Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (12): 6705-6713.DOI: 10.16085/j.issn.1000-6613.2021-0082
• Industrial catalysis • Previous Articles Next Articles
WANG Bin(), YANG Yuehong(), YANG Yaoxi
Received:
2021-01-13
Revised:
2021-04-26
Online:
2021-12-21
Published:
2021-12-05
Contact:
YANG Yuehong
通讯作者:
杨月红
作者简介:
王斌(1996—)男,硕士研究生,研究方向为废水处理。E-mail:基金资助:
CLC Number:
WANG Bin, YANG Yuehong, YANG Yaoxi. Heterogeneous Fenton oxidation performance of vanadium-doped copper-based and iron-based bimetallic catalysts[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6705-6713.
王斌, 杨月红, 阳耀熙. 钒掺杂铜基、铁基双金属催化剂的非均相芬顿氧化性能[J]. 化工进展, 2021, 40(12): 6705-6713.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0082
催化剂种类 | 反应条件 | 脱色率/% | 出处 |
---|---|---|---|
SAC-Fe/Cu-500℃ | MB 100mg/L,催化剂 0.1g/L,H2O2 6mL/L,pH=7,T=25℃ | 27 | [ |
Fe-Cu-080 | MB 5mg/L,催化剂 0.05g/L,H2O2 5%,pH=7,T=25℃ | >99 | [ |
MgFe-LDH | MB 20mg/L,催化剂 2.0g/L,H2O2 1mL,pH=7,T=25℃ | 78.2 | [ |
Cu-V | MB 100mg/L,催化剂 0.5g/L,H2O2 10mmol/L,pH=7,T=25℃ | 88.32 | 本文 |
Fe-V | MB 100mg/L,催化剂 0.5g/L,H2O2 10mmol/L,pH=7,T=25℃ | 75.27 | 本文 |
催化剂种类 | 反应条件 | 脱色率/% | 出处 |
---|---|---|---|
SAC-Fe/Cu-500℃ | MB 100mg/L,催化剂 0.1g/L,H2O2 6mL/L,pH=7,T=25℃ | 27 | [ |
Fe-Cu-080 | MB 5mg/L,催化剂 0.05g/L,H2O2 5%,pH=7,T=25℃ | >99 | [ |
MgFe-LDH | MB 20mg/L,催化剂 2.0g/L,H2O2 1mL,pH=7,T=25℃ | 78.2 | [ |
Cu-V | MB 100mg/L,催化剂 0.5g/L,H2O2 10mmol/L,pH=7,T=25℃ | 88.32 | 本文 |
Fe-V | MB 100mg/L,催化剂 0.5g/L,H2O2 10mmol/L,pH=7,T=25℃ | 75.27 | 本文 |
1 | HE Jie, YANG Xiaofang, Bin MEN, et al. Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: a review [J]. Journal of Environmental Sciences, 2016, 39: 97-109. |
2 | WANG Qing, MA Yuan, XING Shengtao. Comparative study of Cu-based bimetallic oxides for Fenton-like degradation of organic pollutants[J]. Chemosphere, 2018, 203: 450-456. |
3 | LOVJEET Singh, PAWAN Rekha, SHRI Chand. Comparative evaluation of synthesis routes of Cu/zeolite Y catalysts for catalytic wet peroxide oxidation of quinoline in fixed-bed reactor[J]. Journal of Environmental Management, 2018, 215: 1-12. |
4 | JIANG Songshan, ZHANG Huiping, YAN ZhangYing. Cu-MFI zeolite supported on paper-like sintered stainless fiber for catalytic wet peroxide oxidation of phenol in a batch reactor[J]. Separation and Purification Technology, 2018, 190: 243-251. |
5 | PAN Yue, JIANG Songshan, XIONG Wei, et al. Supported CuO catalysts on metal-organic framework (Cu-UiO-66) for efficient catalytic wet peroxide oxidation of 4-chlorophenol in wastewater[J]. Microporous and Mesoporous Materials, 2020, 291: 109703. |
6 | WANG Songxue, TIAN Jiayu, WANG Qiao, et al. Development of CuO coated ceramic hollow fiber membrane for peroxymonosulfate activation: a highly efficient singlet oxygen-dominated oxidation process for bisphenol a degradation[J]. Applied Catalysis B: Environmental, 2019, 256: 117783. |
7 | XIANG Wei, ZHOU Tao, WANG Yifan. Catalytic oxidation of diclofenac by hydroxylamine-enhanced Cu nanoparticles and the efficient neutral heterogeneous-homogeneous reactive copper cycle[J]. Water Research, 2019, 153: 274-283. |
8 | SU Zhen, LI Jing, ZHANG Dandan, et al. Novel flexible Fenton-like catalyst: unique CuO nanowires arrays on copper mesh with high efficiency across a wide pH range[J]. Science of the Total Environment, 2019, 647: 587–596. |
9 | ZHANG Nuanqin, XUE Chengjie, WANG Kuang, et al. Efficient oxidative degradation of fluconazole by a heterogeneous Fenton process with Cu-V bimetallic catalysts[J]. Chemical Engineering Journal, 2020, 380: 122516. |
10 | ZHU Yanping, ZHU Runliang, XI Yunfei, et al. Strategies for enhancing the heterogeneous Fenton catalytic reactivity: a review[J]. Applied Catalysis B: Environmental, 2019, 255: 117739. |
11 | ZHANG Nuanqin, YI Yunqiang, LIAN Jintao, et al. Effects of Ce doping on the Fenton-like reactivity of Cu-based catalyst to the fluconazole[J]. Chemical Engineering Journal, 2020, 395: 124897. |
12 | 李家欣, 张宝刚, 高玥琪, 等. 钒系催化剂在环境保护中的应用研究进展[J]. 环境科学与技术, 2020, 43(6): 179-189. |
LI Jiaxin, ZHANG Baogang, GAO Yueqi, et al. Research progress on the application of vanadium based catalyst in environmental protection[J]. Environmental Science & Technology, 2020, 43(6): 179-189. | |
13 | REN Xiaohua, LIU Yang, GUO Weilin, et al. Morphology and crystal facet-dependent activation mechanism of persulfate by V2O5 nanomaterials for organic pollutants degradation[J]. Separation and Purification Technology, 2020, 253: 117501. |
14 | FANG Guodong, DENG Yamei, HUANG Min, et al. A mechanistic understanding of hydrogen peroxide decomposition by vanadium minerals for diethyl phthalate degradation[J]. Environmental Science Technology, 2018, 52: 2178-2185. |
15 | RYAN R L, DAVID M K, CHRISTOPHER L M, et al. Catalytic applications of vanadium: a mechanistic perspective[J]. Chemical Reviews, 2019, 119: 2128-2191. |
16 | LAI Leiduo, ZHOU Hongyu, LAI Bo. Heterogeneous degradation of bisphenol A by peroxymonosulfate activated with vanadium-titanium magnetite: performance, transformation pathways and mechanism[J]. Chemical Engineering Journal, 2018, 349: 633–645. |
17 | DENG Jingheng, JIANG Jingyuan, ZHANG Yuanyuan, et al. FeVO4 as a highly active heterogeneous Fenton-like catalyst towards the degradation of Orange Ⅱ[J]. Applied Catalysis B: Environmental, 2008, 84: 468-473. |
18 | 孙浩, 吴娟, 马东, 等. 钒酸铁类Fenton催化剂的制备及性能研究[J]. 中国环境科学, 2015, 35(6): 1734-1739. |
SUN Hao, WU Juan, MA Dong, et al. Preparation of iron (Ⅲ) vanadate Fenton-like catalyst and its catalytic performance[J]. China Environmental Science, 2015, 35(6): 1734-1739. | |
19 | SUN Yang, TIAN Pengfei, DING Doudou, et al. Revealing the active species of Cu-based catalysts for heterogeneous Fenton reaction[J]. Applied Catalysis B: Environmental, 2019, 258: 117985. |
20 | WANG Jing, LIU Chao, FENG Jiayou, et al. MOFs derived Co/Cu bimetallic nanoparticles embedded in graphitized carbon nanocubes as efficient Fenton catalysts[J]. Journal of Hazardous Materials, 2020, 394: 122567. |
21 | ZHANG Yuting, LIU Cao, XU Bingbing, et al. Degradation of benzotriazole by a novel Fenton-like reaction with mesoporous Cu/MnO2: combination of adsorption and catalysis oxidation[J]. Applied Catalysis B: Environmental, 2016, 199: 447-457. |
22 | LI Zhenlu, Jianchang LYU, GE Ming, et al. Synthesis of magnetic Cu/CuFe2O4 nanocomposite as a highly efficient Fenton-like catalyst for methylene blue degradation[J]. Journal of Materials Science, 2018, 53:15081-15095. |
23 | 宋文臣, 李宏, 张勇健, 等. X射线光电子能谱分析钒渣熟料中钒的价态[J]. 冶金分析, 2014, 34(4): 27-71. |
SONG Wencheng, LI Hong, ZHANG Yongjian, et al. Analysis of the valence state of vanadium in vanadium slag clinker by X-ray photoelectron spectroscopy[J]. Metallurgical Analysis, 2014, 34(4): 27-71. | |
24 | WAN Zhong, WANG Jianlong. Degradation of sulfamethazine antibiotics using Fe3O4-Mn3O4 nanocomposite as a Fenton-like catalyst[J]. Journal of Chemical Technology & Biotechnology, 2017, 92: 874-883. |
25 | 郭晋邑. 造纸污泥活性炭在非均相Fenton体系中的应用研究[D]. 杭州: 浙江大学, 2016. |
GUO Jinyi. Application research of paper mill sludge-derived activated carbon in heterogeneous Fenton[D]. Hangzhou: Zhejiang University, 2016. | |
26 | THANH Binh Nguyen, CHENG Didong, HUANG C P, et al. Fe-Cu bimetallic catalyst for the degradation of hazardous organic chemicals exemplified by methylene blue in Fenton-like reaction[J]. Journal of Environmental Chemical Engineering, 2020, 8: 104139. |
27 | ROSEMBERGUE Gabriel Lima Gonçalves, HANA Moreira Mendes, SIBELE Lima Bastos, et al. Fenton-like degradation of methylene blue using Mg/Fe and MnMg/Fe layered double hydroxides as reusable catalysts[J]. Applied Clay Science, 2020, 187: 105477. |
28 | WAN Zhong, WANG Jianlong. Degradation of sulfamethazine using Fe3O4-Mn3O4/reduced graphene oxide hybrid as Fenton-like catalyst[J]. Journal of Hazardous Materials, 2017, 324: 653-664. |
29 | WANG Jianlong, XU Lejin. Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application[J]. Critical Reviews in Environmental Science and Technology, 2012, 42: 251-325. |
30 | SAMIA Ben Hammouda, ZHAO Feiping, ZAHRA Safaei, et al. Reactivity of novel ceria-perovskite composites CeO2-LaMO3 (MCu, Fe) in the catalytic wet peroxidative oxidation of the new emergent pollutant “Bisphenol F”: characterization, kinetic and mechanism studies[J]. Applied Catalysis B: Environmental, 2017, 218: 119-136. |
31 | Le-Tuan Pham ANH, Doyle FIONA M, Sedlak DAVID L. Kinetics and efficiency of H2O2 activation by iron-containing minerals and aquifer materials[J]. Water Research, 2012, 46: 6454 -6462. |
32 | MAO Jie, QUAN Xie, WANG Jing, et al. Enhanced heterogeneous Fenton-like activity by Cu-doped BiFeO3 perovskite for degradation of organic pollutants[J]. Frontiers Environmental Science & Engineering, 2018, 12(6): 10. |
[1] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[2] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[3] | WANG Jinhang, HE Yong, SHI Lingli, LONG Zhen, LIANG Deqing. Progress of gas hydrate anti-agglomerants [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4587-4602. |
[4] | XU Zhongshuo, ZHOU Panpan, WANG Yuhui, HUANG Wei, SONG Xinshan. Advances in sulfur iron ore mediated autotrophic denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4863-4871. |
[5] | SONG Weitao, SONG Huiping, FAN Zhenlian, FAN Biao, XUE Fangbin. Research progress of fly ash in anti-corrosion coatings [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4894-4904. |
[6] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[7] | LI Xin, YANG Zao, ZHONG Xinru, HAN Haoxuan, ZHUANG Xuning, BAI Jianfeng, DONG Bin, XU Zuxin. Binding mechanism of Pb2+ onto humic acids from sludge hyper-thermophilic composting [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4957-4966. |
[8] | YANG Han, ZHANG Yibo, LI Qi, ZHANG Jun, TAO Ying, YANG Quanhong. Practical carbon anodes for sodium-ion batteries: progress and challenge [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4029-4042. |
[9] | WU Ya, ZHAO Dan, FANG Rongmiao, LI Jingyao, CHANG Nana, DU Chunbao, WANG Wenzhen, SHI Jun. Research progress on highly efficient demulsifiers for complex crude oil emulsions and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4398-4413. |
[10] | OUYANG Sufang, ZHOU Daowei, HUANG Wei, JIA Feng. Research progress on novel anti-migration rubber antioxidants [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3708-3719. |
[11] | YANG Hongmei, GAO Tao, YU Tao, QU Chengtun, GAO Jiapeng. Treatment of refractory organics sulfonated phenolic resin with ferrate [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3302-3308. |
[12] | WANG Xue, XU Qiyong, ZHANG Chao. Hydrothermal carbonization of the lignocellulosic biomass and application of the hydro-char [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2536-2545. |
[13] | SI Yinfang, HU Yujie, ZHANG Fan, DONG Hao, SHE Yuehui. Biosynthesis of zinc oxide nanoparticles and its application to antibacterial [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2013-2023. |
[14] | YANG Ziqiang, LI Fenghai, GUO Weijie, MA Mingjie, ZHAO Wei. Review on phosphorus migration and transformation during municipal sewage sludge heat treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2081-2090. |
[15] | WANG Yu, YU Guangwei, JIANG Ruqing, LI Changjiang, LIN Jiajia, XING Zhenjiao. Adsorption of ciprofloxacin hydrochloride by biochar from food waste digestate residues [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2160-2170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |