Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (1): 354-365.DOI: 10.16085/j.issn.1000-6613.2020-0558
• Biochemical and pharmaceutical engineering • Previous Articles Next Articles
Kun YANG1(), Xiaoxue LU1, Linsong YANG1, Qinghuan ZHAO2, Jie ZHU1()
Received:
2020-04-09
Online:
2021-01-12
Published:
2021-01-05
Contact:
Jie ZHU
杨坤1(), 卢晓雪1, 杨林松1, 赵庆欢2, 朱劼1()
通讯作者:
朱劼
作者简介:
杨坤(1995—),男,硕士研究生,研究方向为纳米催化剂。E-mail:基金资助:
CLC Number:
Kun YANG, Xiaoxue LU, Linsong YANG, Qinghuan ZHAO, Jie ZHU. Secretion of plant viral proteins in Pichia pastoris and self-assembled nanocatalyst for enhancing catalytic performance[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 354-365.
杨坤, 卢晓雪, 杨林松, 赵庆欢, 朱劼. 毕赤酵母分泌表达植物病毒蛋白制备自组装纳米催化剂提高催化性能[J]. 化工进展, 2021, 40(1): 354-365.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0558
序号 | A/℃ | B/h | C/% | CCMV蛋白含量/mg·L-1 |
---|---|---|---|---|
1 | 1(27) | 1(84) | 1(0.8) | 81.3±3.6 |
2 | 1(27) | 2(96) | 2(0.9) | 89.2±2.8 |
3 | 1(27) | 3(108) | 3(1.0) | 92.3±4.5 |
4 | 2(30) | 1(84) | 2(0.9) | 94.1±4.6 |
5 | 2(30) | 2(96) | 3(1.0) | 101.4±3.2 |
6 | 2(30) | 3(108) | 1(0.8) | 96.6±2.2 |
7 | 3(33) | 1(84h) | 3(1.0) | 83.5±4.1 |
8 | 3(33) | 2(96) | 1(0.8) | 89.6±3.4 |
9 | 3(33) | 3(108) | 2(0.9) | 87.7±3.8 |
K1 | 262.8 | 258.9 | 267.5 | |
K2 | 292.1 | 280.2 | 271.0 | |
K3 | 260.8 | 276.6 | 277.2 | |
极差 | 31.3 | 21.3 | 9.7 | |
最优方案 | A2B2C3 |
序号 | A/℃ | B/h | C/% | CCMV蛋白含量/mg·L-1 |
---|---|---|---|---|
1 | 1(27) | 1(84) | 1(0.8) | 81.3±3.6 |
2 | 1(27) | 2(96) | 2(0.9) | 89.2±2.8 |
3 | 1(27) | 3(108) | 3(1.0) | 92.3±4.5 |
4 | 2(30) | 1(84) | 2(0.9) | 94.1±4.6 |
5 | 2(30) | 2(96) | 3(1.0) | 101.4±3.2 |
6 | 2(30) | 3(108) | 1(0.8) | 96.6±2.2 |
7 | 3(33) | 1(84h) | 3(1.0) | 83.5±4.1 |
8 | 3(33) | 2(96) | 1(0.8) | 89.6±3.4 |
9 | 3(33) | 3(108) | 2(0.9) | 87.7±3.8 |
K1 | 262.8 | 258.9 | 267.5 | |
K2 | 292.1 | 280.2 | 271.0 | |
K3 | 260.8 | 276.6 | 277.2 | |
极差 | 31.3 | 21.3 | 9.7 | |
最优方案 | A2B2C3 |
表达宿主(菌株,载体) | CCMV CPs产量 | CCMV CPs性质 | 纯化步骤 | 参考文献 |
---|---|---|---|---|
E. coli(BL21,pET23a ); E. coli(BL21(DE3), pET28a ) | 75~100mg/L | 细胞内表达 包涵体 | 细胞破裂,变性,复性,超速离心 | [ |
E. coli(Rosetta 2, pET19b) | 25.92mg/L | 细胞内表达 可溶性蛋白 | 细胞破裂,亲和色谱 | [ |
Pseudomonas fluorescens(DC487,pDOW3250) | 2.6g/L | 细胞内表达 可溶性蛋白 | 细胞破裂,PEG沉淀,蔗糖密度梯度离心 | [ |
Pichia pastoris(pPICZA) | 0.05~0.5mg/g细胞湿重; 4.8g/L | 细胞内表达 可溶性蛋白 | 细胞破裂,PEG沉淀,CsCl梯度离心 | [ |
Pichia pastoris(pPIC9K) | 约101mg/L | 分泌表达 可溶性蛋白 | 阴离子交换层析法 | 本文 |
表达宿主(菌株,载体) | CCMV CPs产量 | CCMV CPs性质 | 纯化步骤 | 参考文献 |
---|---|---|---|---|
E. coli(BL21,pET23a ); E. coli(BL21(DE3), pET28a ) | 75~100mg/L | 细胞内表达 包涵体 | 细胞破裂,变性,复性,超速离心 | [ |
E. coli(Rosetta 2, pET19b) | 25.92mg/L | 细胞内表达 可溶性蛋白 | 细胞破裂,亲和色谱 | [ |
Pseudomonas fluorescens(DC487,pDOW3250) | 2.6g/L | 细胞内表达 可溶性蛋白 | 细胞破裂,PEG沉淀,蔗糖密度梯度离心 | [ |
Pichia pastoris(pPICZA) | 0.05~0.5mg/g细胞湿重; 4.8g/L | 细胞内表达 可溶性蛋白 | 细胞破裂,PEG沉淀,CsCl梯度离心 | [ |
Pichia pastoris(pPIC9K) | 约101mg/L | 分泌表达 可溶性蛋白 | 阴离子交换层析法 | 本文 |
1 | SANTISO E E,KOSTOV M K,GEORGE A M,et al. Confinement effects on chemical reactions-toward an integrated rational catalyst design[J]. Applied Surface Science, 2007, 253(13): 5570-5579. |
2 | ANDREAS S, STEPHEN G R, NICHOLAS D P. Perspective on the influence of interactions between hard and soft templates and precursors on morphology of hierarchically structured porous materials[J]. Procedia Engineering, 2014, 56(3): 696-701. |
3 | CHRISSOPOULOU K, ANASTASIADIS S H. Effects of nanoscopic-confinement on polymer dynamics[J]. Soft Matter, 2015, 11(19): 3746-3766. |
4 | LEENDERS S H A M, GRAMAGE-DORIA R, DEBRUIN B, et al. Transition metal catalysis in confined spaces[J]. Chemical Society Reviews, 2015, 44(2): 433-448. |
5 | DAI W, ZHANG S, YU Z, et al. Zeolite structural confinement effects enhance one-pot catalytic conversion of ethanol to butadiene[J]. ACS Catalysis, 2017, 7: 3703-3706. |
6 | FLORIAN G, MICHEL C, ANDRIKOPOULOS P, et al. Computationally exploring confinement effects in the methane-to-methanol conversion over iron-oxo centers in zeolites[J]. ACS Catalysis, 2016, 6(12): 8404-8409. |
7 | JANDA A, VLAISAVLJEVICH B, LIN L C, et al. Effects of zeolite structural confinement on adsorption thermodynamics and reaction kinetics for monomolecular cracking and dehydrogenation of n-butane[J]. Journal of the American Chemical Society, 2016, 138(14): 4739-4756. |
8 | XIAO J, PAN X, ZHANG F, et al. Size-dependence of carbon nanotube confinement in catalysis[J]. Chemical Science, 2017, 8: 278-283. |
9 | DENG D, CHEN X, YU L, et al. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature[J]. Science Advances, 2015, 1(11): e1500462. |
10 | MINERS S A, RANCE G A, KHLOBYSTOV A N. Regioselective control of aromatic halogenation reactions in carbon nanotube nanoreactors[J]. Chemical Communications, 2013(49): 5586-5588. |
11 | BRUNET G, SAFIN D A, ROBEYNES K, et al. Confinement effects of a crystalline sponge on ferrocene and ferrocene carboxaldehyde[J]. Chemical Communications, 2017(41): 5645-5648. |
12 | WANG Y, CUI H, WEI Z, et al. Engineering catalytic coordination space in a chemically stable Ir-porphyrin MOF with a confinement effect inverting conventional Si-H insertion chemoselectivity[J]. Chemical Science, 2017, 8: 775-780. |
13 | JIANG Y, ZHANG X, DAI X, et al. Microwave-assisted synthesis of ultrafine Au nanoparticles immobilized on MOF-199 in high loading as efficient catalysts for a three-component coupling reaction[J]. Nano Research, 2017, 10(3): 876-889. |
14 | LI T, LIN H, ZHANG Y, et al. Improved characteristics and protective efficacy in an animal model of E.coli-derived recombinant double-layered rotavirus virus-like particles[J]. Vaccine, 2014, 32(17): 1921-1931. |
15 | LIU J, DAI S, WANG M, et al. Virus like particle-based vaccines against emerging infectious disease viruses[J]. Virologica Sinica, 2016, 21(4): 279-287. |
16 | LUO Q, HOU C, BAI Y, et al. Protein assembly: versatile approaches to construct highly ordered nanostructures[J]. Chemical Reviews, 2016, 116(22): 13571-13632. |
17 | YANG L, LIU A, CAO S, et al. Self-assembly of proteins: towards supramolecular materials[J]. Chemistry: A European Journal, 2016, 22: 1-14. |
18 | DOUGLAS T, YOUNG M. Viruses: making friends with old foes[J]. Science, 2006, 312(5775): 873-875. |
19 | LEI Y, HAMADA Y, CONG L, et al. Targeted tumor delivery and controlled release of neuronal drugs with ferritin nanoparticles to regulate pancreatic cancer progression[J]. Control Release, 2016, 232: 131-142. |
20 | ROHOVIE M, NAGASAWA M, SWARTZ J. Virus-like particles: next-generation nanoparticles for targeted therapeutic delivery[J]. Bioeng. Transl. Med., 2017, 2: 43-57. |
21 | LIU A, TRAULSEN, CORNELISSEN, et al. Nitroarene reduction by a virus protein cage based nanoreactor[J]. ACS Catalysis, 2016, 6: 3084-3091. |
22 | BRASCH M, PUTRI M, RUITER V, et al. Assembling enzymatic cascade pathways inside virus-based nanocages using dual-tasking nucleic acid tags[J]. Journal of the American Chemical Society, 2017, 139: 1512-1519. |
23 | ESCOSURA A, NOLTE R, CORNELISSEN. Viruses and protein cages as nanocontainers and nanoreactors[J]. Chemical, 2009, 19(16): 2274-2278. |
24 | SPEIR A, MUNSHI S, WANG G, et al. Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy[J]. Structure, 1995, 3(1): 63-78. |
25 | LAVELLE L, MICHEL J, GINGERY M. The disassembly, reassembly and stability of CCMV protein capsids[J]. Journal of Virological Methods, 2007, 146(1/2): 311-316. |
26 | DOUGLAS T, YOUNG M. Host-guest encapsulation of materials by assembled virus protein cages[J]. Nature, 1998, 393: 152-155. |
27 | ZHANG Y, ARDEJANI M, ORNEN B. Design and applications of protein-cage-based nanomaterials[J]. Chemistry: An Asian Journal, 2016, 11: 2814-2828. |
28 | CHAUDHARY A, YADAV R. A review on virus protein self-assembly[J]. Journal of Nanoparticle Research, 2019, 21(11): 254. |
29 | BHASKAR S, LIM S. Engineering protein nanocages as carriers for biomedical applications[J]. NPG Asia Materials, 2017, 9(4): e371. |
30 | ALI A, ROOSSINCK M. Rapid and efficient purification of cowpea chlorotic mottle virus by sucrose cushion ultracentrifugation[J]. Journal of Virological Methods, 2007, 141(1): 84-86. |
31 | WU Y, YANG H, SHIN H J. Expression and self assembly of cowpea chlorotic mottle virus capsid proteins in Pichia pastoris and encapsulation of fluorescent myoglobin[J]. MRS Proceedings, 2011, 1317: 6-14. |
32 | BRUMFIELD S, WILLITS D, TANG L, et al. Heterologous expression of the modified coat protein of cowpea chlorotic mottle bromovirus results in the assembly of protein cages with altered architectures and function[J]. Journal of General Virology, 2004, 85(4): 1049-1053. |
33 | WU Y, KIM W, KIM S, et al. Expression and self-assembly of heterocapsa circularisquama RNA virus-like particles synthesized in Pichia pastoris[J] Chinese Sci. Bull., 2012, 57: 3288-3293. |
34 | TOME-AMAT J, FLEISCHER L, PARKER S, et al. Secreted production of assembled norovirus virus-like particles from Pichia pastoris[J]. Microbial Cell Factories, 2014, 13(1): 134. |
35 | DAMASCENO L, HUANG C, BATT C. Protein secretion in Pichia pastoris and advances in protein production[J]. Applied Microbiology & Biotechnology, 2012, 93(1): 31-39. |
36 | HASSANI-MEHRABAN A, CREUTZBURG S, HEEREVELD L, et al. Feasibility of cowpea chlorotic mottle virus-like particles as scaffold for epitope presentations[J]. BMC Biotechnology, 2015, 15(1): 80. |
37 | PHELPS J, DAO P, JIN H, et al. Expression and self-assembly of cowpea chlorotic mottle virus-like particles in pseudomonas fluorescens[J]. Biotechnology, 2007, 128(2): 290-296. |
38 | DOAZ-VALLE A, GARCIA-SALCEDO Y, CHAVEZ-CALVILLO G, et al. Highly efficient strategy for the heterologous expression and purification of soluble cowpea chlorotic mottle virus capsid protein and in vitro pH-dependent assembly of virus-like particles[J]. Journal of Virological Methods, 2015, 225: 23-29. |
39 | ARNET C, LANGE J, BOYD A, et al. Expression and secretion of active Moringa oleifera coagulant protein in Bacillus subtilis[J]. Applied Microbiology & Biotechnology, 2019, 103(23/24): 9411-9422. |
40 | FREUDL R. Signal peptides for recombinant protein secretion in bacterial expression systems[J]. Microbial Cell Factories, 2018, 17(1): 52. |
41 | SHI L, WANG D, CHAN W, et al. Efficient expression and purification of human interferon alpha2b in the methylotrophic yeast, Pichia pastoris[J]. Protein Expression and Purification, 2007, 54(2): 220-226. |
42 | WU Y, LI J, YANG H, et al. Targeted cowpea chlorotic mottle virus-based nanoparticles with tumor-homing peptide F3 for photothermal therapy[J]. Biotechnology & Bioprocess Engineering, 2017, 22(6): 700-708. |
43 | ALLISON R, JANDA M, AHLQUIST P. Sequence of cowpea chlorotic mottle virus RNAs 2 and 3 and evidence of a recombination event during bromovirus evolution[J]. Virology, 1989, 172(1): 321-330. |
44 | BARAN N, NASROL, LAHZADEH M, et al. Pd nanoparticles stabilized on the Schiff base-modified boehmite: catalytic role in suzuki coupling reaction and reduction of nitroarenes[J]. Journal of Organometallic Chemistry, 2019, 900: 120916-120925. |
45 | 蓝娜娜, 张薷月, 苏然, 等. 非甲醇诱导重组毕赤酵母表达木聚糖酶的条件优化[J]. 食品与发酵工业, 2018, 44(3): 8-14. |
LAN Nana, ZHANG Ru, SU Ran, et al. Optimization of xylanase expression by recombinant Komagataella phaffii without methanol[J]. Food and Fermentation Industries, 2018, 44(3): 8-14. | |
46 | 廖锡豪, 陈明祥, 谢万勇, 等. 低温诱导对毕赤酵母表达重组外源蛋白的影响[J]. 中国酿造, 2013(2): 14-17. |
LIAO Xihao, CHEN Mingxiang, XIE Wanyong, et al. Influence of low inducing temperature on foreign protein production in recombinant Pichia pastoris[J]. China Brewing, 2013(2): 14-17. | |
47 | LIM H, CHOI S, KIM K, et al. Dissolved-oxygen-stat controlling two variables for methanol induction of guamerin in Pichia pastoris and its application to repeated fed-batch[J]. Applied Microbiology & Biotechnology, 2003, 62: 342-348. |
48 | COS O, RAMON R, MONTESINOS J, et al. Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: a review[J]. Microbial Cell Factories, 2006, 5: 17. |
49 | JAHIC M, GUSTAVSSON M, JANSEN A, et al. Analysis and control of proteolysis of a fusion protein in Pichia pastoris fed-batch processes[J]. Biotechnology, 2003, 102: 45-53. |
50 | ZHAO X, FOX J, OLSON N, et al. In vitro assembly of cowpea chlorotic mottle virus from coat protein expressed in Escherichia coli and in vitro-transcribed viral cDNA[J]. Virology, 1995, 207: 486-494. |
51 | KONG X, ZHU H, CHEN C, et al. Insights into the reduction of 4-nitrophenol to 4-aminophenol on catalysts[J]. Chemical Physics Letters, 2017, 684: 148-152. |
52 | FEDORCZYK A, RATAJCZAK J, KUZMYCH O, et al. Kinetic studies of catalytic reduction of 4-nitrophenol with NaBH4 by means of Au nanoparticles dispersed in a conducting polymer matrix[J]. Solid State Electronics, 2015, 19: 2849-2858. |
53 | RICCIARDI R, HUSKENS J, VERBOOM W. Influence of the Au/Ag ratio on the catalytic activity of dendrimer-encapsulated bimetallic nanoparticles in microreactors[J]. Journal of Flow Chemistry, 2015, 5: 228-233. |
[1] | GAO Ya, XU Dan, WANG Shuyuan, ZHU Di. Recent progress in fabrication of high efficient catalysts by atomic layer deposition [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4242-4252. |
[2] | Dan DENG, LIYubao,Jinhui HUANG,Fuhua SUN,Yi ZUO,Jidong LI,Yaning WANG. Preparation and characterization of a guided tissue regeneration membrane constructed by core-shell polycaprolactone/chitosan fibers [J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1501-1508. |
[3] | ZHANG Zhenghui, CAO Mingming, LI Jun, LI Chun, LIU Hu. Strategies and application of highly efficient secretion of proteins by microorganisms [J]. Chemical Industry and Engineering Progress, 2018, 37(08): 3129-3137. |
[4] | LI Sujuan, CHEN Meng, ZHENG Xing, ZHENG Jingtang, XU Qian, HU Ping, GUO Jianbo. Synthesis and photocatalytic properties of PS@ZnO core-shell structure nano-composites [J]. Chemical Industry and Engineering Progree, 2016, 35(08): 2513-2517. |
[5] | WANG Kang, WU Zhiqiang, HE Kangli, BI Shuxian, ZHAN Haijuan, MA Baojun, LIU Wanyi. Preparation of silicon carbide based carbon composite core-shell structure solid acid catalyst for the synthesis of benzaldehyde 1,3-propanediol acetal [J]. Chemical Industry and Engineering Progree, 2016, 35(07): 2103-2108. |
[6] | LI Lei,SU Biyun,ZHAN Guoxiong,LIU Xiang. Research progress of zeolite Beta synthesis [J]. Chemical Industry and Engineering Progree, 2012, 31(11): 2465-2469. |
[7] | SHEN Jiangnan,QIU Junhong,ZHENG Xingcun,WU Liguang,GAO Congjie. Research progress of microemulsion polymerization in preparation of separation membranes [J]. Chemical Industry and Engineering Progree, 2008, 27(4): 515-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |