Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (9): 4218-4226.DOI: 10.16085/j.issn.1000-6613.2019-0081
• Biochemical and pharmaceutical engineering • Previous Articles Next Articles
Lu CHEN1,2,3(),Dingyu LIU1,2,3,Baowei WANG1,2,3,Yu jiao ZHAO1,2,3,Guangtao JIA4,Tao CHEN1,2,3,Zhiwen WANG1,2,3()
Received:
2019-01-11
Online:
2019-09-05
Published:
2019-09-05
Contact:
Zhiwen WANG
陈露1,2,3(),刘丁玉1,2,3,汪保卫1,2,3,赵玉姣1,2,3,贾广韬4,陈涛1,2,3,王智文1,2,3()
通讯作者:
王智文
作者简介:
陈露(1993—),女,硕士研究生。E-mail:基金资助:
CLC Number:
Lu CHEN,Dingyu LIU,Baowei WANG,Yu jiao ZHAO,Guangtao JIA,Tao CHEN,Zhiwen WANG. Advances in acetyl coenzyme A metabolic engineering with Escherichia coli[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4218-4226.
陈露,刘丁玉,汪保卫,赵玉姣,贾广韬,陈涛,王智文. 大肠杆菌乙酰辅酶A代谢调控及其应用研究进展[J]. 化工进展, 2019, 38(9): 4218-4226.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0081
途径 | 基因操作 | 产物 | 产量 | 参考文献 | |
---|---|---|---|---|---|
对照 | 工程菌株 | ||||
乙酸途径 | 过表达hyc和acs | 聚-β-羟丁酸 | 0.55mg聚-β-羟丁酸/mg 葡萄糖 | 5.34mg聚-β-羟丁酸/mg葡萄糖 | [ |
敲除ackA-pta和nuo | 乙酰辅酶A | 产量提高31% | [ | ||
敲除ackA-pta,过表达acs | 丙二酰辅酶A | 产量提高两倍 | [ | ||
丙酮酸途径 | 过表达aceEF-lpdA | 琥珀酸 | 7.0mmol/L | 17.5mmol/L | [ |
过表达aceEF-lpdA | 琥珀酸 | 4.2mmol/L | 12.2mmol/L | [ | |
敲除iclR,fadR | 琥珀酸 | 0.5mol/mol | 0.98mol/mol | [ | |
敲除fnr | 1-丁醇 | 130mg/L | 373mg/L | [ | |
过表达aceEF-IpdA,panK | 乙酸异戊酯 | 0.1mmol/L | 0.18mmol/L | [ | |
糖酵解途径 | 过表达tpiA,fbaA | 聚-β-羟丁酸 | 0.4g/L | 1.6g/L | [ |
三羧酸循环途径 | 敲除fumB/C 或sucC | 丙二酰辅酶A | 2.55μmol/gDW | 4.43μmol/gDW | [ |
敲除sdhA和citE | 丙二酰辅酶A | 0.95nmol/mg | 2.60nmol/mg | [ | |
乙醛酸途径 | 敲除iclR | 3-羟基丙酸 | 产量提高1.9倍 | [ | |
敲除icdA | 香草醛 | 0.79g/L | 2.06g/L | [ | |
磷酸戊糖途径 | 过表达tktA | 聚-β-羟丁酸 | 产量提高1.7倍 | [ | |
过表达zwf | 聚-β-羟丁酸 | 产量提高41% | [ | ||
2-酮-3-脱氧-6-磷酸 葡糖酸途径 | 过表达edd、eda 和aceEF | 聚-β-羟丁酸 | 产量提高81.1% | [ | |
β氧化途径 | 敲除fadR | 3-羟基丙酸 | 产量达到52g/L | [ | |
非氧化酵解途径 | 过表达xpk(Bifidobacterium adolescentis)和fba | 聚-β-羟丁酸 | 2.36g/L | 4.69g/L | [ |
过表达xpk(Bifidobacterium adolescentis) | 丙酮 | 0.38mol/mol | 0.47mol/mol | [ |
途径 | 基因操作 | 产物 | 产量 | 参考文献 | |
---|---|---|---|---|---|
对照 | 工程菌株 | ||||
乙酸途径 | 过表达hyc和acs | 聚-β-羟丁酸 | 0.55mg聚-β-羟丁酸/mg 葡萄糖 | 5.34mg聚-β-羟丁酸/mg葡萄糖 | [ |
敲除ackA-pta和nuo | 乙酰辅酶A | 产量提高31% | [ | ||
敲除ackA-pta,过表达acs | 丙二酰辅酶A | 产量提高两倍 | [ | ||
丙酮酸途径 | 过表达aceEF-lpdA | 琥珀酸 | 7.0mmol/L | 17.5mmol/L | [ |
过表达aceEF-lpdA | 琥珀酸 | 4.2mmol/L | 12.2mmol/L | [ | |
敲除iclR,fadR | 琥珀酸 | 0.5mol/mol | 0.98mol/mol | [ | |
敲除fnr | 1-丁醇 | 130mg/L | 373mg/L | [ | |
过表达aceEF-IpdA,panK | 乙酸异戊酯 | 0.1mmol/L | 0.18mmol/L | [ | |
糖酵解途径 | 过表达tpiA,fbaA | 聚-β-羟丁酸 | 0.4g/L | 1.6g/L | [ |
三羧酸循环途径 | 敲除fumB/C 或sucC | 丙二酰辅酶A | 2.55μmol/gDW | 4.43μmol/gDW | [ |
敲除sdhA和citE | 丙二酰辅酶A | 0.95nmol/mg | 2.60nmol/mg | [ | |
乙醛酸途径 | 敲除iclR | 3-羟基丙酸 | 产量提高1.9倍 | [ | |
敲除icdA | 香草醛 | 0.79g/L | 2.06g/L | [ | |
磷酸戊糖途径 | 过表达tktA | 聚-β-羟丁酸 | 产量提高1.7倍 | [ | |
过表达zwf | 聚-β-羟丁酸 | 产量提高41% | [ | ||
2-酮-3-脱氧-6-磷酸 葡糖酸途径 | 过表达edd、eda 和aceEF | 聚-β-羟丁酸 | 产量提高81.1% | [ | |
β氧化途径 | 敲除fadR | 3-羟基丙酸 | 产量达到52g/L | [ | |
非氧化酵解途径 | 过表达xpk(Bifidobacterium adolescentis)和fba | 聚-β-羟丁酸 | 2.36g/L | 4.69g/L | [ |
过表达xpk(Bifidobacterium adolescentis) | 丙酮 | 0.38mol/mol | 0.47mol/mol | [ |
1 | KRIVORUCHKOA, ZHANGY, SIEWERSV, et al. Microbial acetyl-CoA metabolism and metabolic engineering[J]. Metabolic Engineering, 2015, 28: 28-42. |
2 | CHENX, ZHOUL, TIANK, et al. Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production[J]. Biotechnology Advances, 2013, 31(8): 1200-1223. |
3 | HOLMSW H. The central metabolic pathways of Escherichia coli: relationship between flux and control at a branch point, efficiency of conversion to biomass, and excretion of acetate[J]. Current Topics in Cellular Regulation, 1986, 28(4): 69-105. |
4 | HAHMD H, PANJ, RHEEJ S. Characterization and evaluation of a pta (phosphotransacetylase) negative mutant of Escherichia coli HB101 as production host of foreign lipase[J]. Appl. Microbiol. Biotechnol., 1994, 42(1): 100-107. |
5 | LINH, CASTRON M, BENNETTG N, et al. Acetyl-CoA synthetase overexpression in Escherichia coli demonstrates more efficient acetate assimilation and lower acetate accumulation: a potential tool in metabolic engineering[J]. Applied Microbiology and Biotechnology, 2006, 71(6): 870-874. |
6 | WANGR, SHIZ, CHENJ, et al. Enhanced co-production of hydrogen and poly-(R)-3-hydroxybutyrate by recombinant PHB producing E. coli over-expressing hydrogenase and acetyl-CoA synthetase[J]. Metabolic Engineering, 2012, 14(5): 496-503. |
7 | SOMAY, YAMAJIT, MATSUDAF, et al. Synthetic metabolic bypass for a metabolic toggle switch enhances acetyl-CoA supply for isopropanol production by Escherichia coli[J]. Journal of Bioscience and Bioengineering, 2017, 123(5): 625-633. |
8 | LEONARDE, LIM K H, SAW P N, et al. Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli[J]. Applied and Environmental Microbiology, 2007, 73(12): 3877-3886. |
9 | WOLFEA J. The acetate switch[J]. Microbiology and Molecular Biology Reviews, 2005, 69(1): 12-50. |
10 | CHANGD E, SHINS, RHEEJ S, et al. Acetate metabolism in a pta mutant of Escherichia coli W3110: importance of maintaining acetyl coenzyme A flux for growth and survival[J]. Journal of Bacteriology, 1999, 181(21): 6656-6663. |
11 | MIYAKEM, MIYAMOTOC, SCHNACKENBERGJ, et al. Phosphotransacetylase as a key factor in biological production of polyhydroxybutyrate[J]. Applied Biochemistry Biotechnology, 2000, 84-86(1): 1039-1044. |
12 | VADALIR V, HORTONC E, RUDOLPHF B, et al. Production of isoamyl acetate in ackA-pta and/or ldh mutants of Escherichia coli with overexpression of yeast ATF2[J]. Applied Microbiology and Biotechnology, 2004, 63(6): 698-704. |
13 | ZHAW, RUBIN-PITELS B, SHAOZ, et al. Improving cellular malonyl-CoA level in Escherichia colivia metabolic engineering[J]. Metabolic Engineering, 2009, 11(3): 192-198. |
14 | FENGJ, ATKINSONM R, MCCLEARYW, et al. Role of phosphorylated metabolic intermediates in the regulation of glutamine synthetase synthesis in Escherichia coli[J]. Journal of Bacteriology, 1992, 174(19): 6061-6070. |
15 | OH M, ROHLINL, KAO K C, et al. Global expression profiling of acetate-grown Escherichia coli[J]. Journal of Biological Chemistry, 2002, 277(15): 13175-13183. |
16 | LIUY, WUH, LIQ, et al. Process development of succinic acid production by Escherichia coli NZN111 using acetate as an aerobic carbon source[J]. Enzyme and Microbial Technology, 2011, 49(5): 459-464. |
17 | MURARKAA, CLOMBURGJ M,MORANS,et al. Metabolic analysis of wild-type Escherichia coli and a pyruvate dehydrogenase complex (PDHC)-deficient derivative reveals the role of PDHC in the fermentative metabolism of glucose[J]. The Journal of Biological Chemistry, 2010, 285(41): 31548-31558. |
18 | JANTAMAK, HAUPTM J, SVORONOSS A, et al. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate[J]. Biotechnology and Bioengineering, 2008, 99(5): 1140-1153. |
19 | SKOROKHODOVAA Y. Anaerobic synthesis of succinic acid by recombinant Escherichia coli strains with activated NAD+-reducing pyruvate dehydrogenase complex[J]. Applied Biochemistry and Microbiology, 2011, 4(47): 373-380. |
20 | SKOROKHODOVAA Y, GULEVICHA Y, MORZHAKOVAA A, et al. Comparison of different approaches to activate the glyoxylate bypass in Escherichia coli K-12 for succinate biosynthesis during dual-phase fermentation in minimal glucose media[J]. Biotechnology Letters, 2013, 35(4): 577-583. |
21 | KIMY, INGRAML O, SHANMUGAMK T. Dihydrolipoamide dehydrogenase mutation alters the NADH sensitivity of pyruvate dehydrogenase complex of Escherichia coli K-12[J]. Journal of Bacteriology, 2008, 190(11): 3851-3858. |
22 | ATSUMIS, CANNA F, CONNORM R, et al. Metabolic engineering of Escherichia coli for 1-butanol production[J]. Metabolic Engineering, 2008, 10(6): 305-311. |
23 | ABDEL-HAMIDA M, ATTWOODM M, GUESTJ R. Pyruvate oxidase contributes to the aerobic growth efficiency of Escherichia coli[J]. Microbiology, 2001, 147(6): 1483-1498. |
24 | PARIMIN S, DURIEI A, WUX, et al. Eliminating acetate formation improves citramalate production by metabolically engineered Escherichia coli[J]. Microbial Cell Factories, 2017, 16(1): 114-124. |
25 | DITTRICHC R, VADALIR V, BENNETTG N, et al. Redistribution of metabolic fluxes in the central aerobic metabolic pathway of E. coli mutant strains with deletion of the ackA-pta and poxB pathways for the synthesis of isoamyl acetate[J]. Biotechnology Progress, 2005, 21(2): 627-631. |
26 | HANM J, YOONS S, LEE S Y. Proteome analysis of metabolically engineered Escherichia coli producing poly(3-hydroxybutyrate)[J]. Journal of Bacteriology, 2001, 183(1): 301-308. |
27 | LEE S H, KANGK, KIME Y, et al. Metabolic engineering of Escherichia coli for enhanced biosynthesis of poly(3-hydroxybutyrate) based on proteome analysis[J]. Biotechnology Letters, 2013, 35(10): 1631-1637. |
28 | XUP, RANGANATHANS, FOWLERZ L, et al. Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA[J]. Metabolic Engineering, 2011, 13(5): 578-587. |
29 | FOWLERZ L, GIKANDIW W, KOFFASM A G. Increased malonyl coenzyme A biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production[J]. Applied and Environmental Microbiology, 2009, 75(18): 5831-5839. |
30 | LIUM, DINGY, CHENH, et al. Improving the production of acetyl-CoA-derived chemicals in Escherichia coli BL21(DE3) through iclR and arcA deletion[J]. BMC Microbiology, 2017, 17(1): 2-9. |
31 | LEE E. Directing vanillin production from ferulic acid by increased acetyl-CoA consumption in recombinant Escherichia coli[J]. Biotechnology, 2009, 1(102): 200-208. |
32 | JUNGY-M,J-NLEE,H-DSHIN, et al. Role of tktA gene in pentose phosphate pathway on odd-ball biosynthesis of poly-β-hydroxybutyrate in transformant Escherichia coli harboring phbCAB operon[J]. Journl of Bioscience and Bioengineering, 2004, 98(3): 224-227. |
33 | SONGB, KIMT, JUNGY, et al. Modulation of talA gene in pentose phosphate pathway for overproduction of poly-β-hydroxybutyrate in transformant Escherichia coli harboring phbCAB operon[J]. Journal of Bioscience and Bioengineering, 2006, 102(3): 237-240. |
34 | LIM S, JUNGY, SHINH, et al. Amplification of the NADPH-related genes zwf and gnd for the oddball biosynthesis of PHB in an E. coli transformant harboring a cloned phbCAB operon[J]. Journal of Bioscience and Bioengineering, 2002, 93(6): 543-549. |
35 | ZHANGY, LINZ, LIUQ, et al. Engineering of Serine-Deamination pathway, Entner-Doudoroff pathway and pyruvate dehydrogenase complex to improve poly(3-hydroxybutyrate) production in Escherichia coli[J]. Microbial Cell Factories, 2014, 13(1): 172. |
36 | CHANGA S, SHERAZIS T H, KANDHROA A, et al. Characterization of palm fatty acid distillate of different oil processing industries of pakistan[J]. Journal of Oleo Science, 2016, 65(11): 897-901. |
37 | LIUB, XIANGS, ZHAOG, et al. Efficient production of 3-hydroxypropionate from fatty acids feedstock in Escherichia coli[J]. Metabolic Engineering, 2019, 51: 121-130. |
38 | RAGSDALES W, PIERCEE. Acetogenesis and the wood–Ljungdahl pathway of CO2 fixation[J]. Biochimica et Biophysica Acta (BBA): Proteins and Proteomics, 2008, 1784(12): 1873-1898. |
39 | BOGORADI W, LINT, LIAOJ C. Synthetic non-oxidative glycolysis enables complete carbon conservation[J]. Nature, 2013, 502(7473): 693-697. |
40 | ZHENGY, YUANQ, YANGX, et al. Engineering Escherichia coli for poly(3-hydroxybutyrate) production guided by genome-scale metabolic network analysis[J]. Enzyme and Microbial Technology, 2017, 106: 60-66. |
41 | YANGX, YUANQ, ZHENGY, et al. An engineered non-oxidative glycolysis pathway for acetone production in Escherichia coli[J]. Biotechnology Letters, 2016, 38(8): 1359-1365. |
42 | LINP P, JAEGERA J, WUT, et al. Construction and evolution of an Escherichia coli strain relying on nonoxidative glycolysis for sugar catabolism[J]. Proceedings of the National Academy of Sciences, 2018, 115(14): 3538-3546. |
43 | WANGQ, XUJ, SUNZ, et al. Engineering an in vivo EP-bifido pathway in Escherichia coli for high-yield acetyl-CoA generation with low CO2 emission[J]. Metabolic Engineering, 2019, 51: 79-87. |
44 | PIETROCOLAF, GALLUZZIL, KROEMERG. Acetyl coenzyme A:a central matabolite and second messenger[J]. Cell Metabolism, 2015, 6(21): 805-821. |
45 | HADADIN, HAFNERJ, SHAJKOFCIA, et al. ATLAS of biochemistry: a repository of all possible biochemical reactions for synthetic biology and metabolic engineering studies[J]. ACS Synthetic Biology, 2016, 5(10): 1155-1166. |
46 | RENJ, ZHOUL, WANGC, et al. An unnatural pathway for efficient 5-aminolevulinic acid biosynthesis with glycine from glyoxylate based on retrobiosynthetic design[J]. ACS Synthetic Biology, 2018, 7(12): 2750-2757. |
47 | WILKESH, BUCKELW, GOLDINGB T, et al. Metabolism of hydrocarbons in n-alkane-utilizing anaerobic bacteria[J]. Journal of Molecular Microbiology and Biotechnology, 2016, 26(1-3): 138-151. |
48 | CHOONY W, MOHAMADM S, DERISS, et al. A hybrid of bees algorithm and flux balance analysis with OptKnock as a platform for in silico optimization of microbial strains[J]. Bioprocess and Biosystems Engineering, 2014, 37(3): 521-532. |
49 | TYO K E, KOCHARINK, NIELSENJ. Toward design-based engineering of industrial microbes[J]. Current Opinion in Microbiology, 2010, 13(3): 255-262. |
50 | WARNERJ R, REEDERP J, KARIMPOUR-FARDA, et al. Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides[J]. Nature Biotechnology, 2010, 28(8): 856-862. |
51 | WANGH H, ISAACSF J, CARRP A, et al. Programming cells by multiplex genome engineering and accelerated evolution[J]. Nature, 2009, 460(7257): 894-898. |
52 | SANTOSC N S, REGITSKYD D, YOSHIKUNIY. Implementation of stable and complex biological systems through recombinase-assisted genome engineering[J]. Nature Communications, 2013, 4(1) : 1-10. |
53 | GARSTA D, BASSALOM C, PINESG, et al. Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering[J]. Nature Biotechnology, 2016, 35(1): 48-55. |
54 | LIUR, LIANGL, CHOUDHURYA, et al. Iterative genome editing of Escherichia coli for 3-hydroxypropionic acid production[J]. Metabolic Engineering, 2018, 47: 303-313. |
55 | LIUR, LIANGL, GARSTA D, et al. Directed combinatorial mutagenesis of Escherichia coli for complex phenotype engineering[J]. Metabolic Engineering, 2018, 47: 10-20. |
[1] | YU Junsheng, ZHU Ye, LI Qiankun, XU Shixuan, ZHANG Xinyang, WANG Cheng, QU Jian. Performance of pulsating heat pipe with rising and declining heat flux [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1178-1186. |
[2] | WU Xinbo, DANG Hongzhong, MA Jiao, YAN Yuan, ZENG Tianxu, LI Weiwei, ZHANG Guozhen, CHEN Yongzhi. Effect of denitrifying phosphorus removal under short-cut nitrification mode with A2/O-BAF process [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1089-1097. |
[3] | ZHU Ge, BI Qincheng, TIAN Shujian, YAN Jianguo. Analysis of pressure drop characteristics of the cooling channel with twisted tape insert under high and non-uniform heat fluxes [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5083-5091. |
[4] | TAO Yuxuan, GUO Liang, GAO Cong, SONG Wei, CHEN Xiulai. Progress in metabolic engineering of microorganisms for CO2 fixation [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 40-52. |
[5] | GUO Feng, ZHANG Shangjie, JIANG Yujia, JIANG Wankui, XIN Fengxue, ZHANG Wenming, JIANG Min. Biotransformation of one-carbon resources by yeast [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 30-39. |
[6] | ZHANG Chunwei, LI Shanfeng, GUO Yongzhao, ZHANG Xuejun, JIANG Long. Gravity effect on PCM melting process under constant heat flux boundary [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4129-4139. |
[7] | GUO Chao, FENG Ao, LU Xinyao, ZONG Hong, ZHUGE Bin. Balanced optimization of the 1,2,4-butanetriol synthesis pathway in recombinant Escherichia coli [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6531-6539. |
[8] | XIN Jiang, ZHANG Laiyong, ZHAO Wei, SUI Lei. Design and optimization method of quench system in ethylene plant [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5169-5174. |
[9] | MA Shunxuan, SONG Xiaosan, WANG Sanfan, ZHANG Xuan. Preparation and application of pervaporization membranes [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 256-264. |
[10] | TAO Yuxuan, ZHANG Shangjie, JING Yiwen, XIN Fengxue, DONG Weiliang, ZHOU Jie, JIANG Yujia, ZHANG Wenming, JIANG Min. Recent advances in the construction strategy of methylotrophic Escherichia coli [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3932-3941. |
[11] | LI Ling, YU Yong, HU Yonghong. Research progress in production of lipstatinfermentation [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2251-2257. |
[12] | LI Yang, ZHU Chenhui, FAN Daidi. Green biological manufacture and application of recombinant collagen [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1262-1275. |
[13] | GUO Liang, GAO Cong, ZHANG Li, CHEN Xiulai, LIU Liming. Advances in the suitability of artificial metabolic pathways [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1252-1261. |
[14] | ZHOU Zikang, XU Ping. Application and progress of global transcription regulation in microbial cell factory construction [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1248-1251. |
[15] | GAO Cong, GUO Liang, HU Guipeng, CHEN Xiulai, LIU Liming. Advances of metabolic flux regulation in microbial cell factories [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6807-6817. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |