Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (10): 5660-5669.DOI: 10.16085/j.issn.1000-6613.2020-2065
• Fine chemicals • Previous Articles Next Articles
LIU Dingyi1,2(), WANG Bingyu1,2,3, LI Shulin1,2, XIE Huifang1,2()
Received:
2020-10-13
Revised:
2021-01-05
Online:
2021-10-25
Published:
2021-10-10
Contact:
XIE Huifang
刘丁仪1,2(), 王冰玉1,2,3, 李姝霖1,2, 谢慧芳1,2()
通讯作者:
谢慧芳
作者简介:
刘丁仪(1996—),女,硕士研究生,研究方向为废水处理技术。E-mail:基金资助:
CLC Number:
LIU Dingyi, WANG Bingyu, LI Shulin, XIE Huifang. Progress and improvement of inorganic polymer coagulant based on solid waste[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5660-5669.
刘丁仪, 王冰玉, 李姝霖, 谢慧芳. 固废基无机高分子混凝剂研究进展及改进途径[J]. 化工进展, 2021, 40(10): 5660-5669.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-2065
原料 | 主要成分含量 | 制备工艺及主要参数 | 应用效果 | 参考文献 |
---|---|---|---|---|
煤矸石、钢渣 | 煤矸石:A12O3 20.7%,Fe2O3 4.1% 钢渣:A12O3 4.9%,Fe2O3 28.5% | (1)酸浸:1∶1混酸(HCl+HNO3),70~80℃,5h (2)滤液+NaOH调pH=3~4 (3)聚合浓缩 | 印染废水,色度去除率>90%,COD去除率>85%;生活污水:色度和浊度去除率>90% | [ |
煤矸石、钢渣 | 煤矸石:A12O3 22.39%,Fe2O3 4.15%,SiO2 6.98% 钢渣:A12O3 4.98%,Fe2O3 22.63%,SiO2 17.88% | (1)焙烧 (2)酸溶:盐酸110℃ (3)滤液用CaCO3调pH | 洗煤废水,添加助凝剂聚丙烯酰胺,COD去除率98.82%,浊度去除率99.84% | [ |
煤矸石、磁铁矿 | 煤矸石:A12O3 20.16%,Fe2O3 12.44%,SiO2 57.15% | (1)焙烧:800℃,1h (2)酸溶:25%HCl,110℃,2h (3)加CaCO3,调pH≈3 (4)聚合 | 煤泥水,上清液透光率 >90% | [ |
粉煤灰、铝酸钙 | — | (1)酸浸:20%HCl,液固比3mL/g,95℃,回流2h (2)盐基度调整:0.2g/mL铝酸钙,85℃ | — | [ |
粉煤灰、炼铁矿渣 | 粉煤灰:A12O3 17.65%,Fe2O3 3.27%, SiO2 24.34% 炼铁矿渣:A12O3 4.36%,Fe2O3 12.90%, SiO2 13.43% | (1)酸浸:5mol/L HCl,液固比3mL/g,85℃,2h (2)水解聚合:Al/Fe(物质的量之比)= 1∶0.66,加NaOH调碱化度B=3,加NaClO3,80℃,2h (3)陈化:30℃,12h | 煤泥水,上清液透光率95%;投加量为100mg/L时,与PAC相比,透光率提高22.6% | [ |
高炉灰、铝渣 | 高炉灰:Fe 40.18%,Al 3.85%, Si 5.79% 铝渣:Al 94.36%,Si 1.83% | (1)酸浸:高炉灰(加NaF、HNO3,18%HCl,液固比3mL/g,90℃,3h)和铝渣(18%HCl,液固比15mL/g,室温,2.5h) (2)共聚:Al/Fe=7∶3,加NaOH调碱化度 B=1.8,60~70℃,铝预聚1.0h,加铝铁共聚3.0h | 高岭土和活性红染料模拟水样,浊度去除率>98%,色度去除率>75%;投加量为5mL/g时,与PAC相比,除浊率提高12.5%;投加量50mg/L时,脱色率提高15.1% | [ |
高岭土 | A12O3 35.12%,Fe2O3 6.42%,SiO2 51.12% | (1)焙烧:750℃,2.5h (2)酸溶:20%HCl,液固比6mL/g,90℃,2.5h (3)聚合:加H2O2,NaOH调pH=4,60℃,2h (4)熟化24h,浓缩 | 高岭土模拟水样,浊度去除率93.32%,COD去除率82.10%,色度去除率71% | [ |
高岭土尾矿 | — | (1)煅烧:650℃,2h (2)酸溶:15%HCl,固液比1∶3,85℃,2h (3)聚合:加CaO调盐基度,55℃,10h (4)浓缩:旋转蒸发 | 碱减量车间废水COD去除率90%;卷染废水COD去除率80%;生化出水COD去除率78% | [ |
拜尔赤泥 | O 37.12%,Fe 35.61%, Al 11.33%,Si 5.16% | (1)焙烧:550℃,4h,研磨 (2)二次酸浸:6mol HCl,液固比5mL/g,90℃,1.5h (3)聚合:加NaOH (4)静置陈化,烘干 | 市政污水:浊度、COD、总磷(TP)和磷酸盐去除率分别为66.9%、52.1%、73.8%和77.7%;投加量为200mg/L时,与PAC相比,浊度、COD去除率分别提高6.5%和11.8%,TP和磷酸盐去除效果相当 | [ |
原料 | 主要成分含量 | 制备工艺及主要参数 | 应用效果 | 参考文献 |
---|---|---|---|---|
煤矸石、钢渣 | 煤矸石:A12O3 20.7%,Fe2O3 4.1% 钢渣:A12O3 4.9%,Fe2O3 28.5% | (1)酸浸:1∶1混酸(HCl+HNO3),70~80℃,5h (2)滤液+NaOH调pH=3~4 (3)聚合浓缩 | 印染废水,色度去除率>90%,COD去除率>85%;生活污水:色度和浊度去除率>90% | [ |
煤矸石、钢渣 | 煤矸石:A12O3 22.39%,Fe2O3 4.15%,SiO2 6.98% 钢渣:A12O3 4.98%,Fe2O3 22.63%,SiO2 17.88% | (1)焙烧 (2)酸溶:盐酸110℃ (3)滤液用CaCO3调pH | 洗煤废水,添加助凝剂聚丙烯酰胺,COD去除率98.82%,浊度去除率99.84% | [ |
煤矸石、磁铁矿 | 煤矸石:A12O3 20.16%,Fe2O3 12.44%,SiO2 57.15% | (1)焙烧:800℃,1h (2)酸溶:25%HCl,110℃,2h (3)加CaCO3,调pH≈3 (4)聚合 | 煤泥水,上清液透光率 >90% | [ |
粉煤灰、铝酸钙 | — | (1)酸浸:20%HCl,液固比3mL/g,95℃,回流2h (2)盐基度调整:0.2g/mL铝酸钙,85℃ | — | [ |
粉煤灰、炼铁矿渣 | 粉煤灰:A12O3 17.65%,Fe2O3 3.27%, SiO2 24.34% 炼铁矿渣:A12O3 4.36%,Fe2O3 12.90%, SiO2 13.43% | (1)酸浸:5mol/L HCl,液固比3mL/g,85℃,2h (2)水解聚合:Al/Fe(物质的量之比)= 1∶0.66,加NaOH调碱化度B=3,加NaClO3,80℃,2h (3)陈化:30℃,12h | 煤泥水,上清液透光率95%;投加量为100mg/L时,与PAC相比,透光率提高22.6% | [ |
高炉灰、铝渣 | 高炉灰:Fe 40.18%,Al 3.85%, Si 5.79% 铝渣:Al 94.36%,Si 1.83% | (1)酸浸:高炉灰(加NaF、HNO3,18%HCl,液固比3mL/g,90℃,3h)和铝渣(18%HCl,液固比15mL/g,室温,2.5h) (2)共聚:Al/Fe=7∶3,加NaOH调碱化度 B=1.8,60~70℃,铝预聚1.0h,加铝铁共聚3.0h | 高岭土和活性红染料模拟水样,浊度去除率>98%,色度去除率>75%;投加量为5mL/g时,与PAC相比,除浊率提高12.5%;投加量50mg/L时,脱色率提高15.1% | [ |
高岭土 | A12O3 35.12%,Fe2O3 6.42%,SiO2 51.12% | (1)焙烧:750℃,2.5h (2)酸溶:20%HCl,液固比6mL/g,90℃,2.5h (3)聚合:加H2O2,NaOH调pH=4,60℃,2h (4)熟化24h,浓缩 | 高岭土模拟水样,浊度去除率93.32%,COD去除率82.10%,色度去除率71% | [ |
高岭土尾矿 | — | (1)煅烧:650℃,2h (2)酸溶:15%HCl,固液比1∶3,85℃,2h (3)聚合:加CaO调盐基度,55℃,10h (4)浓缩:旋转蒸发 | 碱减量车间废水COD去除率90%;卷染废水COD去除率80%;生化出水COD去除率78% | [ |
拜尔赤泥 | O 37.12%,Fe 35.61%, Al 11.33%,Si 5.16% | (1)焙烧:550℃,4h,研磨 (2)二次酸浸:6mol HCl,液固比5mL/g,90℃,1.5h (3)聚合:加NaOH (4)静置陈化,烘干 | 市政污水:浊度、COD、总磷(TP)和磷酸盐去除率分别为66.9%、52.1%、73.8%和77.7%;投加量为200mg/L时,与PAC相比,浊度、COD去除率分别提高6.5%和11.8%,TP和磷酸盐去除效果相当 | [ |
原料 | 主要成分含量 | 制备工艺及主要参数 | 评价指标或应用效果 | 文献 |
---|---|---|---|---|
赤铁矿 | — | (1)酸浸:H2SO4,70℃,20h (2)聚合:引入Al3+,105℃,6h,静置数天 | 黄河水,COD去除率>40%,浊度去除 率>99%;投加量为12mg/L时,与PAC相比,浊度、COD去除率分别提高0.6%和40% | [ |
煤矸石 | A12O3 20.91%,Fe2O3 14.31%,SiO2 42.69% | (1)煅烧:850℃,3h (2)酸浸:H2SO4,铝浸出>80%,铁浸出98.6% (3)聚合:加硫酸铝和硫酸铁,Fe2O3/Al2O3=0.5,加1mol/L Na2CO3,调pH=0.8,80oC,6h (4)熟化24h | 高岭土模拟水样,浊度去除率97.3% | [ |
煤矸石 | — | (1)煅烧:750℃,2h (2)酸浸:5.5mol/L H2SO4,90℃,4h,液固比3∶1 (3)聚合:Fe3++Al3+=0.6mol/L,Fe3+/Al3+= 10∶3,pH=0.8,60℃,7h (4)熟化24h | 洗煤废水:加聚丙稀酰胺,余浊<20NTU(1NTU=1mg/L白陶土悬浮体) | [ |
赤泥 | Al 11.33%,Fe 35.61%,Si 5.16%,O 37.12% | (1)焙烧:550℃,4h (2)二次酸浸:35%H2SO4,90℃,2h,液固比5.5mL/g (3)聚合:用NaOH调pH (4)静置陈化、浓缩、烘干 | 生活污水:去浊率95.4%,TP去除率87.4%,COD去除率82.7%;在最佳投加量下,与PAC、聚合氯化铁相比,浊度去除率分别提高12.4%和13.2%;TP去除率分别提高1.9%和1.5%;与聚合氯化铁相比,COD去除率提高5.9% | [ |
铝土浮选尾矿 | A12O3 43.278%,Fe2O3 10.960%,SiO2 28.265% | (1)焙烧:600℃,3h (2)酸浸:45%H2SO4,100℃,3h,液固比5 (3)聚合:加FeSO4、H2O2,20%NaOH调pH=1,85~90℃,4h | 长江水浊度去除率97.23%;生活废水浊度、悬浮物(SS)和COD去除率分别为94.14%、86.85%和26.95%;焦化废水浊度、色度和COD去除率分别为92.35%、63.79%和42.09% | [ |
原料 | 主要成分含量 | 制备工艺及主要参数 | 评价指标或应用效果 | 文献 |
---|---|---|---|---|
赤铁矿 | — | (1)酸浸:H2SO4,70℃,20h (2)聚合:引入Al3+,105℃,6h,静置数天 | 黄河水,COD去除率>40%,浊度去除 率>99%;投加量为12mg/L时,与PAC相比,浊度、COD去除率分别提高0.6%和40% | [ |
煤矸石 | A12O3 20.91%,Fe2O3 14.31%,SiO2 42.69% | (1)煅烧:850℃,3h (2)酸浸:H2SO4,铝浸出>80%,铁浸出98.6% (3)聚合:加硫酸铝和硫酸铁,Fe2O3/Al2O3=0.5,加1mol/L Na2CO3,调pH=0.8,80oC,6h (4)熟化24h | 高岭土模拟水样,浊度去除率97.3% | [ |
煤矸石 | — | (1)煅烧:750℃,2h (2)酸浸:5.5mol/L H2SO4,90℃,4h,液固比3∶1 (3)聚合:Fe3++Al3+=0.6mol/L,Fe3+/Al3+= 10∶3,pH=0.8,60℃,7h (4)熟化24h | 洗煤废水:加聚丙稀酰胺,余浊<20NTU(1NTU=1mg/L白陶土悬浮体) | [ |
赤泥 | Al 11.33%,Fe 35.61%,Si 5.16%,O 37.12% | (1)焙烧:550℃,4h (2)二次酸浸:35%H2SO4,90℃,2h,液固比5.5mL/g (3)聚合:用NaOH调pH (4)静置陈化、浓缩、烘干 | 生活污水:去浊率95.4%,TP去除率87.4%,COD去除率82.7%;在最佳投加量下,与PAC、聚合氯化铁相比,浊度去除率分别提高12.4%和13.2%;TP去除率分别提高1.9%和1.5%;与聚合氯化铁相比,COD去除率提高5.9% | [ |
铝土浮选尾矿 | A12O3 43.278%,Fe2O3 10.960%,SiO2 28.265% | (1)焙烧:600℃,3h (2)酸浸:45%H2SO4,100℃,3h,液固比5 (3)聚合:加FeSO4、H2O2,20%NaOH调pH=1,85~90℃,4h | 长江水浊度去除率97.23%;生活废水浊度、悬浮物(SS)和COD去除率分别为94.14%、86.85%和26.95%;焦化废水浊度、色度和COD去除率分别为92.35%、63.79%和42.09% | [ |
原料 | 主要成分含量 | 制备工艺及主要参数 | 应用效果 | 文献 |
---|---|---|---|---|
粉煤灰 | 物相:莫来石 Si 41.33%,Al 11.71%, Fe 4.63%,O 32.72% | (1)焙烧:加1∶1助溶剂(NaOH∶Na2O2∶B2O3=5∶3∶2(质量比),900℃,30min (2)酸浸:20%HCl,60min,Al3+、Fe3+溶液 (3)碱浸滤渣:20%NaOH,80℃,90min,用HCl调pH=5,得PSi (4)共聚:将Al3+、Fe3+溶液加入PSi,熟化25min | 高岭土模拟水样,浊度去除率95%;湖水,COD去除率72%;印染废水脱色94%;投加量为3mL时,与市售聚硅酸氯化铝铁、PAFC和PAC相比,浊度去除率分别提高13.6%、17.9%和31.4%;与市售聚硅酸氯化铝铁、PAFC和PAC相比,COD去除率分别提高2.9%、20.7%和34.6%;与市售聚硅酸氯化铝铁、PAFC和PAC相比,脱色率分别提高13.8%、21.3%和23% | [ |
粉煤灰 | SiO2 46.87%,A12O3 20.63%,Fe2O3 6.62% | (1)酸浸:4mol/L H2SO4,固液比1∶2,微沸,5h,得Al3+、Fe3+滤液 (2)滤渣:干燥,加0.5mol/L NaOH,固液比 1∶2.5,微沸,4.7h,热水洗涤,得Na2SiO3溶液 (3)聚合:Al3+、Fe3+滤液水解(沸腾,2h)+硅酸钠[50℃,(Al+Fe)/Si=12∶1或16∶1]+4mol/L NaOH (4)老化:50℃,3h | 含油废水:去浊率约95%,COD去除率约50% | [ |
粉煤灰 | 物相:石英、石灰及莫来石 SiO2 55.21%,A12O3 19.15%,Fe2O3 3.646% | (1)焙烧:加NaOH,碱灰比1.2,750℃,1.5h (2)酸溶解,PSi:2mol/L HCl,液固比15mL/g,常温溶解(pH<2),静置15min (3)共聚熟化:加AlCl3和FeCl3,Si/Al=1∶0.9,Si/Fe=1∶0.3,pH=2,80℃,2.5h (4)真空干燥,60℃ | 洗煤废水:COD去除率95.7%、氨氮去除率94.2%、剩余浊度17NTU | [ |
粉煤灰 | SiO2 38.84%,A12O3 23.73%,Fe2O3 5.70% | (1)煅烧,800℃,2h (2)酸浸:20%HCl,105~108℃,得Al3+、Fe3+滤液 (3)滤渣:干燥,加NaOH,得Na2SiO3溶液 (4)PSi:向Na2SiO3溶液中加入2mol/L HCl至pH=4.2,老化20min (5)聚合:Al3+、Fe3+滤液水解(加FeCl3)加入PSi中,Al/Fe=3∶1,(Al+Fe)/Si=13∶1 (6)老化:30℃,10h | 焦化生化出水:色度、COD去除率分别为78%和54.3%,UV254为50.1% | [ |
高炉渣 | SiO2 36.77%,A12O3 8.86%,Fe2O3 0.94% | (1)酸浸:6mol/L H2SO4,60min,Al3+、Fe3+滤液 (2)碱浸滤渣:5.5mol/L NaOH,5min,Na2SiO3溶液 (3)硅酸聚合:加6mol/L H2SO4,pH=1,PSi (4)共聚:将Al3+、Fe3+滤液与PSi混合, (Al+Fe)/Si=0.53,pH=1,60℃熟化0.5h | 焦化废水:浊度去除率98.9%,COD去除率74.5%。投加量为4mL/L时,与PAFC、PFS和焦化废水处理中常用混凝剂M180相比,浊度去除率分别提高21%、25.6%和6.5%;与PAFC、PFS和M180相比,COD去除率分别提高66.7%、63.0%和19.0% | [ |
黄磷炉渣 | SiO2 40.65%,A12O3 2.58%,Fe2O3 0.71% | (1)酸浸:25%HNO3,液固比18∶1,70℃,70min (2)PSi:50℃,90min (3)共聚:先加入Al2(SO4)3,5min后加Fe2(SO4)3,(Al+Fe)/Si=1,Al/Fe=1.5,55℃,80min (3)陈化:55℃,2h后调pH=1~2 | 滇池水:浊度去除率98.93%,COD去除率85.50%,TN(总氮)去除率45.47%,但TP升高65.36% | [ |
秸秆灰渣 | 焦块、渣粉、较细渣粉、细渣粉 SiO2 62.5%~75.5%,A12O3 4.29%~11.90%,Fe2O3 3.85%~4.91% | (1)焙烧:加助溶剂 (2)酸浸:加HCl,得滤液Ⅰ (3)滤渣碱浸:加NaOH,调pH,得滤液Ⅱ (4)Ⅰ+Ⅱ共聚,陈化 | 模拟印染废水:脱色>90%。城市污水:COD去除和脱色>92% | [ |
原料 | 主要成分含量 | 制备工艺及主要参数 | 应用效果 | 文献 |
---|---|---|---|---|
粉煤灰 | 物相:莫来石 Si 41.33%,Al 11.71%, Fe 4.63%,O 32.72% | (1)焙烧:加1∶1助溶剂(NaOH∶Na2O2∶B2O3=5∶3∶2(质量比),900℃,30min (2)酸浸:20%HCl,60min,Al3+、Fe3+溶液 (3)碱浸滤渣:20%NaOH,80℃,90min,用HCl调pH=5,得PSi (4)共聚:将Al3+、Fe3+溶液加入PSi,熟化25min | 高岭土模拟水样,浊度去除率95%;湖水,COD去除率72%;印染废水脱色94%;投加量为3mL时,与市售聚硅酸氯化铝铁、PAFC和PAC相比,浊度去除率分别提高13.6%、17.9%和31.4%;与市售聚硅酸氯化铝铁、PAFC和PAC相比,COD去除率分别提高2.9%、20.7%和34.6%;与市售聚硅酸氯化铝铁、PAFC和PAC相比,脱色率分别提高13.8%、21.3%和23% | [ |
粉煤灰 | SiO2 46.87%,A12O3 20.63%,Fe2O3 6.62% | (1)酸浸:4mol/L H2SO4,固液比1∶2,微沸,5h,得Al3+、Fe3+滤液 (2)滤渣:干燥,加0.5mol/L NaOH,固液比 1∶2.5,微沸,4.7h,热水洗涤,得Na2SiO3溶液 (3)聚合:Al3+、Fe3+滤液水解(沸腾,2h)+硅酸钠[50℃,(Al+Fe)/Si=12∶1或16∶1]+4mol/L NaOH (4)老化:50℃,3h | 含油废水:去浊率约95%,COD去除率约50% | [ |
粉煤灰 | 物相:石英、石灰及莫来石 SiO2 55.21%,A12O3 19.15%,Fe2O3 3.646% | (1)焙烧:加NaOH,碱灰比1.2,750℃,1.5h (2)酸溶解,PSi:2mol/L HCl,液固比15mL/g,常温溶解(pH<2),静置15min (3)共聚熟化:加AlCl3和FeCl3,Si/Al=1∶0.9,Si/Fe=1∶0.3,pH=2,80℃,2.5h (4)真空干燥,60℃ | 洗煤废水:COD去除率95.7%、氨氮去除率94.2%、剩余浊度17NTU | [ |
粉煤灰 | SiO2 38.84%,A12O3 23.73%,Fe2O3 5.70% | (1)煅烧,800℃,2h (2)酸浸:20%HCl,105~108℃,得Al3+、Fe3+滤液 (3)滤渣:干燥,加NaOH,得Na2SiO3溶液 (4)PSi:向Na2SiO3溶液中加入2mol/L HCl至pH=4.2,老化20min (5)聚合:Al3+、Fe3+滤液水解(加FeCl3)加入PSi中,Al/Fe=3∶1,(Al+Fe)/Si=13∶1 (6)老化:30℃,10h | 焦化生化出水:色度、COD去除率分别为78%和54.3%,UV254为50.1% | [ |
高炉渣 | SiO2 36.77%,A12O3 8.86%,Fe2O3 0.94% | (1)酸浸:6mol/L H2SO4,60min,Al3+、Fe3+滤液 (2)碱浸滤渣:5.5mol/L NaOH,5min,Na2SiO3溶液 (3)硅酸聚合:加6mol/L H2SO4,pH=1,PSi (4)共聚:将Al3+、Fe3+滤液与PSi混合, (Al+Fe)/Si=0.53,pH=1,60℃熟化0.5h | 焦化废水:浊度去除率98.9%,COD去除率74.5%。投加量为4mL/L时,与PAFC、PFS和焦化废水处理中常用混凝剂M180相比,浊度去除率分别提高21%、25.6%和6.5%;与PAFC、PFS和M180相比,COD去除率分别提高66.7%、63.0%和19.0% | [ |
黄磷炉渣 | SiO2 40.65%,A12O3 2.58%,Fe2O3 0.71% | (1)酸浸:25%HNO3,液固比18∶1,70℃,70min (2)PSi:50℃,90min (3)共聚:先加入Al2(SO4)3,5min后加Fe2(SO4)3,(Al+Fe)/Si=1,Al/Fe=1.5,55℃,80min (3)陈化:55℃,2h后调pH=1~2 | 滇池水:浊度去除率98.93%,COD去除率85.50%,TN(总氮)去除率45.47%,但TP升高65.36% | [ |
秸秆灰渣 | 焦块、渣粉、较细渣粉、细渣粉 SiO2 62.5%~75.5%,A12O3 4.29%~11.90%,Fe2O3 3.85%~4.91% | (1)焙烧:加助溶剂 (2)酸浸:加HCl,得滤液Ⅰ (3)滤渣碱浸:加NaOH,调pH,得滤液Ⅱ (4)Ⅰ+Ⅱ共聚,陈化 | 模拟印染废水:脱色>90%。城市污水:COD去除和脱色>92% | [ |
1 | 中国产业信息网. 2018—2023年水处理药剂市场规模、细分市场规模及中国水处理药剂市场发展前景分析[EB/OL]. [2019-12-03]. . |
China Industry Information Network. Analysis of the market scale, market segment scale, and development prospects of the water treatment pharmaceutical market in China from 2018 to 2023 [EB/OL]. [2019-12-03]. . | |
2 | 冯云生, 尹玲, 袁江涛, 等. 秸秆灰渣聚硅酸氯化铝铁的制备及应用[J]. 印染助剂, 2019, 36(12): 25-28. |
FENG Yunsheng, YIN Ling, YUAN Jiangtao, et al. Preparation and application of polysilicate aluminum ferric chloride from straw ash slag[J]. Textile Auxiliaries, 2019, 36(12): 25-28. | |
3 | 周颖, 刘龙, 李哲, 等. 稻壳灰制备聚硅酸硫酸铝絮凝剂及其结构性能[J]. 农业工程学报, 2014, 30(21): 241-248. |
ZHOU Ying, LIU Long, LI Zhe, et al. Preparation of poly aluminum silicate sulfate flocculant from rice husk ash and its structure performance[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(21): 241-248. | |
4 | CHAKRABORTY Tulip, BALUSANI Dharavi, SMITH Scott, et al. Reusability of recovered iron coagulant from primary municipal sludge and its impact on chemically enhanced primary treatment[J]. Separation and Purification Technology, 2020, 231: 115894. |
5 | 钱翌, 李龙, 崔永进, 等. 超细化拜耳赤泥制备PAFC及其絮凝效果评价[J]. 安全与环境学报, 2013, 13(2): 67-71. |
QIAN Yi, LI Long, CUI Yongjin, et al. Synthesis of PAFC based on the ultra-fining Bayer red mud and the flocculation effect assessment[J]. Journal of Safety and Environment, 2013, 13(2): 67-71. | |
6 | 刘殿勇. 钢渣煤矸石制取复合铁铝混凝剂及混凝效果研究[J]. 中国资源综合利用, 2011, 29(10): 25-27. |
LIU Dianyong. Preparation and effect of composites iron/aluminum coagulant using steel slag and coal gangue[J]. China Resources Comprehensive Utilization, 2011, 29(10): 25-27. | |
7 | ZHANG Yanli, LI Shanping, WANG Xiaoguang, et al. Coagulation performance and mechanism of polyaluminum ferric chloride (PAFC) coagulant synthesized using blast furnace dust[J]. Separation and Purification Technology, 2015, 154: 345-350. |
8 | CAO Baichuan, GAO Baoyu, WANG Mengmeng, et al. Floc properties of polyaluminum ferric chloride in water treatment: the effect of Al/Fe molar ratio and basicity[J]. Journal of Colloid and Interface Science, 2015, 458: 247-254. |
9 | ZHANG Yanli, LI Shanping, WANG Xiaoguang, et al. Synthesis, purification and characterization of polyaluminum ferric chloride (PAFC) with high (Al+Fe)b content[J]. Separation and Purification Technology, 2015, 146: 311-316. |
10 | LUO Jinqun, WANG Lili, LI Qusheng, et al. Improvement of hard saline-sodic soils using polymeric aluminum ferric sulfate (PAFS)[J]. Soil and Tillage Research, 2015, 149: 12-20. |
11 | 胡江良, 杨亚玲, 连明磊, 等. 用钢渣煤矸石基聚合氯化铝铁絮凝剂处理洗煤废水试验研究[J]. 湿法冶金, 2013, 32(2): 113-116. |
HU Jiangliang, YANG Yaling, LIAN Minglei, et al. Test study on treatment of coal washing wastewater using steel slag and coal gangue based polymeric aluminum-ferric chloride flocculant[J]. Hydrometallurgy of China, 2013, 32(2): 113-116. | |
12 | 曹敏, 彭欢玲, 杜美利. 煤矸石制备PAFC絮凝剂及其在煤泥水处理中的应用[J]. 应用化工, 2017, 46(12): 2300-2301, 2305. |
CAO Min, PENG Huanling, DU Meili. Preparation of PAFC by coal gangue and its application in slime water [J]. Applied Chemical Industry, 2017, 46(12): 2300-2301, 2305. | |
13 | 孙英娟, 周旋, 岳丽娜, 等. 工业固废制备聚合氯化铝铁及其在煤泥废水处理中的应用[J]. 矿产综合利用, 2021(1): 144-150. |
SUN Yingjuan, ZHOU Xuan, YUE Lina, et al. Preparation of polyaluminium ferric chloride from industrial solid waste and its application in coal slurry wastewater treatment[J]. Multipurpose Utilization of Mineral Resources, 2021(1): 144-150. | |
14 | 何丽莉, 徐新阳. 煤矸石制备聚合氯化铝铁钙的形态表征与混凝性能研究[J]. 安全与环境学报, 2014, 14(1): 212-215. |
HE Lili, XU Xinyang. On the morphological features and coagulation behaviors of the PAFCC produced from the coal gangue[J]. Journal of Safety and Environment, 2014, 14(1): 212-215. | |
15 | 丁舒航, 周建民, 张梦瑶, 等. 煤矸石制备聚合氯化铝铁钙与应用试验研究[J]. 土木与环境工程学报(中英文), 2021, 43(4): 185-190. |
DING Shuhang, ZHOU Jianmin, ZHANG Mengyao, et al. Experimental study on preparation and application of polyaluminum iron calcium chloride from coal gangue[J]. Journal of Civil and Environmental Engineering, 2021, 43(4): 185-190. | |
16 | 喻德忠, 辛婷婷, 赵慧, 等. 新型无机絮凝剂聚合氯化钛系列的制备及其对腐殖酸的混凝效果[J]. 工业安全与环保, 2018, 44(12): 83-85. |
YU Dezhong, XIN Tingting, ZHAO Hui, et al. Preparation of polytitanium chloride as novel inorganic flocculants for removal of humic acid[J]. Industrial Safety and Environmental Protection, 2018, 44(12): 83-85. | |
17 | ZHAO Yanxia, PHUNTSHO Sherub, GAO Baoyu, et al. Preparation and characterization of novel polytitanium tetrachloride coagulant for water purification[J]. Environmental Science & Technology, 2013, 47(22): 12966-12975. |
18 | WANG Xiaomeng, GAN Yinghai, GUO Shang, et al. Advantages of titanium xerogel over titanium tetrachloride and polytitanium tetrachloride in coagulation: a mechanism analysis[J]. Water Research, 2018, 132: 350-360. |
19 | 丁舒航, 周建民, 张梦瑶, 等. 基于煤矸石制备的聚合氯化铝铁钛及其在二沉池出水处理中的应用[J]. 环境工程学报, 2021, 15(1): 43-56. |
DING Shuhang, ZHOU Jianmin, ZHANG Mengyao, et al. Preparation of polyaluminum iron titanium chloride from coal gangue and its application in the treatment of effluent from secondary sedimentation tank[J]. Chinese Journal of Environmental Engineering, 2021, 15(1): 43-56. | |
20 | 邹京伦, 张双双, 贾雯雯, 等. 粉煤灰制备净水剂聚合氯化铝铁的研究[J]. 应用化工, 2012, 41(4): 649-651, 655. |
ZOU Jinglun, ZHANG Shuangshuang, JIA Wenwen, et al. Research on preparation of PAFC from fly ash[J]. Applied Chemical Industry, 2012, 41(4): 649-651, 655. | |
21 | 于行周, 张雄飞, 乐新波, 等. 高岭土制备复合絮凝剂聚合氯化铝铁的研究[J]. 广东化工, 2015, 42(3): 9-10. |
YU Xingzhou, ZHANG Xiongfei, YUE Xinbo, et al. Research of preparation of composite flocculant PAFC kaolin[J]. Guangdong Chemical Industry, 2015, 42(3): 9-10. | |
22 | 孙国华, 任鑫, 陆猛, 等. 高岭土尾矿制备聚合氯化铝铁絮凝剂及性能研究[J]. 苏州科技学院学报(自然科学版), 2013, 30(4): 47-50. |
SUN Guohua, REN Xin, LU Meng, et al. Preparation of polyaluminium chloride iron with kaolin tailings[J]. Journal of Suzhou University of Science and Technology (Natural Science), 2013, 30(4): 47-50. | |
23 | 白风荣, 李赞忠, 刘进荣. 聚合硫酸铝铁(PAFS)的合成及性能研究[J]. 工业水处理, 2014, 34(12): 76-77. |
BAI Fengrong,LI Zanzhong,LIU Jinrong. Study on the synthesis and properties of PAFS[J]. Industrial Water Treatment, 2014, 34(12): 76-77. | |
24 | 王茜, 孔德顺. 煤矸石酸浸液制备聚硫酸铝铁的试验研究[J]. 湿法冶金, 2014(4): 297-300. |
WANG Qian, KONG Deshun. Preparation of PAFS using acid leaching solution of coal gangue[J]. Hydrometallurgy of China, 2014(4): 297-300. | |
25 | 钱翌, 周绍杰. 赤泥基聚合硫酸铝铁的制备及其絮凝性能评价[J]. 环境工程, 2016, 34(8): 6-10. |
QIAN Yi, ZHOU Shaojie. Synthesis of PAFS based on red mud and its flocculation capacity assessment[J]. Environmental Engineering, 2016, 34(8): 6-10. | |
26 | 梁毓嘉, 恩达, 吕莹, 等. 压力酸浸制备双价聚硅硫酸铝铁及其除藻性能[J]. 装备环境工程, 2020, 17(7): 38-44. |
LIANG Yujia, ASGODOM Engda Michael, Ying LYU, et al. Preparation of dual-valent polysilicate aluminum ferric sulfate by pressure aid leaching and its removal of cyanobacteria[J]. Equipment Environmental Engineering, 2020, 17(7): 38-44. | |
27 | 黄自力, 陈治华. 铝土矿浮选尾矿制备聚合硫酸铝铁的研究[J]. 金属矿山, 2010, 39(10): 176-180. |
HUANG Zili, CHEN Zhihu. Study on the preparation of polymeric aluminum ferric sulfate with bauxite flotation tailings[J]. Metalmine, 2010, 39(10): 176-180. | |
28 | 张骁, 刘海刚, 杨卓然, 等. 利用铝箔废酸液制备聚合硫酸铁铝的工艺研究[J]. 工业水处理, 2019, 39(12): 37-40. |
ZHANG Xiao, LIU Haigang, YANG Zhuoran, et al. Study on preparation of polymeric aluminum ferric sulfate from aluminum foil waste acid[J]. Industrial Water Treatment, 2019, 39(12): 37-40. | |
29 | WEI Yanxin, DONG Xiongzi, DING Aimin, et al. Characterization and coagulation-flocculation behavior of an inorganic polymer coagulant - poly-ferric-zinc-sulfate[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 58: 351-356. |
30 | 张鲁超, 杨乐浩, 王明全, 等. 用煤矸石制备PAFS及处理洗煤废水试验研究[J]. 湿法冶金, 2015(4): 339-342. |
ZHANG Luchao, YANG Lehao, WANG Mingquan, et al. Preparation of PAFS using coal gangue and treatment of coal-washing wastewater[J]. Hydrometallurgy of China, 2015(4): 339-342. | |
31 | LI Jianfeng, LIU Xinyuan, WANG Shujun, et al. Synthesis and optimization of a novel poly-silicic metal coagulant from coal gangue for tertiary-treatment of coking wastewater[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(2): 365-371. |
32 | 苏洁, 陈莉荣, 刘文. 高炉渣制备聚硅酸硫酸铝铁混凝剂[J]. 化工环保, 2015, 35(1): 99-102. |
SU Jie, CHEN Lirong, LIU Wen. Preparation of polysilic aluminum ferric sulfate coagulant from blast furnace slag[J]. Environmental Protection of Chemical Industry, 2015, 35(1): 99-102. | |
33 | 任园园, 陈富金, 张琼, 等. 聚硅酸铝铁的制备及絮凝性能研究[J]. 化工矿物与加工, 2018, 47(3): 28-31. |
REN Yuanyuan, CHEN Fuing, ZHANG Qiong, et al. Research of preparation and flocculating performance on polysilicate aluminum ferric flocculant[J]. Industrial Minerals & Processing, 2018, 47(3): 28-31. | |
34 | 王爱民, 白妮, 王金玺, 等. 粉煤灰聚硅酸铝铁絮凝剂的制备及处理洗煤废水研究[J]. 离子交换与吸附, 2017, 33(4): 350-360. |
WANG Aimin, BAI Ni, WANG Jinxi, et al. The Preparation of poly aluminum ferric silicate flocculant from fly ash and its application for treatment on coal washing wastewater[J]. Ion Exchange and Adsorption, 2017, 33(4): 350-360. | |
35 | 劳德平, 丁书强, 倪文, 等. 响应面优化制备粉煤灰基PASC混凝剂性能与表征[J]. 中国环境科学, 2018, 38(12): 4599-4607. |
LAO Deping, DING Shuqiang, NI Wen, et al. Response surface method optimization of preparation fly ash based polysilicate aluminum chloride coagulant: performance and microstructure characterization[J]. China Environmental Science, 2018, 38(12): 4599-4607. | |
36 | 姜智超, 邓景衡, 张浩. 钽铌冶炼铁泥制备聚硅酸硫酸铁絮凝剂及其应用[J]. 环境化学, 2017, 36(1): 159-166. |
JIANG Zhichao, DENG Jingheng, ZHANG Hao. Preparation of poly-ferric silicate sulfate by using iron sludge from Tantalum and Niobium smelting process and its application[J]. Environmental Chemistry, 2017, 36(1): 159-166. | |
37 | 段文杰, 王俊, 田振邦, 等. 聚镁硅酸硫酸铁混凝处理黄河水的研究[J]. 河南科学, 2016, 34(10): 1724-1727. |
DUAN Wenjie, WANG Jun, TIAN Zhenbang, et al. Coagulation treatment of yellow river water by poly magnesium silicate ferric sulfate[J]. Henan Science, 2016, 34(10): 1724-1727. | |
38 | 刘延慧. 聚硅酸铝锌絮凝剂的制备及其絮凝性能研究[J]. 云南化工, 2017, 44(11): 29-32. |
LIU Yanhui. Study on the preparation of polysilicate aluminum zinc and its flocculation performance[J]. Yunnan Chemical Technology, 2017, 44(11): 29-32. | |
39 | 祝波, 马捷, 李玉莹, 等. 含硼聚硅酸铝锰絮凝剂的制备及性能研究[J]. 吉林化工学院学报, 2019, 36(3): 17-20. |
ZHU Bo, MA Jie, LI Yuying, et al. Study on preparation and properties of boron-containing polysilicate aluminium manganese flocculant[J]. Journal of Jilin Institute of Chemical Technology, 2019, 36(3): 17-20. | |
40 | 李肖, 李伟, 段晋明. 聚硅酸钛制备及其助凝特性[J]. 环境工程学报, 2015, 9(5): 2207-2212. |
LI Xiao, LI Wei, DUAN Jinming. Preparation of polysilicate-titanium and its performance as coagulant aid[J]. Chinese Journal of Environmental Engineering, 2015, 9(5): 2207-2212. | |
41 | 宋敏娟, 刘红, 刘娟, 等. 聚合硅酸钛铝复合絮凝剂的结构及性能[J]. 环境工程学报, 2012, 6(8): 2661-2665. |
SONG Minjuan, LIU Hong, LIU Juan, et al. Structure and performance of composite flocculant poly-titanium-aluminum-silicate[J]. Chinese Journal of Environmental Engineering, 2012, 6(8): 2661-2665. | |
42 | YOU Zhaoyang, ZHANG Li, ZHANG Shujuan, et al. Treatment of oil-contaminated water by modified polysilicate aluminum ferric sulfate[J]. Processes, 2018, 6(7): 95. |
43 | 李玉莹, 张浩, 王希越, 等. 硼改性聚硅酸铝钛的制备及絮凝性能研究[J]. 化学试剂, 2020, 42(8): 921-925. |
LI Yuying, ZHANG Hao, WANG Xiyue, et al. Preparation and flocculation properties of boron modified polysilicate aluminium titanate[J]. Chemical Reagents, 2020, 42(8): 921-925. | |
44 | 陈凌, 沙琳, 张正红, 等. 聚硅酸铝铁(Ⅱ)镁混凝剂的制备及其对印染废水的处理[J]. 水处理技术, 2011, 37(12): 42-45, 50. |
CHEN Ling, SHA Lin, ZHANG Zhenghong, et al. Preparation of coagulant polysilicate aluminium ferric magnesium and its application in printing and dyeing wastewater treatment[J]. Technology of Water Treatment, 2011, 37(12): 42-45, 50. | |
45 | 谢武明, 马峡珍, 李俊, 等. 酸浸赤泥制备含碳聚硅酸铝铁絮凝剂及其污泥脱水性能研究[J]. 环境科学学报, 2017, 37(9): 3464-3470. |
XIE Wuming, MA Xiazhen, LI Jun, et al. The preparation and sludge-dewatering properties of R-CSiAFS composite flocculant made from acid-treated red mud[J]. Acta Scientiae Circumstantiae, 2017, 37(9): 3464-3470. | |
46 | 郑永杰, 邢成砚, 田景芝, 等. 粉煤灰聚硅酸氯化铝铁的制备及絮凝效果研究[J]. 水处理技术, 2014, 40(5): 33-37. |
ZHENG Yongjie, XING Chengyan, TIAN Jingzhi, et al. Study on the preparation and flocculation effect of fly ash PSAFC[J]. Technology of Water Treatment, 2014, 40(5): 33-37. | |
47 | SUN Tong, SUN Chunhua, ZHU Guoli, et al. Preparation and coagulation performance of poly-ferric-aluminum-silicate-sulfate from fly ash[J]. Desalination, 2011, 268(1-3): 270-275. |
48 | LI Jianfeng, LI Jianguo, LIU Xinyuan, et al. Effect of silicon content on preparation and coagulation performance of poly-silicic-metal coagulants derived from coal gangue for coking wastewater treatment[J]. Separation and Purification Technology, 2018, 202: 149-156. |
49 | 陈齐玮, 陈思莉, 常莎, 等. 低温低浊水中聚硫氯化铝应急处置 Cr(Ⅵ)的实验[J]. 工业水处理, 2018, 38(12): 56-59. |
CHEN Qiwei, CHEN Sili, CHANG Sha, et al. Experiments on emergency treatment of Cr(Ⅵ) in low temperature and low turbidity water by polyaluminum chloride sulfate (PACS)[J]. Industrial Water Treatment, 2018, 38(12): 56-59. | |
50 | 汤泉, 胡彩霞, 谢微, 等. 基于废酸处理的聚硫氯化铝净水剂的合成研究[J]. 现代化工, 2016, 36(2): 77-79. |
TANG Quan, HU Caixia, XIE Wei, et al. Synthesis of polysulfide aluminum chloride water purifying agent for waste acid treatment[J]. Modern Chemical Industry, 2016, 36(2): 77-79. | |
51 | 詹咏, 疏醒, 杨蓉, 等. 硫铁矿烧渣制备聚合氯化硫酸铁铝及其表征[J]. 上海理工大学学报, 2017, 39(2): 182-187. |
ZHAN Yong, SHU Xing, YANG Rong, et al. Preparation of polymeric aluminum ferric sulfate chloride from pyrite cinders and its characterization[J]. Journal of University of Shanghai for Science and Technology, 2017, 39(2): 182-187. | |
52 | 王书宁, 吕丽莉, 熊露露. 硫铁矿烧渣直接制备聚合氯化硫酸铁铝的工艺研究[J]. 山东化工, 2020, 49(5): 38-39, 42. |
WANG Shuning, Lili LYU, XIONG Lulu. Study on direct preparation of polymeric aluminum ferric chloride sulfate (PAFCS) from iron pyrite cinder[J]. Shandong Chemical Industry, 2020, 49(5): 38-39, 42. | |
53 | ZHU Guocheng, ZHENG Huaili, CHEN Wenyuan, et al. Preparation of a composite coagulant: polymeric aluminum ferric sulfate (PAFS) for wastewater treatment[J]. Desalination, 2012, 285: 315-323. |
54 | 郑怀礼, 余炳宏, 阳春, 等. 聚磷氯化铝的制备新方法及其性能研究[J]. 土木建筑与环境工程, 2011, 33(5): 125-131. |
ZHENG Huaili, YU Binghong, YANG Chun, et al. On novel synthetic method and performance of polymeric phosphate-aluminum chloride (PPAC)[J]. Journal of Civil, Architectural & Environmental Engineering, 2011, 33(5): 125-131. | |
55 | 郑怀礼, 范伟, 焦世珺, 等. 聚磷硫酸铁混凝去除邻苯二甲酸酯类环境激素[J]. 土木建筑与环境工程, 2012, 34(3): 129-132. |
ZHENG Huaili, FAN Wei, JIAO Shijun, et al. Coagulation removal of phthalic acid esters environmental hormones by polymeric phosphate ferric sulfate[J]. Journal of Civil, Architectural & Environmental Engineering, 2012, 34(3): 129-132. | |
56 | 吴烈善, 周阳波, 牛润, 等. 聚磷硫酸铁的絮凝性能优化以及形态分布研究[J]. 广西大学学报(自然科学版), 2019, 44(6): 1744-1751. |
WU Lieshan, ZHOU Yangbo, NIU Run, et al. Optimization of flocculation performance and speciation distribution of polyphosphate ferric sulfate[J]. Journal of Guangxi University (Natural Science), 2019, 44(6): 1744-1751. | |
57 | 兰善红, 杨丹, 范洪波, 等. 新型粉煤灰絮凝剂的制备及其应用研究[J]. 工业水处理, 2011, 31(1): 61-63. |
LAN Shanhong, YANG Dan, FAN Hongbo, et al. Preparation of new fly ash flocculant PSPAFC and its application to the simulated wastewater[J]. Industrial Water Treatment, 2011, 31(1): 61-63. | |
58 | 彭倩, 王娟, 丁玉强. 聚硅酸亚铁复合絮凝剂的制备及性能研究[J]. 当代化工, 2015, 44(2): 245-248. |
PENG Qian, WANG Juan, DING Yuqiang. Preparation and performance of polysilicate-ferrous composite flocculant[J]. Contemporary Chemical Industry, 2015, 44(2): 245-248. | |
59 | XIE Pengchao, CHEN Yiqun, MA Jun, et al. A mini review of preoxidation to improve coagulation[J]. Chemosphere, 2016, 155: 550-563. |
60 | LIU Bin, QU Fangshu, CHEN Wei, et al. Microcystis aeruginosa-laden water treatment using enhanced coagulation by persulfate/Fe(Ⅱ), ozone and permanganate: comparison of the simultaneous and successive oxidant dosing strategy[J]. Water Research, 2017, 125: 72-80. |
[1] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[2] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[3] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[4] | WANG Jinhang, HE Yong, SHI Lingli, LONG Zhen, LIANG Deqing. Progress of gas hydrate anti-agglomerants [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4587-4602. |
[5] | QIAN Sitian, PENG Wenjun, ZHANG Xianming. Comparative analysis of forming cyclic oligomers via PET melt polycondensation and cyclodepolymerization [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4808-4816. |
[6] | XU Zhongshuo, ZHOU Panpan, WANG Yuhui, HUANG Wei, SONG Xinshan. Advances in sulfur iron ore mediated autotrophic denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4863-4871. |
[7] | SONG Weitao, SONG Huiping, FAN Zhenlian, FAN Biao, XUE Fangbin. Research progress of fly ash in anti-corrosion coatings [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4894-4904. |
[8] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[9] | LI Xin, YANG Zao, ZHONG Xinru, HAN Haoxuan, ZHUANG Xuning, BAI Jianfeng, DONG Bin, XU Zuxin. Binding mechanism of Pb2+ onto humic acids from sludge hyper-thermophilic composting [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4957-4966. |
[10] | CHEN Junjun, FEI Chang’en, DUAN Jintang, GU Xueping, FENG Lianfang, ZHANG Cailiang. Research progress on chemical modification of polyether ether ketone for the high bioactivity [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4015-4028. |
[11] | YANG Han, ZHANG Yibo, LI Qi, ZHANG Jun, TAO Ying, YANG Quanhong. Practical carbon anodes for sodium-ion batteries: progress and challenge [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4029-4042. |
[12] | WU Ya, ZHAO Dan, FANG Rongmiao, LI Jingyao, CHANG Nana, DU Chunbao, WANG Wenzhen, SHI Jun. Research progress on highly efficient demulsifiers for complex crude oil emulsions and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4398-4413. |
[13] | OUYANG Sufang, ZHOU Daowei, HUANG Wei, JIA Feng. Research progress on novel anti-migration rubber antioxidants [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3708-3719. |
[14] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
[15] | XIU Haoran, WANG Yungang, BAI Yanyuan, ZOU Li, LIU Yang. Combustion characteristics and ash melting behavior of Zhundong coal/municipal sludge blended combustion [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3242-3252. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |