Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (4): 1883-1892.DOI: 10.16085/j.issn.1000-6613.2020-1966
• Special column:Industrial catalysis • Previous Articles Next Articles
SHENG Jian(), LU Wenduo, YAN Bing, QIU Bin, ZHOU Yuxi, WANG Dongqi, LU Anhui(
)
Received:
2020-09-27
Online:
2021-04-14
Published:
2021-04-05
Contact:
LU Anhui
盛健(), 陆文多, 闫冰, 邱彬, 周禹希, 王东琪, 陆安慧(
)
通讯作者:
陆安慧
作者简介:
盛健(1994—),男,博士研究生,研究方向为烷烃催化转化。E-mail:基金资助:
CLC Number:
SHENG Jian, LU Wenduo, YAN Bing, QIU Bin, ZHOU Yuxi, WANG Dongqi, LU Anhui. Progress in oxidative dehydrogenation of light alkanes to olefins over boron-based materials[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1883-1892.
盛健, 陆文多, 闫冰, 邱彬, 周禹希, 王东琪, 陆安慧. 硼基材料催化低碳烷烃氧化脱氢制烯烃研究进展[J]. 化工进展, 2021, 40(4): 1883-1892.
1 | CAVANI F, BALLARINI N, CERICOLA A. Oxidative dehydrogenation of ethane and propane: how far from commercial implementation?[J]. Catal. Today, 2007, 127(1/2/3/4): 113-131. |
2 | SATTLER J J, RUIZ-MARTINEZ J, SANTILLAN-JIMENEZ E, et al. Catalytic dehydrogenation of light alkanes on metals and metal oxides[J]. Chem. Rev., 2014, 114(20): 10613-10653. |
3 | 闫冰, 盛健, 邱彬, 等. 低碳烷烃氧化脱氢制烯烃非金属催化体系研究进展[J]. 中国科学: 化学, 2020, 50(7): 832-846. |
YAN B, SHENG J, QIU B, et al. Progress in the oxidative dehydrogenation of light alkanes to light olefins on metal-free catalysts[J]. Sci. Sin. Chim., 2020, 50(7): 832-846. | |
4 | GARTNER C A, VEEN A C VAN, LERCHER J A. Oxidative dehydrogenation of ethane: common principles and mechanistic aspects[J]. ChemCatChem, 2013, 5(11): 3196-3217. |
5 | SHI L, WANG Y, YAN B, et al. Progress in selective oxidative dehydrogenation of light alkanes to olefins promoted by boron nitride catalysts[J]. Chem. Commun., 2018, 54(78): 10936-10946. |
6 | SHI L, DENG G M, LI W C, et al. Al2O3 nanosheets rich in pentacoordinate Al3+ ions stabilize Pt-Sn clusters for propane dehydrogenation[J]. Angew. Chem., Int. Ed., 2015, 54(47): 13994-13998. |
7 | GAO X Q, LU W D, HU S Z, et al. Rod-shaped porous alumina-supported Cr2O3 catalyst with low acidity for propane dehydrogenation[J]. Chin. J. Catal., 2019, 40(2): 184-191. |
8 | GRANT J T, CARRERO C A, GOELTL F, et al. Selective oxidative dehydrogenation of propane to propene using boron nitride catalysts[J]. Science, 2016, 354(6319): 1570-1573. |
9 | SHI L, WANG D, SONG W, et al. Edge-hydroxylated boron nitride for oxidative dehydrogenation of propane to propylene[J]. ChemCatChem, 2017, 9(10): 1788-1793. |
10 | WENG Q, WANG X, WANG X, et al. Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications[J]. Chem. Soc. Rev., 2016, 45(14): 3989-4012. |
11 | HANSEN T W, WAGNER J B, HANSEN P L, et al. Atomic-resolution in situ transmission electron microscopy of a promoter of a heterogeneous catalyst[J]. Science, 2001, 294(5546): 1508-1510. |
12 | WANG Y, SHI L, LU W, et al. Spherical boron nitride supported gold-copper catalysts for the low-temperature selective oxidation of ethanol[J]. ChemCatChem, 2017, 9(8): 1363-1367. |
13 | SHI L, YAN B, SHAO D, et al. Selective oxidative dehydrogenation of ethane to ethylene over a hydroxylated boron nitride catalyst[J]. Chin. J. Catal., 2017, 38(2): 389-395. |
14 | VENEGAS J M, GRANT J T, MCDERMOTT W P, et al. Selective oxidation of n-butane and isobutane catalyzed by boron nitride[J]. ChemCatChem, 2017, 9(12): 2118-2127. |
15 | YAN B, LI W C, LU A H. Metal-free silicon boride catalyst for oxidative dehydrogenation of light alkanes to olefins with high selectivity and stability[J]. J. Catal., 2019, 369: 296-301. |
16 | GRANT J T, MCDERMOTT W P, VENEGAS J M, et al. Boron and boron-containing catalysts for the oxidative dehydrogenation of propane[J]. ChemCatChem, 2017, 9(19): 3623-3626. |
17 | SHI L, WANG D, LU A H. A viewpoint on catalytic origin of boron nitride in oxidative dehydrogenation of light alkanes[J]. Chin. J. Catal., 2018, 39(5): 908-913. |
18 | HUANG R, ZHANG B, WANG J, et al. Direct insight into ethane oxidative dehydrogenation over boron nitrides[J]. ChemCatChem, 2017, 9(17): 3293-3297. |
19 | LI H, ZHANG J, WU P, et al. O2 activation and oxidative dehydrogenation of propane on hexagonal boron nitride: mechanism revisited[J]. J. Phys. Chem. C, 2019, 123(4): 2256-2266. |
20 | ZHOU Y, LIN J, LI L, et al. Enhanced performance of boron nitride catalysts with induction period for the oxidative dehydrogenation of ethane to ethylene[J]. J. Catal., 2018, 365: 14-23. |
21 | LOVE A M, THOMAS B, SPECHT S E, et al. Probing the transformation of boron nitride catalysts under oxidative dehydrogenation conditions[J]. J. Am. Chem. Soc., 2019, 141(1): 182-190. |
22 | LU W D, WANG D, ZHAO Z, et al. Supported boron oxide catalysts for selective and low-temperature oxidative dehydrogenation of propane[J]. ACS Catal., 2019, 9(9): 8263-8270. |
23 | LIU Q, WU Y, XING F, et al. B2O3@BPO4 sandwich-like hollow spheres as metal-free supported liquid-phase catalysts[J]. J. Catal., 2020, 381: 599-607. |
24 | MCDERMOTT W P, VENEGAS J, HERMANS I. Selective oxidative cracking of n-butane to light olefins over hexagonal boron nitride with limited formation of COx[J]. ChemSusChem, 2020, 13(1): 152-158. |
25 | WANG Y, ZHAO L, SHI L, et al. Methane activation over a boron nitride catalyst driven by in situ formed molecular water[J]. Catal. Sci. Technol., 2018, 8(8): 2051-2055. |
26 | TIAN J, TAN J, XU M, et al. Propane oxidative dehydrogenation over highly selective hexagonal boron nitride catalysts: the role of oxidative coupling of methyl[J]. Sci. Adv., 2019, 5(3): eaav8063. |
27 | VENEGAS J M, HERMANS I. The influence of reactor parameters on the boron nitride-catalyzed oxidative dehydrogenation of propane[J]. Org. Process Res. Dev., 2018, 22(12): 1644-1652. |
28 | ZHANG X, YOU R, WEI Z, et al. Radical chemistry and reaction mechanisms of propane oxidative dehydrogenation over hexagonal boron nitride catalysts[J]. Angew. Chem., Int. Ed., 2020, 59(21): 8042-8046. |
29 | HONDA Y, TAKAGAKI A, KIKUCHI R, et al. Oxidative dehydrogenation of ethane using ball-milled hexagonal boron nitride[J]. Chem. Lett., 2018, 47(9): 1090-1093. |
30 | CHATURBEDY P, AHAMED M, ESWARAMOORTHY M. Oxidative dehydrogenation of propane over a high surface area boron nitride catalyst: exceptional selectivity for olefins at high conversion[J]. ACS Omega, 2018, 3(1): 369-374. |
31 | CAO L, DAI P, TANG J, et al. Spherical superstructure of boron nitride nanosheets derived from boron-containing metal-organic frameworks[J]. J. Am. Chem. Soc., 2020, 142(19): 8755-8762. |
32 | QIU B, JIANG F, LU W D, et al. Oxidative dehydrogenation of propane using layered borosilicate zeolite as the active and selective catalyst[J]. J. Catal., 2020, 385: 176-182. |
33 | LU W D, GAO X Q, WANG Q G, et al. Ordered macroporous boron phosphate crystals as metal-free catalysts for the oxidative dehydrogenation of propane[J]. Chin. J. Catal., 2020, 41(12): 1837-1845. |
34 | WANG Y, LI W C, ZHOU Y X, et al. Boron nitride wash-coated cordierite monolithic catalyst showing high selectivity and productivity for oxidative dehydrogenation of propane[J]. Catal. Today, 2020, 339: 62-66. |
35 | ZHOU Y X, WANG Y, LU W D, et al. A high propylene productivity over B2O3/SiO2@honeycomb cordierite catalyst for oxidative dehydrogenation of propane[J]. Chin. J. Chem. Eng., 2020, 28(11): 2778-2784. |
36 | TIAN J S, LIN J H, XU M L, et al. Hexagonal boron nitride catalyst in a fixed-bed reactor for exothermic propane oxidation dehydrogenation[J]. Chem. Eng. Sci., 2018, 186: 142-151. |
37 | GUO F, YANG P, PAN Z, et al. Carbon-doped BN nanosheets for the oxidative dehydrogenation of ethylbenzene[J]. Angew. Chem., Int. Ed., 2017, 56(28): 8231-8235. |
38 | SHENG J, YAN B, HE B, et al. Nonmetallic boron nitride embedded graphitic carbon catalyst for oxidative dehydrogenation of ethylbenzene[J]. Catal. Sci. Technol., 2020, 10(6): 1809-1815. |
39 | NASH D J, RESTREPO D T, PARRA N S, et al. Heterogeneous metal-free hydrogenation over defect-laden hexagonal boron nitride[J]. ACS Omega, 2016, 1(6): 1343-1354. |
40 | LI P, LI H, PAN X, et al. Catalytically active boron nitride in acetylene hydrochlorination[J]. ACS Catal., 2017, 7(12): 8572-8577. |
41 | WU Y, WU P, CHAO Y, et al. Gas-exfoliated porous monolayer boron nitride for enhanced aerobic oxidative desulfurization performance[J]. Nanotechnol., 2018, 29(2): 025604. |
42 | ZHAO L Y, CHEN J Y, LI W C, et al. B2O3: a heterogeneous metal-free Lewis acid catalyst for carbon dioxide fixation into cyclic carbonates[J]. J. CO2 Util., 2019, 29: 172-178. |
[1] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[2] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[3] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[4] | XU Youhao, WANG Wei, LU Bona, XU Hui, HE Mingyuan. China’s oil refining innovation: MIP development strategy and enlightenment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4465-4470. |
[5] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[6] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[7] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[8] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[9] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[10] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[11] | GUO Lixing, PANG Weiying, MA Keyao, YANG Jiahan, SUN Zehui, ZHANG Pan, FU Dong, ZHAO Kun. Hierarchically multilayered TiO2 with spatial pore-structure for efficient photocatalytic CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3643-3651. |
[12] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
[13] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[14] | DONG Xiaoshan, WANG Jian, LIN Fawei, YAN Beibei, CHEN Guanyi. Exsolved metal nanoparticles on perovskite oxides: exsolution, driving force and control strategy [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3049-3065. |
[15] | FU Shurong, WANG Lina, WANG Dongwei, LIU Rui, ZHANG Xiaohui, MA Zhanwei. Oxygen evolution cocatalyst enhancing the photoanode performances for photoelectrochemical water splitting [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2353-2370. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 654
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 564
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |