachate by hybrid precipitation/microfiltration/nanofiltration process[J]. Water Science and Technology, 2015, 72(2): 269-276. |
60 | DENG L J, NGO H H, GUO W S, et al. Pre-coagulation coupled with sponge-membrane filtration for organic matter removal and membrane fouling control during drinking water treatment[J]. Water Research, 2019, 157: 155-166. |
61 | LI K, LI S, SUN C, et al. Membrane fouling in integrated adsorption-UF system: effects of NOM and adsorbent properties[J]. Environmental Science: Water Research & Technology, 2019, 6(1): 78-86. |
62 | CAO D Q, HAO X D, WANG Z, et al. Membrane recovery of alginate in an aqueous solution by the addition of calcium ions: analyses of resistance reduction and fouling mechanism[J]. Journal of Membrane Science, 2017, 535: 312-321. |
63 | 陈禹志. 预氧化强化混凝-膜除藻工艺膜污染控制研究[J]. 膜科学与技术, 2016, 36(1): 104-108. |
CHEN Yuzhi. Study on membrane pollution control of pre-oxidation enhanced coagulation-membrane algae removal process[J]. Membrane Science and Technology, 2016, 36(1): 104-108. | |
64 | AL-HARAHSHEH M, HUSSAIN Y A, AL-ZOUBI H, et al. Hybrid precipitation-nanofiltration treatment of effluent pond water from phosphoric acid industry[J]. Desalination, 2017, 406: 88-97. |
65 | WANG Y L, JU L, XU F, et al. Effect of a nanofiltration combined process on the treatment of high-hardness and micropolluted water[J]. Environmental Research, 2020, 182: 109063. |
66 | GÖNDER Z B, BALCOĞLU G, VERGILI I, et al. An integrated electrocoagulation-nanofiltration process for carwash wastewater reuse[J]. Chemosphere, 2020, 253: 126713. |
67 | TANG P, LIU B, ZHANG Y, et al. Sustainable reuse of shale gas wastewater by pre-ozonation with ultrafiltration-reverse osmosis[J]. Chemical Engineering Journal, 2019, 392: 123743. |
68 | YIN Z L, WEN T C, LI Y, et al. Pre-ozonation for the mitigation of reverse osmosis (RO) membrane fouling by biopolymer: the roles of Ca2+ and Mg2+[J]. Water Research, 2019, 171: 115437. |
69 | SHANG W, TIRAFERRI A, HE Q P, et al. Reuse of shale gas flowback and produced water: effects of coagulation and adsorption on ultrafiltration, reverse osmosis combined process[J]. Science of the Total Environment, 2019, 689: 47-56. |
70 | LI X, XU H, YANG Y, et al. Effect of flocculation time on fouling characteristics in coagulation-ultrafiltration process[J]. Jourmal of Beijing University of Technology, 2016, 42(6): 946-952. |
71 | SHEN X, GAO B Y, GUO K Y, et al. Application of composite flocculants for removing organic matter and mitigating ultrafiltration membrane fouling in surface water treatment: the role of composite ratio[J]. Environmental Science: Water Research & Technology, 2019, 5(12): 2242-2250. |
72 | 成小翔. 基于氧化的预处理方法对超滤膜污染及净水效能的影响[D]. 哈尔滨: 哈尔滨工业大学, 2017. |
CHENG Xiaoxiang. Effect of oxidation-based pretreatment methods on ultrafiltration membrane pollution and water purification efficiency[D]. Harbin: Harbin Institute of Technology, 2017. | |
73 | MA Y Q, VELIOĞLU S, TANIS-KANBUR M B, et al. Mechanistic understanding of the adsorption of natural organic matter by heated aluminum oxide particles (HAOPs) via molecular dynamics simulation[J]. Journal of Membrane Science, 2019, 598: 117651. |
74 | LI C W, CHEN Y S. Fouling of UF membrane by humic substance: effects of molecular weight and powder-activated carbon (PAC) pre-treatment[J]. Desalination, 2004, 170(1): 59-17. |
75 | FILLOUX E, GALLARD H, CROUE J P. Identification of effluent organic matter fractions responsible for low-pressure membrane fouling[J]. Water Research, 2012, 46(17): 5531-5540. |
76 | 王文华, 赵瑾, 司晓光, 等. 粉末活性炭预沉积去除藻类有机物及其对膜污染的影响[J]. 中国环境科学, 2018, 38(6): 2135-2143. |
WANG Wenhua, ZHAO Jin, SI Xiaoguang, et al. Pre-deposition of powdered activated carbon to remove algae organic matter and its effect on membrane pollution[J]. Chinese Journal of Environmental Science, 2018, 38(6): 2135-2143. | |
77 | LI K, LIANG H, QU F S, et al. Control of natural organic matter fouling of ultrafiltration membrane by adsorption pretreatment: comparison of mesoporous adsorbent resin and powdered activated carbon[J]. Journal of Membrane Science, 2014, 471: 94-102. |
78 | YOU S H, TSENG D H, HSU W C. Effect and mechanism of ultrafiltration membrane fouling removal by ozonation[J]. Desalination, 2007, 202(1/2/3): 224-230. |
79 | FARAHBAKHSH K, SVRCEK C, GUEST R K, et al. A review of the impact of chemical pretreatment on low-pressure water treatment membranes[J]. Journal of Environmental Engineering and Science, 2004, 3(4): 237-253. |
80 | 夏生剑. 等离子体共振增强可见光驱动SnS2催化剂性能研究[D]. 杭州: 杭州电子科技大学, 2019. |
XIA Shengjian. Research on the performance of SnS2 catalyst driven by plasma resonance enhanced visible light[D]. Hangzhou: Hangzhou Dianzi University, 2019. | |
81 | 颜会全, 李静萍.电化学水处理技术发展综述[J]. 化工时刊, 2016, 30(6): 42-45. |
YAN Huiquan, LI Jingping. Review of the development of electrochemical water treatment technology[J]. Chemical Industry Times, 2016, 30(6): 42-45. | |
82 | ZHENG T L, WANG J, WANG Q H, et al. Research trends in electrochemical technology for water and wastewater treatment[J]. Applied Water Science, 2015, 7(1): 13-30. |
83 | JAGANNADH S N, MURALIDHARA H S. Electrokinetics methods to control membrane fouling[J]. Industrial & Engineering Chemistry Research, 1996, 35(4): 1133-1140. |
84 | HUANG J, WANG Z W, ZHANG J Y, et al. A novel composite conductive microfiltration membrane and its anti-fouling performance with an external electric field in membrane bioreactors[J]. Scientific Reports, 2015, 5(1): 9268. |
85 | 周磊, 周坤.表面废水的处理方法综述[J]. 云南化工, 2020, 47(6): 21-22. |
ZHOU Lei, ZHOU Kun. Summarization of surface wastewater treatment methods[J]. Yunnan Chemical Industry, 2020, 47(6): 21-22. | |
86 | 张伟. 适用于微污染水源水的农村饮水浸没式超滤组合工艺研究[D]. 北京: 清华大学, 2011. |
ZHANG Wei. Research on rural drinking water submerged ultrafiltration combined process suitable for micro-polluted source water[D]. Beijing: Tsinghua University, 2011. | |
87 | 陈小春. 生物预处理-常规处理-膜处理工艺净水技术的研究[D]. 广州: 华南理工大学, 2011. |
CHEN Xiaochun. Biological pretreatment-conventional treatment-membrane treatment technology of water purification technology[D]. Guangzhou: South China University of Technology, 2011. | |
88 | AHMAD T, BELWAL T, LI L, et al. Utilization of wastewater from edible oil industry, turning waste into valuable products: a review[J]. Trends in Food Science & Technology, 2020, 99: 21-33. |
89 | 鄢忠森, 瞿芳术, 梁恒, 等. 超滤膜污染以及膜前预处理技术研究进展[J]. 膜科学与技术, 2014, 34(4): 108-114, 127. |
YAN Zhongsen, QU Fangshu, LIANG Heng, et al. A review on the ultrafitration membrane pollution and pretreatment technology[J]. Membrane Science and Technology, 2014, 34(4): 108-114, 127. | |
90 | ZHAO S, ZHANG P, ZOU Z J, et al. Polysaccharides derived from Enteromorpha prolifera for the removal of silver nanoparticle-humic acid contaminants by a coagulation-ultrafiltration process[J]. RSC Advances, 2020, 10(27): 16079-16087. |
91 | HUANG X, GAO B Y, SUN Y Y, et al. Effects of epichlorohydrin-dimethylamine on polytitanium chloride coagulation and membrane fouling in humic-kaolin water treatment: dosage, dose method and solution pH[J]. Separation and Purification Technology, 2017, 173: 209-217. |
92 | SU Z Y, LI X, YANG Y L, et al. Probing the application of a zirconium coagulant in a coagulation-ultrafiltration process: observations on organics removal and membrane fouling[J]. RSC Advances, 2017, 7(67): 42329-42338. |
93 | HANKINS N, PRICE R, DEBACHER N A. Process intensification during treatment of NOM-laden raw upland waters: control and impact of the pre-coagulation regime during ultra-filtration[J]. Desalination and Water Treatment, 2009, 8(1/2/3): 2-16. |
94 | LEI Z, YANG S M, LI X, et al. Revisiting the effects of powdered activated carbon on membrane fouling mitigation in an anaerobic membrane bioreactor by evaluating long-term impacts on the surface layer[J]. Water Research, 2019, 167: 115137. |
95 | WANG L F, BENJAMIN M M. HAOPs pretreatment to reduce membrane fouling: foulant identification, removal, and interactions[J]. Journal of Membrane Science, 2016, 515: 219-229. |
96 | GUTIERREZ A M, DZIUBLA T D, HILT J Z. Recent advances on iron oxide magnetic nanoparticles as sorbents of organic pollutants in water and wastewater treatment[J]. Reviews on Environmental Health, 2017, 32(1/2): 111. |
97 | KOH L C, AHN W Y, CLARK M M. Selective adsorption of natural organic foulants by polysulfone colloids: effect on ultrafiltration fouling[J]. Journal of Membrane science, 2016, 281(1/2): 472-479. |
98 | BAUDIN I, CAMPOS C, LAÏNE J M. Removal of organic matter by the PAC-UF process: first two years of a full-scale application[J] . Water Science and Technology: Water Supply, 2001, 1(4): 253-263. |
99 | LOHWACHARIN J, OGUMA K, TAKIZAWA S. Use of carbon black nanoparticles to mitigate membrane fouling in ultrafiltration of river water[J]. Separation and Purification Technology, 2010, 72(1): 61-69. |
100 | 董秉直, 张庆元, 冯晶. 粉末活性炭预处理对超滤膜通量的影响[J]. 环境科学学报, 2008, 28(10): 1981-1987. |
DONG Bingzhi, ZHANG Qingyuan, FENG Jing. Influence of powered activated carbon (PAC) pretreatment on ultrafiltration membrane flux[J]. Journal of Environmental Science, 2008, 28(10): 1981-1987. | |
101 | CHEN Z Q, YANG B X, WEN Q X, et al. Evaluation of enhanced coagulation combined with densadeg-ultrafiltration process in treating secondary effluent: organic micro-pollutants removal, genotoxicity reduction, and membrane fouling alleviation[J]. Journal of Hazardous Materials, 2020, 396: 122697. |
102 | WANG H, PARK M, LIANG H, et al. Reducing ultrafiltration membrane fouling during potable water reuse using pre-ozonation[J]. Water Research, 2017, 125: 42-51. |
103 | ZHU H T, WEN X H, HUANG X, et al. Membrane fouling in the reclamation of secondary effluent with an ozone-membrane hybrid system[J]. Separation Science and Technology, 2019, 44(1): 121-130. |
104 | LIU J, HE K Y, ZHANG J X, et al. Coupling ferrate pretreatment and in-situ ozonation/ceramic membrane filtration for wastewater reclamation: water quality and membrane fouling[J]. Journal of Membrane Science, 2019, 590: 117310. |
105 | QU F S, DU X, LIU B, et al. Control of ultrafiltration membrane fouling caused by Microcystis cells with permanganate preoxidation: significance of in situ formed manganese dioxide[J]. Chemical Engineering Journal, 2015, 279: 56-65. |
106 | ZHANG X L, FAN L H, RODDICK F A. Effect of feedwater pre-treatment using UV/H2O2 for mitigating the fouling of a ceramic MF membrane caused by soluble algal organic matter[J]. Journal of Membrane Science, 2015, 493: 683-689. |
107 | CHENG X X, LI P J, LIU W C, et al. Activation of peroxymonosulfate by metal oxide nanoparticles for mitigating organic membrane fouling in surface water treatment[J]. Separation and Purification Technology, 2020, 246: 116935. |
108 | MARSZALEK A, PUSZCZALO E. Effect of photooxidation on nanofiltration membrane fouling during wastewater treatment from the confectionery industry[J]. Water, 2020, 12(3): 793. |
109 | XU T, CUI L, LI H H, et al. Effects of electrolytic oxidation for mitigating ultrafiltration membrane fouling caused by different natural organic matter fractions[J]. Environmental Science: Water Research & Technology, 2020, 6(3): 645-655. |
110 | AKAMATSU K, LU W, SUGAWARA T, et al. Development of a novel fouling suppression system in membrane bioreactors using an intermittent electric field[J]. Water Research, 2010, 44(3): 825-830. |
111 | JIANG B, ZENG Q Z, HOU Y, et al. Impacts of long-term electric field applied on the membrane fouling mitigation and shifts of microbial communities in EMBR for treating phenol wastewater[J]. Science of the Total Environment, 2020, 716: 137139. |
112 | MA C Y, YI C, LI F, et al. Mitigation of membrane fouling using an electroactive polyether sulfone membrane[J]. Membranes, 2020, 10(2): 21. |
113 | SARKAR B, PAL S, GHOSH T B, et al. A study of electric field enhanced ultrafiltration of synthetic fruit juice and optical quantification of gel deposition[J]. Journal of Membrane Science, 2008, 311(1/2): 112-120. |
114 | 肖羽堂, 许建华. 生物接触氧化法净化微污染原水的机理研究[J]. 环境科学, 1999, 20(3): 86-89. |
XIAO Yutang, XU Jianhua. Study on the mechanism of biological contact oxidation to purify micro-polluted raw water[J]. Environmental Science, 1999, 20(3): 86-89. | |
115 | PELDSZUS S, BENECKE J, JEKEL M, et al. Direct biofiltration pretreatment for fouling control of ultrafiltration membranes[J]. Journal-American Water Works Association, 2012, 104(7): 45-46. |
116 | 汪恂, 宛海燕. 微污染水源水处理技术的现状与发展[J]. 山西建筑, 2008, 34(32): 20-21. |
WANG Xun, WAN Haiyan. Current status and development of micro-polluted source water treatment technology[J]. Shanxi Architecture, 2008, 34(32): 20-21. | |
117 | PRAMANIK B K, KAJOL A, SUJA F, et al. Effect of biological and coagulation pre-treatments to control organic and biofouling potential components of ultrafiltration membrane in the treatment of lake water[J]. Environmental Technology, 2016, 38(5): 579-587. |
118 | YU W Z, CAMPOS L C, GRAHAM N. Application of pulsed UV-irradiation and pre-coagulation to control ultrafiltration membrane fouling in the treatment of micro-polluted surface water[J]. Water Research, 2016, 107: 83-92. |
119 | YU W Z, GRAHAM N, LIU T. Prevention of UF membrane fouling in drinking water treatment by addition of H2O2 during membrane backwashing[J]. Water Research, 2018, 149: 394-405. |
120 | CHIANG P C, CHANG E E, CHANG P C, et al. Effects of pre-ozonation on the removal of THM precursors by coagulation[J]. Science of the Total Environment, 2009, 407(21): 5735-5742. |
121 | CHANG E E, LIANG C H, KO Y W, et al. Effect of ozone dosage for removal of model compounds by ozone/GAC treatment[J]. Ozone: Science & Engineering, 2002, 24(5): 357-367. |
[1] | WANG Ying, HAN Yunping, LI Lin, LI Yanbo, LI Huili, YAN Changren, LI Caixia. Research status and future prospects of the emission characteristics of virus aerosols in urban wastewater treatment plants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 439-446. |
[2] | LI Huahua, LI Yihang, JIN Beichen, LI Longxin, CHENG Shao’an. Research progress of Anammox bio-electrochemical coupling wastewater treatment system [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2678-2690. |
[3] | YING Luyao, WANG Rongchang. Removal pathways of antibiotic pollutants by bacterial-algal consortium and its stress response mechanisms [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 469-479. |
[4] | HU Jinwen, MENG Guangyuan, ZHANG Zhijie, ZHANG Ning, ZHANG Xinwan, CHEN Peng, LI Tong, LIU Yongdi, ZHANG Lehua. Application of artificial intelligence model in electrochemical water treatment process [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 497-506. |
[5] | YANG Junling, LI Ao, CHEN Yue, ZHU Guangcan, LI Shuping, LU Yongze. Infrared spectroscopy-multivariate curve resolution analysis of aluminum-based coagulants to mitigate membrane fouling [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5132-5141. |
[6] | ZHANG Lizhu, WANG Huan, LI Qiong, YANG Dongjie. Research progress on the preparation of lignin-derived adsorption materials and their application in wastewater treatment [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3731-3744. |
[7] | LIAO Bing, XU Wen, YE Qiuyue. A review of activated percarbonate and peroxymonocarbonate in the field of water treatment [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3235-3248. |
[8] | QIAN Guanglei, XIE Chenxin, TENG Houkai, ZHAO Hui, REN Chunyan. Influence of aeration on hydrodynamic characteristic and membrane fouling in a low cross-flow velocity microfiltration [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2277-2284. |
[9] | LI Zheng, NIU Jingdong, HE Guangze, ZHANG Lanhe, ZHANG Haifeng. Preparation of PVDF-PFTS/SiO2 membrane and its resistance mixed fouling performance [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2713-2721. |
[10] | LI Haitao, WANG Dong. Practice and prospect of purified terephthalic acid production wastewater treatment and CO2co-utilization technology [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1132-1135. |
[11] | XU Nanping, ZHAO Jing, LIU Gongping. Thinking of membrane technology development towards “carbon emission peak” and “carbon neutrality” targets [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1091-1096. |
[12] | CHEN Shiyu, XU Zhicheng, YANG Jing, XU Hao, YAN Wei. Research progress of microbial fuel cell in wastewater treatment [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 951-963. |
[13] | CHEN Jiansuxuan, DAI Ruobin, TIAN Chenxin, WANG Zhiwei. Research progress of ultrafiltration membranes modified by porous nanomaterials for water treatment [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 264-276. |
[14] | HUANG Kainan, JI Xuezhi, WANG Fei, GAO Chengyun, LU Jingqiong. Overview of ultrafiltration membrane technology [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 219-225. |
[15] | WANG Xiaohu, WU Kuixia, WU Dehua, ZHANG Qilong, DONG Yong. Progress in application of calcium carbide slag in desulfurization process of coal-fired power plant [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 140-148. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |