Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (11): 6019-6026.DOI: 10.16085/j.issn.1000-6613.2020-2447
• Chemical processes and equipment • Previous Articles Next Articles
ZHANG Yurong1(), TANG Meng2, LIU Yan1, WANG Dewu1, WANG Lusha3, ZHANG Shaofeng1()
Received:
2020-12-04
Revised:
2021-01-23
Online:
2021-11-19
Published:
2021-11-05
Contact:
ZHANG Shaofeng
张玉荣1(), 唐猛2, 刘燕1, 王德武1, 王璐莎3, 张少峰1()
通讯作者:
张少峰
作者简介:
张玉荣(1995—),女,硕士研究生,研究方向为化工过程多相流。E-mail:基金资助:
CLC Number:
ZHANG Yurong, TANG Meng, LIU Yan, WANG Dewu, WANG Lusha, ZHANG Shaofeng. Experiments on mass transfer performance for tridimensional rotational flow sieve tray in a cocurrent column with NaOH-CO2 system[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6019-6026.
张玉荣, 唐猛, 刘燕, 王德武, 王璐莎, 张少峰. NaOH-CO2体系下并流立体旋流筛板塔传质性能[J]. 化工进展, 2021, 40(11): 6019-6026.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-2447
项目 | 参数 | 项目 | 参数 |
---|---|---|---|
外筒直径/mm | ?40×1 | α/(°) | 90 |
内筒直径/mm | ?7×1 | β/(°) | 45 |
塔板高度/mm | 15 | 筛孔直径/mm | 2 |
旋流筛板厚度/mm | 1 | 筛孔数量 | 26 |
旋流筛板数量 | 8 | 旋流筛板开孔率 | 23.3% |
项目 | 参数 | 项目 | 参数 |
---|---|---|---|
外筒直径/mm | ?40×1 | α/(°) | 90 |
内筒直径/mm | ?7×1 | β/(°) | 45 |
塔板高度/mm | 15 | 筛孔直径/mm | 2 |
旋流筛板厚度/mm | 1 | 筛孔数量 | 26 |
旋流筛板数量 | 8 | 旋流筛板开孔率 | 23.3% |
操作条件 | 范围 |
---|---|
进气流量G/m3·h-1 | 1~5 |
进液流量L/L·h-1 | 100~500 |
CO2体积分数 | 2、4、6、8、10 |
NaOH物质的量浓度cNaOH/mol·L-1 | 0.5、1.0、1.5、2.0、2.5 |
操作条件 | 范围 |
---|---|
进气流量G/m3·h-1 | 1~5 |
进液流量L/L·h-1 | 100~500 |
CO2体积分数 | 2、4、6、8、10 |
NaOH物质的量浓度cNaOH/mol·L-1 | 0.5、1.0、1.5、2.0、2.5 |
1 | 李函珂, 党成雄, 杨光星, 等. 面向二氧化碳捕集的过程强化技术进展[J]. 化工进展, 2020, 39(12): 4919-4939. |
LI H K, DANG C X, YANG G X, et al. Process intensification techniques towards carbon dioxide capture: a review[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4919-4939. | |
2 | 刘洋, 郑景云, 葛全胜, 等. 低碳发展背景下中国温室气体排放变化及其对全球减排的贡献[J]. 资源科学, 2017, 39(12): 2399-2407. |
LIU Y, ZHENG J Y, GE Q S, et al. China’s greenhouse gas emissions in low-carbon planning and contribution to global reductions[J]. Resources Science, 2017, 39(12): 2399-2407. | |
3 | 葛全胜, 刘洋, 王芳, 等. 2016—2060年欧美中印CO2排放变化模拟及其与INDCs的比较[J]. 地理学报, 2018, 73(1): 3-12. |
GE Q S, LIU Y, WANG F, et al. Simulated CO2 emissions from 2016—2060 with comparison to INDCs for EU, US, China and India[J]. Acta Geographica Sinica, 2018, 73(1): 3-12. | |
4 | 郑修新, 张晓云, 余青霓, 等. CO2吸收材料的研究进展[J]. 化工进展, 2012, 31(2): 360-366. |
ZHENG X X, ZHANG X Y, YU Q N, et al. Progress in carbon dioxide absorption materials[J]. Chemical Industry and Engineering Progress, 2012, 31(2): 360-366. | |
5 | 彭召静, 赵彦杰, 黄成德, 等. 用于燃烧后CO2捕集系统的胺基固态吸附材料研究进展[J]. 化工进展, 2018, 37(2): 610-620. |
PENG Z J, ZHAO Y J, HUANG C D, et al. Recent advances in amine-based solid sorbents for post-combustion CO2 capture[J]. Chemical Industry and Engineering Progress, 2018, 37(2): 610-620. | |
6 | 孙亚伟, 谢美连, 刘庆岭, 等. 膜法分离燃煤电厂烟气中CO2的研究现状及进展[J]. 化工进展, 2017, 36(5): 1880-1889. |
SUN Y W, XIE M L, LIU Q L, et al. Membrane-based carbon dioxide separation from flue gases of coal-fired power plant—current status and developments[J]. Chemical Industry and Engineering Progress, 2017, 36(5): 1880-1889. | |
7 | 孙莹, 杨树莹, 杨林军. 复合溶液膜吸收CO2的性能及其对膜孔润湿的影响[J]. 化工进展, 2019, 38(5): 2491-2498. |
SUN Y, YANG S Y, YANG S L. Effect of complex solution on CO2 absorption and wettability of membrane[J]. Chemical Industry and Engineering Progress, 2019, 38(5): 2491-2498. | |
8 | 桂霞, 汤志刚, 费维扬. 高压下CO2在几种物理吸收剂中的溶解度测定[J]. 化学工程, 2011, 39(6): 55-58. |
GUI X, TANG Z G, FEI W Y. Solubility determination of CO2 in physical solvents under high pressure[J]. Chemical Engineering (China), 2011, 39(6): 55-58. | |
9 | PALOMAR J, LARRIBA M, LEMUS J, et al. Demonstrating the key role of kinetics over thermodynamics in the selection of ionic liquids for CO2 physical absorption[J]. Separation and Purification Technology, 2019, 213: 578-586. |
10 | 晏水平, 方梦祥, 张卫风, 等. 烟气中CO2化学吸收法脱除技术分析与进展[J]. 化工进展, 2006, 25(9): 1018-1024. |
YAN S P, FANG M X, ZHANG W F, et al. Technique analyses and research progress of CO2 separation from flue gas by chemical absorption[J]. Chemical Industry and Engineering Progress, 2006, 25(9): 1018-1024. | |
11 | 许咪咪, 王淑娟. 液-液相变溶剂捕集CO2技术研究进展[J]. 化工学报, 2018, 69(5): 1809-1818. |
XU M M, WANG S J. Research progress in CO2 capture technology using liquid-liquid biphasic solvents[J]. CIESC Journal, 2018, 69(5): 1809-1818. | |
12 | 曾庆, 郭印诚, 牛振祺, 等. 填料塔中氨水吸收二氧化碳的传质性能[J]. 化工学报, 2011, 62(S1): 146-150. |
ZENG Q, GUO Y C, NIU Z Q, et al. Mass transfer performance of CO2 absorption into aqueous ammonia in a packed column[J]. CIESC Journal, 2011, 62(S1): 146-150. | |
13 | ZENG Q, GUO Y C, NIU Z Q, et al. The absorption rate of CO2 by aqueous ammonia in a packed column[J]. Fuel Processing Technology, 2013, 108: 76-81. |
14 | 唐忠利, 赵行健, 刘伯潭, 等. 规整填料塔中氨水吸收CO2的体积总传质系数[J]. 化工学报, 2012, 63(4): 1102-1107. |
TANG Z L, ZHAO X J, LIU B T, et al. Volumetric overall mass transfer coefficients of CO2 absorption into aqua ammonia in structured packed column[J]. CIESC Journal, 2012, 63(4): 1102-1107. | |
15 | TSAI R E, SEIBERT A F, ELDRIDGE R B, et al. A dimensionless model for predicting the mass-transfer area of structured packing[J]. AIChE Journal, 2011, 57(5): 1173-1184. |
16 | YANG W, YU X D, MI J G, et al. Mass transfer performance of structured packings in a CO2 absorption tower[J]. Chinese Journal of Chemical Engineering, 2015, 23(1): 42-49. |
17 | LIU Y F, CHU F M, YANG L J, et al. CO2 absorption characteristics in a random packed column with various geometric structures and working conditions[J]. Greenhouse Gases: Science and Technology, 2018, 8(1): 120-132. |
18 | 张信, 龚麒锦. 低温甲醇洗工艺CO2吸收塔塔板的设计选型[J]. 化工设计, 2011, 21(5): 7-9. |
ZHANG X, GONG Q J. Type selection of tray for CO2 absorption tower in low temperature methanol purification process[J]. Chemical Engineering Design, 2011, 21(5): 7-9. | |
19 | TAN L S, SHARIFF A M, LAU K K, et al. Factors affecting CO2 absorption efficiency in packed column: a review[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(6): 1874-1883. |
20 | 赵洪康, 王宝华, 金君素, 等. 新型导向立体板填复合塔板的研究与工业应用[J]. 中国科学: 化学, 2018, 48(6): 666-675. |
ZHAO H K, WANG B H, JIN J S, et al. Application and performance analysis of the novel flow-guided vertical packing tray[J]. Scientia Sinica (Chimica), 2018, 48(6): 666-675. | |
21 | 李春利, 段丛. 立体传质塔板(CTST)高效分离塔板技术进展[J]. 化工进展, 2020, 39(6): 2262-2274. |
LI C L, DUAN C. Review of CTST: a high-efficient tray[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2262-2274. | |
22 | SHI W D, HUANG W X, ZHOU Y H, et al. Hydrodynamics and pressure loss of concurrent gas-liquid downward flow through sieve plate packing[J]. Chemical Engineering Science, 2016, 143: 206-215. |
23 | 张安琪, 谯敏, 武劭恂, 等. 气液两相并流向下通过筛板孔口单元的压降特性[J]. 化工进展, 2020, 39(1): 49-55. |
ZHANG A Q, QIAO M, WU S X, et al. Pressure drop of gas-liquid two phase co-current flowing down through the orifice unit of sieve plate[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 49-55. | |
24 | 王丽瑶, 唐猛, 张少峰, 等. 立体旋流筛板并流时的流型特征及其操作域[J]. 化学工程, 2017, 45(12): 21-25, 29. |
WANG L Y, TANG M, ZHANG S F, et al. Flow patterns characteristics and operating regions of a tridimensional rotational flow sieve tray in concurrent flow[J]. Chemical Engineering (China), 2017, 45(12): 21-25, 29. | |
25 | 唐猛, 王德武, 刘燕, 等. 立体旋流筛板并、逆流操作时压降的对比研究[J]. 化学工程, 2019, 47(8): 22-28. |
TANG M, WANG D W, LIU Y, et al. Comparison of pressure drops of the tridimensional rotational flow sieve tray under gas-liquid concurrent flow and countercurrent flow conditions[J]. Chemical Engineering (China), 2019, 47(8): 22-28. | |
26 | TANG M, ZHANG S F, WANG D W, et al. CFD simulation and experimental study of dry pressure drop and gas flow distribution of the tridimensional rotational flow sieve tray[J]. Chemical Engineering Research and Design, 2017, 126: 241-254. |
27 | TANG M, ZHANG S F, WANG D W, et al. Experimental study and modeling development of pressure drop in concurrent gas-liquid columns with a tridimensional rotational flow sieve tray[J]. Chemical Engineering Science, 2018, 191: 383-397. |
28 | 刘琛, 王晋刚, 唐猛, 等. 立体旋流筛板气相流场的数值模拟及结构优化分析[J]. 科学技术与工程, 2018, 18(35): 189-195. |
LIU C, WANG J G, TANG M, et al. Numerical simulation and structural optimization analysis of gas phase flow field of tridimensional rotating sieve tray[J]. Science Technology and Engineering, 2018, 18(35): 189-195. | |
29 | WANG H K, TANG M, WANG D W, et al. Flow characteristics of blade unit of a tridimensional rotational flow sieve tray under concurrent gas-liquid flow[J]. AIChE Journal, 2020, 66(9): e16454. |
30 | 荆瑞静, 王晋刚, 张少峰. 立体旋液式并流塔板的海水脱硫特性[J]. 化工学报, 2012, 63(8): 2477-2481. |
JING R J, WANG J G, ZHANG S F. Desulfurization characteristics by seawater with stereoscopic and swirl parallel flow tray[J]. CIESC Journal, 2012, 63(8): 2477-2481. |
[1] | LI Jitong, WANG Gang, XIONG Yaxuan, XU Qian. Energy and exergy analysis of single-effect absorption refrigeration system with different refrigerants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 104-112. |
[2] | SHENG Weiwu, CHENG Yongpan, CHEN Qiang, LI Xiaoting, WEI Jia, LI Linge, CHEN Xianfeng. Operating condition analysis of the microbubble and microdroplet dual-enhanced desulfurization reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 142-147. |
[3] | HUANG Yiping, LI Ting, ZHENG Longyun, QI Ao, CHEN Zhenglin, SHI Tianhao, ZHANG Xinyu, GUO Kai, HU Meng, NI Zeyu, LIU Hui, XIA Miao, ZHU Kai, LIU Chunjiang. Hydrodynamics and mass transfer characteristics of a three-stage internal loop airlift reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 175-188. |
[4] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[5] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[6] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[7] | ZHANG Fengqi, CUI Chengdong, BAO Xuewei, ZHU Weixuan, DONG Hongguang. Design and evaluation of sweetening process with amine solution absorption and multiple desorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 518-528. |
[8] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[9] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[10] | SHI Keke, LIU Muzi, ZHAO Qiang, LI Jinping, LIU Guang. Properties and research progress of magnesium based hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4731-4745. |
[11] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[12] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[13] | LI Dong, WANG Qianqian, ZHANG Liang, LI Jun, FU Qian, ZHU Xun, LIAO Qiang. Performance of series stack of non-aqueous nano slurry thermally regenerative flow batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4238-4246. |
[14] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[15] | LOU Baohui, WU Xianhao, ZHANG Chi, CHEN Zhen, FENG Xiangdong. Advances in nanofluid for CO2 absorption and separation [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3802-3815. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |