Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (4): 2243-2250.DOI: 10.16085/j.issn.1000-6613.2020-1040
• Materials science and technology • Previous Articles Next Articles
LIU Yan1(), NIAN Pei1, ZHANG Xuan1, HUANG Rui1, WANG Zheng1(
), JIANG Nanzhe2(
)
Received:
2020-06-09
Online:
2021-04-14
Published:
2021-04-05
Contact:
WANG Zheng,JIANG Nanzhe
刘艳1(), 年佩1, 张轩1, 黄锐1, 王政1(
), 姜男哲2(
)
通讯作者:
王政,姜男哲
作者简介:
刘艳(1994—),女,硕士研究生,研究方向为沸石分子筛膜的合成与应用。E-mail:基金资助:
CLC Number:
LIU Yan, NIAN Pei, ZHANG Xuan, HUANG Rui, WANG Zheng, JIANG Nanzhe. Fabrication of oriented ZSM-5 zeolite membrane with high H2 selectivity by Langmuir-Blodgett technique[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2243-2250.
刘艳, 年佩, 张轩, 黄锐, 王政, 姜男哲. Langmuir-Blodgett法制备高H2选择性取向ZSM-5分子筛分离膜[J]. 化工进展, 2021, 40(4): 2243-2250.
MFI膜类型 | 测试温度/℃ | H2/CO2分离因子 | H2渗透速率/mol·m-2·s-1·Pa-1 | 参考文献 |
---|---|---|---|---|
silicalite-1 | 450 | 123 | 2.20×10-7 | [ |
silicalite-1 | 200 | 4.6 | 3.37×10-5 | [ |
silicalite-1 | 500 | 45.6 | 1.00×10-8 | [ |
silicalite-1 | 500 | 42.6 | 2.82×10-7 | [ |
silicalite-1 | 25 | 3.5 | 1.03×10-6 | [ |
ZSM-5 | 450 | 17.5 | 1.86×10-7 | [ |
B-ZSM-5 | 200 | 37 | 3.97×10-7 | [ |
ZSM-5 | 450 | 25.3 | 1.15×10-7 | [ |
ZSM-5 | 25 | 15.9 | 3.43×10-8 | 本研究(修复前) |
ZSM-5 | 25 | 68 | 1.36×10-8 | 本研究(修复后) |
MFI膜类型 | 测试温度/℃ | H2/CO2分离因子 | H2渗透速率/mol·m-2·s-1·Pa-1 | 参考文献 |
---|---|---|---|---|
silicalite-1 | 450 | 123 | 2.20×10-7 | [ |
silicalite-1 | 200 | 4.6 | 3.37×10-5 | [ |
silicalite-1 | 500 | 45.6 | 1.00×10-8 | [ |
silicalite-1 | 500 | 42.6 | 2.82×10-7 | [ |
silicalite-1 | 25 | 3.5 | 1.03×10-6 | [ |
ZSM-5 | 450 | 17.5 | 1.86×10-7 | [ |
B-ZSM-5 | 200 | 37 | 3.97×10-7 | [ |
ZSM-5 | 450 | 25.3 | 1.15×10-7 | [ |
ZSM-5 | 25 | 15.9 | 3.43×10-8 | 本研究(修复前) |
ZSM-5 | 25 | 68 | 1.36×10-8 | 本研究(修复后) |
1 | RANGNEKAR N, MITTAL N, ELYASSI B, et al. Zeolite membranes- a review and comparison with MOFs[J]. Chemical Society Reviews, 2015, 44(20): 7128-7154. |
2 | YU M, NOBLE R D, FALCONER J L. Zeolite membranes: microstructure characterization and permeation mechanisms[J]. Accounts of Chemical Research, 2011, 44(11): 1196-1206. |
3 | KOSINOV N, GASCON J, KAPTEIJN F, et al. Recent developments in zeolite membranes for gas separation[J]. Journal of Membrane Science, 2016, 499: 65-79. |
4 | GÜNTNER A T, ABEGG S, WEGNER K, et al. Zeolite membranes for highly selective formaldehyde sensors[J]. Sensors and Actuators B: Chemical, 2018, 257: 916-923. |
5 | DRAGOMIROVA R, WOHLRAB S. Zeolite membranes in catalysis-from separate units to particle coatings[J]. Catalysts, 2015, 5: 2161-2222. |
6 | KIM D, JEON M Y, STOTTRUP B L, et al. Para-xylene ultra-selective zeolite MFI membranes fabricated from nanosheet monolayers at the air-water interface[J]. Angewandte Chemie: International Edition, 2018, 57(2): 480-485. |
7 | PHAM T C T, KIM H S, YOON K B. Growth of uniformly oriented silica MFI and BEA zeolite films on substrates[J]. Science, 2011, 334: 1533-1538. |
8 | CHOI J K, JEONG H K, SNYDER M A, et al. Grain boundary defect elimination in a zeolite membrane by rapid thermal processing[J]. Science, 2009, 325: 590-593. |
9 | LIU Y, LI Y S, YANG W S. Fabrication of highly b-oriented MFI film with molecular sieving properties by controlled in-plane secondary growth[J]. Journal of the American Chemical Society, 2010, 132: 1768-1769. |
10 | ZHOU M, KORELSKIY D, YE P C, et al. A uniformly oriented MFI membrane for improved CO2 separation[J]. Angewandte Chemie: International Edition, 2014, 53(13): 3492-3495. |
11 | PENG Y, XU R L, JIANG X D, et al. Thermal processing of zeolite seed layers for the fabrication of compact oriented MFI zeolite films[J]. CrystEngComm, 2018, 20(32): 4531-4535. |
12 | LEE J S, HA K, LEE Y J, et al. Ultrasound-aided remarkably fast assembly of monolayers of zeolite crystals on glass with a very high degree of lateral close packing[J]. Advanced Materials, 2005, 17(7): 837-841. |
13 | LEE J S, KIM J H, LEE Y J, et al. Manual assembly of microcrystal monolayers on substrates[J]. Angewandte Chemie: International Edition, 2007, 46(17): 3087-3090. |
14 | YOON K B. Organization of zeolite microcrystals for production of functional materials[J]. Accounts of Chemical Research, 2007, 40(1): 29-40. |
15 | LIU Y, LI Y S, YANG W S. Phase-segregation-induced self-assembly of anisotropic MFI microbuilding blocks into compact and highly b-oriented monolayers[J]. Langmuir, 2011, 27(6): 2327-2333. |
16 | TALHAM D R. Conducting and magnetic Langmuir-Blodgett films[J]. Chemical Reviews, 2004, 104(11): 5479-5501. |
17 | TAO A R, HUANG J X, YANG P D, et al. Langmuir-Blodgettry of nanocrystals and nanowires[J]. Accounts of Chemical Research, 2008, 41(12): 1662-1673. |
18 | ARIGA K, YAMAUCHI Y, MORI T, et al. What can be done with the Langmuir-Blodgett method? Recent developments and its critical role in materials science[J]. Advanced Materials, 2013, 25(45): 6477-6512. |
19 | WANG Z, WEE L H, DOYLE A M, et al. Langmuir-Blodgett deposited monolayers of silicalite-1 seeds for secondary growth of continuous zeolite films[J]. Chemistry of Materials, 2007, 19(24): 5806-5808. |
20 | WANG Z, YU T, NIAN P, et al. Fabrication of highly b-oriented MFI-type zeolite film by Langmuir-Blodgett method[J]. Langmuir, 2014, 30(16): 4531-4534. |
21 | NIAN P, SU M H, YU T, et al. Fabrication of a highly b-oriented MFI-type zeolite film-modified electrode with molecular sieving properties by Langmuir-Blodgett method[J]. Journal of Materials Science, 2016, 51(6): 3257-3270. |
22 | 年佩, 鱼婷, 苏美慧, 等. Langmuir-Blodgett法制备b-轴取向MFI型分子筛膜[J]. 无机材料学报, 2016, 31(4): 377-382. |
NIAN Pei, YU Ting, SU Meihui, et al. Fabrication of b-oriented MFI film via Langmuir-Blodgett technique[J]. Journal of Inorganic Materials, 2016, 31(4): 377-382. | |
23 | 苏美慧, 梁鹏, 马强, 等. Langmuir-Blodgett 法制备高度b-轴取向TS-1分子筛膜[J]. 硅酸盐学报, 2017, 45(2): 289-296. |
SU Meihui, LIANG Peng, MA Qiang, et al. Fabrication of highly b-oriented TS-1 film via Langmuir-Blodgett technique[J]. Journal of the Chinese Ceramic Society, 2017, 45(2): 289-296. | |
24 | RANGNEKAR N, SHETE M, AGRAWAL K V, et al. 2D zeolite coatings: Langmuir-Schaefer deposition of 3nm thick MFI zeolite nanosheets[J]. Angewandte Chemie: International Edition, 2015, 54(22): 6571-6575. |
25 | SNYDER M A, TSAPATSIS M. Hierarchical nanomanufacturing: from shaped zeolite nanoparticles to high-performance separation membranes[J]. Angewandte Chemie: International Edition, 2007, 46(40): 7560-7573. |
26 | LI X M, PENG Y; WANG Z B, et al. Synthesis of highly b-oriented zeolite MFI films by suppressing twin crystal growth during the secondary growth[J]. CrystEngComm, 2011, 13: 3657-3660. |
27 | LU X F, PENG Y, WANG Z B, et al. Rapid fabrication of highly b-oriented zeolite MFI thin films using ammonium salts as crystallization-mediating agents[J]. Chemical Communications, 2015, 51: 11076-11079. |
28 | PENG Y, LU X F, WANG Z B, et al. Fabrication of b-oriented MFI zeolite films under neutral conditions without the use of hydrogen fluoride[J]. Angewandte Chemie: International Edition, 2015, 54: 5709-5712. |
29 | LU X F, YANG Y W, ZHANG J J, et al. Solvent-free secondary growth of highly b-oriented MFI zeolite films from anhydrous synthetic powder[J]. Journal of the American Chemical Society, 2019, 141(7): 2916-2919. |
30 | LAI Z P, BONILLA G, DIAZ I, et al. Microstructural optimization of a zeolite membrane for organic vapor separation[J]. Science, 2003, 300(5618): 456-460. |
31 | BONILLA G, DIAZ I, TSAPATSIS M, et al. Zeolite (MFI) crystal morphology control using organic structure-directing agents[J]. Chemistry of Materials, 2004, 16(26): 5697-5705. |
32 | 刘洋, 王林, 刘黎, 等. 高度取向ZSM-5分子筛膜的制备及其CO2/H2分离性能[J]. 石油学报(石油加工), 2020, 36(2): 301-307. |
LIU Yang, WANG Lin, LIU Li, et al. Fabrication of highly oriented ZSM-5 membrane for CO2/H2 separation[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(2): 301-307. | |
33 | NOMURA M, YAMAGUCHI T, NAKAO S. silicalite membranes modified by counterdiffusion CVD technique[J]. Industrial & Engineering Chemistry Research, 1997, 36(10): 4217-4223. |
34 | HONG M, FALCONER J L, NOBLE R D. Modification of zeolite membranes for H2 separation by catalytic cracking of methyldiethoxysilane[J]. Industrial & Engineering Chemistry Research, 2005, 44: 4035-4041. |
35 | ZHANG B Q, WANG C, LANG L, et al. Selective defect-patching of zeolite membranes using chemical liquid deposition at organic/aqueous interfaces[J]. Advanced Functional Materials, 2008, 18(21): 3434-3443. |
36 | TANG Z, DONG J H. Internal surface modification of MFI-type zeolite membranes for high selectivity and high flux for hydrogen[J]. Langmuir, 2009, 25(9): 4848-4852. |
37 | CHEN C H, LIE M, LIN Y S, et al. Effect of substrate curvature on microstructure and gas permeability of hollow fiber MFI zeolite membranes[J]. AIChE Journal, 2018, 64(9): 3419-3428. |
38 | HONG Z, SUN F, CHEN D D, et al. Improvement of hydrogen-separating performance by on-stream catalytic cracking of silane over hollow fiber MFI zeolite membrane[J]. International Journal of Hydrogen Energy, 2013, 38: 8409-8414. |
39 | ZHANG Y T, WU Z J, HONG Z, et al. Hydrogen-selective zeolite membrane reactor for low temperature water gas shift reaction[J]. Chemical Engineering Journal, 2012, 197: 314-321. |
40 | ZHU X F, WANG H B, LIN Y S. Effect of the membrane quality on gas permeation and chemical vapor deposition modification of MFI-type zeolite membranes[J]. Industrial & Engineering Chemistry Research, 2010, 49: 10026-10033. |
41 | GU X H, TANG Z, DONG J H. On-stream modification of MFI zeolite membranes for enhancing hydrogen separation at high temperature[J]. Microporous and Mesoporous Materials, 2008, 111: 441-448. |
42 | WANG H B, LIN Y S. Synthesis and modification of ZSM-5/silicalite bilayer membrane with improved hydrogen separation performance[J]. Journal of Membrane Science, 2012, 396: 128-137. |
43 | EDA G, FANCHINI G, CHHOWALLA M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material[J]. Nature Nanotechnology, 2008, 3(5): 270-274. |
44 | HRABANEK P, ZIKANOVA A, DRAHOKOUPIL J, et al. Combined silica sources to prepare preferentially oriented silicalite-1 layers on various supports[J]. Microporous and Mesoporous Materials, 2013, 174: 154-162. |
45 | HARLICK P J E, TEZEL F H. Adsorption of carbon dioxide, methane, and nitrogen: pure and binary mixture adsorption by ZSM-5 with SiO2/Al2O3 ratio of 30[J]. Separation Science and Technology, 2002, 37(1): 33-60. |
[1] | ZHANG Chun, WANG Xuerui, LIU Hua, GAO Xuechao, ZHANG Yuting, GU Xuehong. Progress of zeolite membranes for reduction of carbon emission in industrial processes [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1376-1390. |
[2] | Guangrui LIU,Jianhua YANG,Lei WANG,Jinming LU,Yan ZHANG,Jinqu WANG. Preparation and characterization of NaA zeolite membrane with methylcellulose [J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5449-5456. |
[3] | DONG Daomin, LIU Bin, CHAI Yongming, WU Yilan, LIU Chenguang. Dynamic hydrothermal synthesis of Silicalite-1 zeolite membrane to encapsulate defective porous alumina spheres [J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3943-3948. |
[4] | XING Qingda, ZHOU Liang, LI Huazheng, WANG Jinqu, ZHANG Wenjun. Preparation and desalination performance of high quality NaA zeolite membrane [J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4170-4175. |
[5] | HU Ziyi, LI Hongbo, TAN Yuxin, CHEN Yueyang, LI Yanshuo, YANG Weishen. Zeolite membrane dehydration and distillation coupling process simulation of F-T water by-product recovery [J]. Chemical Industry and Engineering Progree, 2016, 35(S2): 56-60. |
[6] | HU Ziyi, LI Hongbo, TAN Yuxin, CHEN Yueyang, LI Yanshuo, YANG Weishen. Microwave synthesis type NaA zeolite membrane for ethanol dehydration on vaper permeation study of experimental facility and 30000 tons per year industrial demonstration unit [J]. Chemical Industry and Engineering Progree, 2016, 35(S2): 438-442. |
[7] | ZHU Meihua, XIA Shuilian, LIU Yongsheng, YUAN Xiaolei, LI Ling, GUI Tian, ZHANG Fei, LIU Xin, CHEN Xiangshu. Secondary hydrothermal synthesis of ZSM-5 zeolite membrane and its pervaporation performance [J]. Chemical Industry and Engineering Progree, 2016, 35(09): 2885-2891. |
[8] | GENG Dan,CHEN Yuli,JU Shengui. Effect of template agent on ZSM-5 zeolite membrane desulfurization [J]. Chemical Industry and Engineering Progree, 2014, 33(05): 1230-1235. |
[9] | HUANG Haifeng,GENG Dan,JU Shengui . Desulfurization performance of ZSM-5 zeolite membrane affected by synthesis conditions [J]. Chemical Industry and Engineering Progree, 2013, 32(05): 1163-1167. |
[10] | LIU Qing,JU Shengui. Study of removing BT/2,5-dimethylthiophene via modified ZSM-5 zeolite membrane [J]. Chemical Industry and Engineering Progree, 2011, 30(4): 886-. |
[11] | XUE Ning,JU Shengui. Separation performance of modified ZSM-5 zeolite membrane for binary thiophenic sulfurs [J]. Chemical Industry and Engineering Progree, 2010, 29(3): 444-. |
[12] | YIN Xiaowei,FENG Hui,JU Shengui. Investigation on desulfurizing performance of ZSM-5 membrane loaded with cupric ion [J]. Chemical Industry and Engineering Progree, 2008, 27(11): 1825-. |
[13] | LIU Nengjun,ZHANG Lin,CAI Rongxi,ZHOU Zhijun,CHEN Huanlin. Progress of membrane separation for xylene isomers [J]. Chemical Industry and Engineering Progree, 2007, 26(6): 804-. |
[14] | HUANG Yanke,XU Wenqing,YANG Weishen,ZHU Linghui,TAN Zhenming. Separation of ethylene glycol/water mixture with A-type zeolite membrane [J]. Chemical Industry and Engineering Progree, 2006, 25(9): 1110-. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 370
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 413
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |