Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (4): 2152-2160.DOI: 10.16085/j.issn.1000-6613.2020-0946
• Energy processes and technology • Previous Articles Next Articles
ZHENG Zhihang1(), LI Qian2, ZHANG Jiayuan1(), ZHOU Haoyu2
Received:
2020-06-01
Online:
2021-04-14
Published:
2021-04-05
Contact:
ZHANG Jiayuan
通讯作者:
张家元
作者简介:
郑志行(1995—),男,硕士研究生,研究方向为煤炭及生物质气化技术。E-mail:基金资助:
CLC Number:
ZHENG Zhihang, LI Qian, ZHANG Jiayuan, ZHOU Haoyu. Simulation of industrial Shell entrained flow bed by Aspen Plus[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2152-2160.
郑志行, 李谦, 张家元, 周浩宇. 基于Aspen Plus的Shell气流床工业气化炉模拟[J]. 化工进展, 2021, 40(4): 2152-2160.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0946
反应 | 标准反应热/kJ·mol-1 | 反应数 |
---|---|---|
C+O2 | -393.5 | R1 |
C+ | -110.5 | R2 |
C+H2O | +131.3 | R3 |
C+CO2 | +172.5 | R4 |
C+2H2 | -74.8 | R5 |
H2+ | -241.9 | R6 |
CO+ | -283.0 | R7 |
CO+H2O | -41.2 | R8 |
CH4+H2O | +206.1 | R9 |
反应 | 标准反应热/kJ·mol-1 | 反应数 |
---|---|---|
C+O2 | -393.5 | R1 |
C+ | -110.5 | R2 |
C+H2O | +131.3 | R3 |
C+CO2 | +172.5 | R4 |
C+2H2 | -74.8 | R5 |
H2+ | -241.9 | R6 |
CO+ | -283.0 | R7 |
CO+H2O | -41.2 | R8 |
CH4+H2O | +206.1 | R9 |
工业分析/% | 元素分析/% | ||||||||
---|---|---|---|---|---|---|---|---|---|
Ad | Vd | FCd | Cd | Hd | Nd | Sd | Od | Cld | |
7 | 34 | 59 | 75.07 | 4.49 | 0.96 | 0.42 | 12.03 | 0.01 |
工业分析/% | 元素分析/% | ||||||||
---|---|---|---|---|---|---|---|---|---|
Ad | Vd | FCd | Cd | Hd | Nd | Sd | Od | Cld | |
7 | 34 | 59 | 75.07 | 4.49 | 0.96 | 0.42 | 12.03 | 0.01 |
进料 | 压力/MPa | 温度/℃ | 质量流率/kg·s-1 |
---|---|---|---|
煤 | 4.00 | 80 | 21.59 |
氮气 | 4.15 | 80 | 1.5 |
氧气 | 4.15 | 180 | 17.57 |
水蒸气 | 5.05 | 300 | 2.16 |
进料 | 压力/MPa | 温度/℃ | 质量流率/kg·s-1 |
---|---|---|---|
煤 | 4.00 | 80 | 21.59 |
氮气 | 4.15 | 80 | 1.5 |
氧气 | 4.15 | 180 | 17.57 |
水蒸气 | 5.05 | 300 | 2.16 |
参数 | 文献值 | 模拟值 |
---|---|---|
φ(H2O)/% | 1.84 | 1.69 |
φ(N2)/% | 4.14 | 3.04 |
φ(H2)/% | 28.72 | 28.42 |
φ(CO)/% | 64.23 | 65.54 |
φ(CO2)/% | 1.2 | 1.12 |
φ(CH4)/% | 0.05 | |
φ(H2S)/% | 0.124 | 0.14 |
出口温度/℃ | 1450 | 1458.8 |
参数 | 文献值 | 模拟值 |
---|---|---|
φ(H2O)/% | 1.84 | 1.69 |
φ(N2)/% | 4.14 | 3.04 |
φ(H2)/% | 28.72 | 28.42 |
φ(CO)/% | 64.23 | 65.54 |
φ(CO2)/% | 1.2 | 1.12 |
φ(CH4)/% | 0.05 | |
φ(H2S)/% | 0.124 | 0.14 |
出口温度/℃ | 1450 | 1458.8 |
煤种 | 元素分析(干燥基)/% | 煤粉进料速率 /g·s-1 | (H2O/coal) /g·g-1 | (O2/coal) /g·g-1 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
C | H | N | S | Cl | O | Ash | ||||
Illinois No.6 | 74.05 | 6.25 | 0.71 | 1.77 | 0.37 | 1.32 | 15.53 | 76.66 | 0.24 | 0.87 |
Wyodak | 78.37 | 5.79 | 0.92 | 0.07 | 0.08 | 3.7 | 11.05 | 86 | 0.32 | 0.9 |
SRC(-Ⅱ) | 64.9 | 3.65 | 1.25 | 2.96 | — | 1.7 | 25.54 | 126.11 | 0.3 | 0.7 |
Exxon DSP | 70.74 | 4.67 | 1.18 | 2.74 | — | 3.95 | 16.72 | 126.11 | 0.5 | 0.79 |
Western | 74.56 | 5.31 | 0.99 | 0.46 | — | 11.47 | 7.2 | 186.78 | 0.52 | 0.91 |
Eastern | 72.72 | 5.03 | 1.4 | 2.99 | — | 9.13 | 8.73 | 133 | 0.79 | 0.87 |
煤种 | 元素分析(干燥基)/% | 煤粉进料速率 /g·s-1 | (H2O/coal) /g·g-1 | (O2/coal) /g·g-1 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
C | H | N | S | Cl | O | Ash | ||||
Illinois No.6 | 74.05 | 6.25 | 0.71 | 1.77 | 0.37 | 1.32 | 15.53 | 76.66 | 0.24 | 0.87 |
Wyodak | 78.37 | 5.79 | 0.92 | 0.07 | 0.08 | 3.7 | 11.05 | 86 | 0.32 | 0.9 |
SRC(-Ⅱ) | 64.9 | 3.65 | 1.25 | 2.96 | — | 1.7 | 25.54 | 126.11 | 0.3 | 0.7 |
Exxon DSP | 70.74 | 4.67 | 1.18 | 2.74 | — | 3.95 | 16.72 | 126.11 | 0.5 | 0.79 |
Western | 74.56 | 5.31 | 0.99 | 0.46 | — | 11.47 | 7.2 | 186.78 | 0.52 | 0.91 |
Eastern | 72.72 | 5.03 | 1.4 | 2.99 | — | 9.13 | 8.73 | 133 | 0.79 | 0.87 |
水平 | A/kg·kg-1 | B/% | C/℃ |
---|---|---|---|
1 | 0.7 | 21 | 100 |
2 | 0.8 | 40 | 200 |
3 | 0.9 | 60 | 300 |
4 | 1.0 | 80 | 400 |
5 | 1.1 | 100 | 500 |
水平 | A/kg·kg-1 | B/% | C/℃ |
---|---|---|---|
1 | 0.7 | 21 | 100 |
2 | 0.8 | 40 | 200 |
3 | 0.9 | 60 | 300 |
4 | 1.0 | 80 | 400 |
5 | 1.1 | 100 | 500 |
组数 | A | B | C | 气化温度/℃ | 煤气热值/kcal·m-3 | 有效气体积分数/% | 煤气产率/m3·kg-1 | 冷煤气效率/% | 碳转化率/% |
---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 954.55 | 1279.87 | 40.58 | 3.45 | 61.73 | 87.20 |
2 | 1 | 2 | 2 | 1091.42 | 2042.50 | 65.89 | 2.52 | 72.11 | 91.99 |
3 | 1 | 3 | 3 | 1177.28 | 2476.34 | 80.41 | 2.18 | 75.60 | 93.57 |
4 | 1 | 4 | 4 | 1236.75 | 2743.57 | 89.39 | 2.01 | 77.13 | 94.26 |
5 | 1 | 5 | 5 | 1281.11 | 2926.55 | 95.55 | 1.90 | 77.96 | 94.62 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
21 | 5 | 1 | 5 | 1516.96 | 995.72 | 32.92 | 4.73 | 65.87 | 100 |
22 | 5 | 2 | 1 | 1795.27 | 1586.50 | 52.46 | 2.97 | 65.86 | 100 |
23 | 5 | 3 | 2 | 2171.62 | 2040.07 | 67.47 | 2.31 | 65.89 | 100 |
24 | 5 | 4 | 3 | 2425.56 | 2380.17 | 78.72 | 1.98 | 65.94 | 100 |
25 | 5 | 5 | 4 | 2609.84 | 2645.10 | 87.48 | 1.78 | 65.99 | 100 |
组数 | A | B | C | 气化温度/℃ | 煤气热值/kcal·m-3 | 有效气体积分数/% | 煤气产率/m3·kg-1 | 冷煤气效率/% | 碳转化率/% |
---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 954.55 | 1279.87 | 40.58 | 3.45 | 61.73 | 87.20 |
2 | 1 | 2 | 2 | 1091.42 | 2042.50 | 65.89 | 2.52 | 72.11 | 91.99 |
3 | 1 | 3 | 3 | 1177.28 | 2476.34 | 80.41 | 2.18 | 75.60 | 93.57 |
4 | 1 | 4 | 4 | 1236.75 | 2743.57 | 89.39 | 2.01 | 77.13 | 94.26 |
5 | 1 | 5 | 5 | 1281.11 | 2926.55 | 95.55 | 1.90 | 77.96 | 94.62 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
21 | 5 | 1 | 5 | 1516.96 | 995.72 | 32.92 | 4.73 | 65.87 | 100 |
22 | 5 | 2 | 1 | 1795.27 | 1586.50 | 52.46 | 2.97 | 65.86 | 100 |
23 | 5 | 3 | 2 | 2171.62 | 2040.07 | 67.47 | 2.31 | 65.89 | 100 |
24 | 5 | 4 | 3 | 2425.56 | 2380.17 | 78.72 | 1.98 | 65.94 | 100 |
25 | 5 | 5 | 4 | 2609.84 | 2645.10 | 87.48 | 1.78 | 65.99 | 100 |
气化指标 | A | B | C |
---|---|---|---|
煤气热值/kcal·m-3 | |||
极差 | 364.25 | 1614.53 | 69.73 |
主次顺序 | B>A>C | ||
最优水平 | A2 | B5 | C3 |
有效气体积分数/% | |||
极差 | 11.35 | 53.69 | 2.22 |
主次顺序 | B>A>C | ||
最优水平 | A2 | B5 | C3、C4 |
煤气产率/m3·kg-1 | |||
极差 | 0.26 | 2.29 | 0.27 |
主次顺序 | B>C>A | ||
最优水平 | A5 | B1 | C5 |
冷煤气效率/% | |||
极差 | 14.98 | 5.62 | 3.50 |
主次顺序 | A>B>C | ||
最优水平 | A2 | B3、B4、B5 | C3、C4、C5 |
碳转化率/% | |||
极差 | 7.67 | 2.53 | 1.57 |
主次顺序 | A>B=C | ||
最优水平 | A3、A4、A5 | B3、B4、B5 | C3、C4、C5 |
气化指标 | A | B | C |
---|---|---|---|
煤气热值/kcal·m-3 | |||
极差 | 364.25 | 1614.53 | 69.73 |
主次顺序 | B>A>C | ||
最优水平 | A2 | B5 | C3 |
有效气体积分数/% | |||
极差 | 11.35 | 53.69 | 2.22 |
主次顺序 | B>A>C | ||
最优水平 | A2 | B5 | C3、C4 |
煤气产率/m3·kg-1 | |||
极差 | 0.26 | 2.29 | 0.27 |
主次顺序 | B>C>A | ||
最优水平 | A5 | B1 | C5 |
冷煤气效率/% | |||
极差 | 14.98 | 5.62 | 3.50 |
主次顺序 | A>B>C | ||
最优水平 | A2 | B3、B4、B5 | C3、C4、C5 |
碳转化率/% | |||
极差 | 7.67 | 2.53 | 1.57 |
主次顺序 | A>B=C | ||
最优水平 | A3、A4、A5 | B3、B4、B5 | C3、C4、C5 |
1 | 汪寿建. 现代煤气化技术发展趋势及应用综述[J]. 化工进展, 2016, 35(3): 653-664. |
WANG Shoujian. Development and application of modern coal gasification technology[J]. Chemical Industry and Engineering Progress, 2016, 35(3): 653-664. | |
2 | 岑建孟, 方梦祥, 王勤辉, 等. 煤分级利用多联产技术及其发展前景[J]. 化工进展, 2011, 30(1): 88-94. |
CEN Jianmeng, FANG Mengxiang, WANG Qinhui, et al. Development and prospect of coal staged conversion poly-generation technology[J]. Chemical Industry and Engineering Progress, 2011, 30(1): 88-94. | |
3 | 刘永健, 何畅, 冯霄, 等. 煤制合成天然气装置能耗分析与节能途径探讨[J]. 化工进展, 2013, 32(1): 48-53, 103. |
LIU Yongjian, HE Chang, FENG Xiao, et al. Analysis of energy consumption and energy saving approach in a coal to SNG plant[J]. Chemical Industry and Engineering Progress, 2013, 32(1): 48-53, 103. | |
4 | NI Qizhi, WILLIAMS Alan. A simulation study on the performance of an entrained-flow coal gasifier[J]. Fuel, 1995, 74(1): 102-110. |
5 | LI X, GRACE J R, WATKINSON A P, et al. Equilibrium modeling of gasification: a free energy minimization approach and its application to a circulating fluidized bed coal gasifier[J]. Fuel, 2001, 80(2): 195-207. |
6 | KONG Xiangdong, ZHONG Weimin, DU Wenli, et al. Three stage equilibrium model for coal gasification in entrained flow gasifiers based on Aspen Plus[J]. Chinese Journal of Chemical Engineering, 2013, 21(1): 79-84. |
7 | SANCHEZ Cristian, ARENAS Erika, CHEJNE Farid, et al. A new model for coal gasification on pressurized bubbling fluidized bed gasifiers[J]. Energy Conversion and Management, 2016, 126: 717-723. |
8 | 王辅臣, 于广锁, 龚欣, 等. 大型煤气化技术的研究与发展[J]. 化工进展, 2009, 28(2): 173-180. |
WANG Fuchen, YU Guangsuo, GONG Xin, et al. Research and development of large-scale coal gasification technology[J]. Chemical Industry and Engineering Progress, 2009, 28(2): 173-180. | |
9 | KUNZE Christian, SPLIETHOFF Hartmut. Modelling, comparison and operation experiences of entrained flow gasifier[J]. Energy Conversion & Management, 2011, 52(5): 2135-2141. |
10 | KONG Xiangdong, ZHONG Weimin, DU Wenli, et al. Compartment modeling of coal gasification in an entrained flow gasifier: a study on the influence of operating conditions[J]. Energy Conversion and Management, 2014, 82: 202-211. |
11 | JANG D H, YOON S P, KIM H T, et al. Simulation analysis of hybrid coal gasification according to various conditions in entrained-flow gasifier[J]. International Journal of Hydrogen Energy, 2015, 40(5): 2162-2172. |
12 | 赵先国, 常杰, 吕鹏梅, 等. 生物质流化床富氧气化的实验研究[J]. 燃料化学学报, 2005, 33(2):199-204. |
ZHAO Xianguo, CHANG Jie, Pengmei LYU, et al. Biomass gasification under O2-rich gas in a fluidized bed reactor[J]. Journal of Fuel Chemistry and Technology, 2005, 33(2):199-204. | |
13 | 刘霞, 田原宇, 乔英云. 国内外气流床煤气化技术发展概述[J]. 化工进展, 2010, 29(S2): 120-124. |
LIU Xia, TIAN Yuanyu, QIAO Yingyun. Progress of entrained-bed coal gasification technology[J]. Chemical Industry and Engineering Progress, 2010, 29(S2): 120-124. | |
14 | 盛新, 韩启元, 汪永庆, 等. Shell煤气化装置模拟计算和操作优化软件的开发与应用[J].化工进展, 2009, 28(11): 2076-2082. |
SHENG Xin, HAN Qiyuan, WANG Yongqing, et al. Development and application of simulation and optimization software for Shell coal gasification plant[J]. Chemical Industry and Engineering Progress, 2009, 28(11): 2076-2082. | |
15 | 谭富桃. 用化学平衡常数证明影响化学平衡的因素[J]. 化学教育, 2014, 35(9):37-39. |
TAN Futao. Proving the factors influencing chemical equilibrium with chemical equilibrium constant[J]. Chinese Journal of Chemical Education, 2014, 35 (9): 37-39. | |
16 | 刘建峰, 邓蜀平, 蒋云峰,等. Shell干煤粉气化的模拟与分析[J]. 化工进展, 2014, 33(S1): 145-149. |
LIU Jianfeng, DENG Shuping, JIANG Yunfeng, et al. Simulation and analysis of dry pulverized coal gasification in Shell gasifier[J]. Chemical Industry and Engineering Progress, 2014, 33(S1): 145-149. | |
17 | 张宗飞, 汤连英, 吕庆元,等. 基于Aspen Plus的粉煤气化模拟[J]. 化肥设计, 2008(3): 14-18, 26. |
ZHANG Zongfei, TANG Lianying, Qingyuan LYU, et al. Pulverized coal gasification simulation based on Aspen Plus software[J]. Chemical Fertilizer Design, 2008(3): 14-18, 26. | |
18 | 东赫, 刘金昌, 解强, 等. 典型气流床煤气化炉气化过程的建模[J]. 化工进展, 2016, 35(8): 2426-2431. |
DONG He, LIU Jinchang, XIE Qiang, et al. Modeling of coal gasification reaction in typical entrained-flow coal gasifiers[J]. Chemical Industry and Engineering Progress, 2016, 35(8): 2426-2431. | |
19 | GOVIND Rakesh, SHAH Jogen. Modeling and simulation of an entrained flow gasifier[J]. AIChE Journal, 1984, 30(1): 79-92. |
20 | YU K S, LIU W W, ZHANG H X, et al. Research on gasification of shenhua coal and blended coal in industrial circulating fluidized bed gasifier[J]. Proceedings of the CSEE, 2017, 37(20): 5980-5986. |
21 | 朱有健, 王定标, 周俊杰. 固定床煤气化炉的模拟与优化[J]. 化工学报, 2011, 62(6): 1606-1611. |
ZHU Youjian, WANG Dingbiao, ZHOU Junjie. Simulation and optimization of fixed bed gasifier[J]. CIESC Journal, 2011, 62(6): 1606-1611. | |
22 | 刘忠慧, 于旷世, 张海霞, 等. 基于Aspen Plus的循环流化床工业气化炉模拟[J]. 化工进展, 2018, 37(5): 1709-1717. |
LIU Zhonghui, YU Kuangshi, ZHANG Haixia, et al. Simulation of industrial circulating fluidized bed gasifier by Aspen Plus[J]. Chemical Industry and Engineering Progress, 2018, 37(5): 1709-1717. |
[1] | LUO Zhenmin, LIU Lu, SU Bin, SONG Fangzhi. Effect of inert gas on ethylene explosion limit parameters and kinetic characteristics [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4653-4661. |
[2] | ZHENG Zhihang, ZHANG Jiayuan, LI Qian, ZHOU Haoyu. Aspen Plus modeling of the entrained bed coal gasification: equilibrium model and kinetic model [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4165-4172. |
[3] | LIU Zuoren, XU Chuanlong, TANG Guanghua. Simulation and sensitivity analysis of flue gas environmental protection island system in coal-fired unit based on ASPEN Plus [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6564-6573. |
[4] | CAO Xuewen, YANG Jian, BIAN Jiang, LIU Yang, GUO Dan, LI Qigui. Design and analysis of a new type of dual-pressure Linde-Hampson hydrogen liquefaction process [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6663-6669. |
[5] | CHEN Yangui, ZHANG Wenqi, WANG Yinfeng, LIAO Chuanhua, ZHU Yuezhao. Analysis of gasification characteristics of coal-petrochemical sludge at high temperature based on Aspen Plus [J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5786-5793. |
[6] | Yingdi SHAO, Jianhang HU, Huili LIU, Zhengda CAI. Energy efficiency analysis of heat exchange network of isobutylene purification unit [J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 57-65. |
[7] | Lian LI,Zhi CHEN,Jinfei YANG,Jihui WANG,Jianming LI. Application of air-gap membrane distillation in lithium bromide absorption refrigeration system [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 80-88. |
[8] | Xiaoyang YUE, Shuhong LI, Mengkai XU, Yanjun LI, Kai DU, Liu YANG. Analysis of NH3-H2O-LiBr absorption refrigeration system based on membrane separator [J]. Chemical Industry and Engineering Progress, 2019, 38(02): 813-818. |
[9] | LIU Zhonghui, YU Kuangshi, ZHANG Haixia, ZHU Zhiping. Simulation of industrial circulating fluidized bed gasifier by Aspen Plus [J]. Chemical Industry and Engineering Progress, 2018, 37(05): 1709-1717. |
[10] | YU Dian, ZHONG Zhaoping, LI Quanxin. Process simulation and exergy analysis of jet fuel production by the coupling of Fischer-Tropsch synthesis and olefin polymerization from bio-oil cracking gas [J]. Chemical Industry and Engineering Progress, 2018, 37(05): 1767-1773. |
[11] | BAI Jingru, LI Qifan, WU Haitao, BAI Zhang, WANG Qing. Simulation of oil shale pyrolysis using Aspen Plus user model [J]. Chemical Industry and Engineering Progress, 2017, 36(05): 1682-1689. |
[12] | BAI Jingru, WANG Lintao, ZHANG Qingyan, BAI Zhang, WANG Qing. Simulation and analysis of modified comprehensive utilization system of Hua-dian oil shale using gaseous heat carrier [J]. Chemical Industry and Engineering Progress, 2017, 36(04): 1258-1264. |
[13] | LI Chunqi. Simulation analysis of the loop system of syngas methanation based on kinetics model [J]. Chemical Industry and Engineering Progree, 2017, 36(01): 146-155. |
[14] | BAI Jingru, LI Qifan, WU Haitao, BAI Zhang, WANG Qing. Simulation of Fushun type retort for oil shale processing method using Aspen Plus [J]. Chemical Industry and Engineering Progree, 2017, 36(01): 121-128. |
[15] | LV Qizheng, XU Qixiang, ZHANG Changsen, ZHANG Ruiqin, YUE Hui, ZHANG Lihong. Application of Aspen Plus in thermal conversion of biomass into liquid fuels: a review [J]. Chemical Industry and Engineering Progree, 2016, 35(S1): 116-121. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |