Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (9): 4109-4118.DOI: 10.16085/j.issn.1000-6613.2018-2226
• Materials science and technology • Previous Articles Next Articles
Received:
2018-11-14
Online:
2019-09-05
Published:
2019-09-05
Contact:
Xiaoheng HE
通讯作者:
何晓恒
作者简介:
何晓恒(1989—),女,博士,讲师,研究方向为功能材料、微流控技术。E-mail:基金资助:
CLC Number:
Xiaoheng HE,Liangyin CHU. Recent progress of fabrication of functional non-spherical microparticles from microfluidic templates[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4109-4118.
何晓恒,褚良银. 微流控模板法制备功能化非球形微颗粒研究新进展[J]. 化工进展, 2019, 38(9): 4109-4118.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-2226
1 | CHUNG H J , PARK T G . Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering[J]. Advanced Drug Delivery Reviews, 2007, 59(4/5): 249-262. |
2 | GENG Y , DALHAIMER P , CAI S S , et al . Shape effects of filaments versus spherical particles in flow and drug delivery[J]. Nature Nanotechnology, 2007, 2(4): 249-255. |
3 | FISH M B , THOMPSON A J , FROMEN C A , et al . Emergence and utility of nonspherical particles in biomedicine[J]. Industrial & Engineering Chemistry Research, 2015, 54(16): 4043-4059. |
4 | ZHANG M J , WANG W , YANG X L , et al . Uniform microparticles with controllable highly interconnected hierarchical porous structures[J]. ACS Applied Materials & Interfaces, 2015, 7(25): 13758-13767. |
5 | YU H Z , QIU X Y , NUNES S P , et al . Biomimetic block copolymer particles with gated nanopores and ultrahigh protein sorption capacity[J]. Nature Communications, 2014, 5: 4110. |
6 | NAKAYAMA D , TAKEOKA Y , WATANABE M , et al . Simple and precise preparation of a porous gel for a colorimetric glucose sensor by a templating technique[J]. Angewandte Chemie International Edition, 2003, 42(35): 4197-4200. |
7 | ZHAO X W , CAO Y , ITO F, et al . Colloidal crystal beads as supports for biomolecular screening[J]. Angewandte Chemie International Edition, 2006, 45(41): 6835-6838. |
8 | TOTTORI S , ZHANG L , QIU F M , et al . Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport[J]. Advanced Materials, 2012, 24(6): 811-816. |
9 | PEYER K E , ZHANG L , NELSON B J . Bio-inspired magnetic swimming microrobots for biomedical applications[J]. Nanoscale, 2013, 5(4): 1259-1272. |
10 | GAO W , PENG X M , PEI A , et al . Bioinspired helical microswimmers based on vascular plants[J]. Nano Letters, 2014, 14(1): 305-310. |
11 | FORSTER J D , PARK J G , MITTAL M , et al . Assembly of optical-scale dumbbells into dense photonic crystals[J]. ACS Nano, 2011, 5(8): 6695-6700. |
12 | DU Y A , LO E, ALI S, et al . Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(28): 9522-9527. |
13 | ROLLAND J P , MAYNOR B W , EULISS L E , et al . Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials[J]. Journal of the American Chemical Society, 2005, 127(28): 10096-10100. |
14 | TAVACOLI J W , BAUER P , FERMIGIER M , et al . The fabrication and directed self-assembly of micron-sized superparamagnetic non-spherical particles[J]. Soft Matter, 2013, 9(38): 9103-9110. |
15 | SHIN H , KIM C . Preparation of spheroidal and ellipsoidal particles from spherical polymer particles by extension of polymer film[J]. Colloid and Polymer Science, 2012, 290(13): 1309-1315. |
16 | CRASSOUS J J , DIETSCH H , PFLEIDERER P , et al . Preparation and characterization of ellipsoidal-shaped thermosensitive microgel colloids with tailored aspect ratios[J]. Soft Matter, 2012, 8(13): 3538-3548. |
17 | CRASSOUS J J , MIHUT A M , MANSSON L K , et al . Anisotropic responsive microgels with tuneable shape and interactions[J]. Nanoscale, 2015, 7(38): 15971-15982. |
18 | BAAH D , TIGNER J , BEAN K , et al . Microfluidic synthesis and post processing of non-spherical polymeric microparticles[J]. Microfluidics and Nanofluidics, 2012, 12(1/4): 657-662. |
19 | LEE D, BEESABATHUNI S N , SHEN A Q . Shape-tunable wax microparticle synthesis via microfluidics and droplet impact[J]. Biomicrofluidics, 2015, 9(6): 064114. |
20 | KIM S H , ABBASPOURRAD A , WEITZ D A . Amphiphilic crescent-moon-shaped microparticles formed by selective adsorption of colloids[J]. Journal of the American Chemical Society, 2011, 133(14): 5516-5524. |
21 | SHUM H C , ABATE A R , LEE D, et al . Droplet microfluidics for fabrication of non-spherical particles[J]. Macromolecular Rapid Communications, 2010, 31(2): 108-118. |
22 | RIAHI R , TAMAYOL A , SHAEGH S A M , et al . Microfluidics for advanced drug delivery systems[J]. Current Opinion in Chemical Engineering, 2015, 7: 101-112. |
23 | WANG W , ZHANG M J , CHU L Y . Functional polymeric microparticles engineered from controllable microfluidic emulsions[J]. Accounts of Chemical Research, 2014, 47(2): 373-384. |
24 | UTADA A S , CHU L Y , FERNANDEZ-NIEVES A , et al . Dripping, jetting, drops, and wetting: the magic of microfluidics[J]. MRS Bulletin, 2007, 32(9): 702-708. |
25 | KANG E , JEONG G S , CHOI Y Y , et al . Digitally tunable physicochemical coding of material composition and topography in continuous microfibres[J]. Nature Materials, 2011, 10(11): 877-883. |
26 | DENDUKURI D , PREGIBON D C , COLLINS J , et al . Continuous-flow lithography for high-throughput microparticle synthesis[J]. Nature Materials, 2006, 5(5): 365-369. |
27 | PREGIBON D C , TONER M , DOYLE P S . Multifunctional encoded particles for high-throughput biomolecule analysis[J]. Science, 2007, 315(5817): 1393-1396. |
28 | BONG K W , BONG K T , PREGIBON D C , et al . Hydrodynamic focusing lithography[J]. Angewandte Chemie International Edition, 2010, 49(1): 87-90. |
29 | HABASAKI S , LEE W C, YOSHIDA S , et al . Vertical flow lithography for fabrication of 3D anisotropic particles[J]. Small, 2015, 11(48): 6391-6396. |
30 | PAULSEN K S , DI CARLO D , CHUNG A J . Optofluidic fabrication for 3D-shaped particles[J]. Nature Communications, 2015, 6: 6976. |
31 | CHRISTOPHER G F , ANNA S L . Microfluidic methods for generating continuous droplet streams[J]. Journal of Physics D-Applied Physics, 2007, 40(19): R319-R336. |
32 | ABATE A R , WEITZ D A . High-order multiple emulsions formed in poly(dimethylsiloxane) microfluidics[J]. Small, 2009, 5(18): 2030-2032. |
33 | CHU L Y , UTADA A S , SHAH R K , et al . Controllable monodisperse multiple emulsions[J]. Angewandte Chemie International Edition, 2007, 46(47): 8970-8974. |
34 | WANG W , ZHANG M J , XIE R , et al . Hole-shell microparticles from controllably evolved double emulsions[J]. Angewandte Chemie International Edition, 2013, 52(31): 8084-8087. |
35 | MIN N G , KIM B , LEE T Y, et al . Anisotropic microparticles created by phase separation of polymer blends confined in monodisperse emulsion drops[J]. Langmuir, 2015, 31(3): 937-943. |
36 | SEO M, NIE Z , XU S , et al . Continuous microfluidic reactors for polymer particles[J]. Langmuir, 2005, 21(25): 11614-11622. |
37 | ZHAO Y J , XIE Z Y , GU H C , et al . Multifunctional photonic crystal barcodes from microfluidics[J]. NPG Asia Materials, 2012, 4(9): e25. |
38 | YU Z Y , WANG C F , LING L T , et al . Triphase microfluidic-directed self-assembly: anisotropic colloidal photonic crystal supraparticles and multicolor patterns made easy[J]. Angewandte Chemie International Edition, 2012, 51(10): 2375-2378. |
39 | NIE Z H , LI W , SEO M, et al . Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly[J]. Journal of the American Chemical Society, 2006, 128(29): 9408-9412. |
40 | XU K , XU J H , LU Y C , et al . A novel method of fabricating, adjusting, and optimizing polystyrene colloidal crystal nonspherical microparticles from gas-water janus droplets in a double coaxial microfluidic device[J]. Crystal Growth & Design, 2014, 14(2): 401-405. |
41 | CHENG Y , ZHENG F Y , LU J , et al . Bioinspired multicompartmental microfibers from microfluidics[J]. Advanced Materials, 2014, 26(30): 5184-5190. |
42 | YU Y , WEN H , MA J, et al . Flexible fabrication of biomimetic bamboo-like hybrid microfibers[J]. Advanced Materials, 2014, 26(16): 2494-2499. |
43 | UM E J, NUNES J K , PICO T , et al . Multicompartment microfibers: fabrication and selective dissolution of composite droplet-in-fiber structures[J]. Journal of Materials Chemistry B, 2014, 2(45): 7866-7871. |
44 | KANG E , CHOI Y Y , CHAE S K , et al . Microfluidic spinning of flat alginate fibers with grooves for cell-aligning scaffolds[J]. Advanced Materials, 2012, 24(31): 4271-4277. |
45 | TOTTORI S , TAKEUCHI S . Formation of liquid rope coils in a coaxial microfluidic device[J]. RSC Advances, 2015, 5(42): 33691-33695. |
46 | ZHU A D , GUO M Y . Microfluidic controlled mass-transfer and buckling for easy fabrication of polymeric helical fibers[J]. Macromolecular Rapid Communications, 2016, 37(5): 426-432. |
47 | XU P D , XIE R X , LIU Y P , et al . Bioinspired microfibers with embedded perfusable helical channels[J]. Advanced Materials, 2017, 29(34): 1701664. |
48 | WANG W , HE X H , ZHANG M J , et al . Controllable microfluidic fabrication of microstructured materials from nonspherical particles to helices[J]. Macromolecular Rapid Communications, 2017, 38(23): 1700429. |
49 | WU Z , YU Y , ZOU M , et al . Peanut-inspired anisotropic microparticles from microfluidics[J]. Composites Communications, 2018, 10: 129-135. |
50 | YU Y R , SHANG L R , GAO W , et al . Microfluidic lithography of bioinspired helical micromotors[J]. Angewandte Chemie International Edition, 2017, 56(40): 12127-12131. |
[1] | TAO Mengqi, LIU Meihong, KANG Yuchi. Analysis of fluid across a single cylinder and two parallel cylinders in a micro flow channel by micro-PIV [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2836-2844. |
[2] | LU Xingfu, DAI Bo, YANG Shiliang. Super-quadric discrete element method investigation of mixing behaviors of cylindrical particles in a rotating drum [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2252-2261. |
[3] | WU Xia, JIANG Xuntao, ZHANG Yuxiao, LYU Huiyuan, HUANG Fang, YU Xiaoxi. Protein crystallization research based on droplet microfluidics [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2024-2030. |
[4] | ZHANG Yan, WANG Wei, XIE Rui, JU Xiaojie, LIU Zhuang, CHU Liangyin. Controllable fabrication of polymeric microparticles loaded with enzyme@ZIF-8 [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2022-2028. |
[5] | WANG Bingjie, LI Hui, YANG Xiaoyong, BAI Zhishan. Application process of CFD-numerical simulation technology for multiphase flow characteristics study in droplet-microfluidic systems [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1715-1735. |
[6] | Zhuo CHEN, Yundong WANG, Jianhong XU. Enrichment of rare earth elements by gas-liquid-liquid microdispersion extraction technology [J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4963-4969. |
[7] | Wei WANG,Jian PENG,Shuo LIN,Rui XIE,Xiaojie JU,Zhuang LIU,Liangyin CHU. Fabrication of smart microfluidic chip and its Pb2+-detection performance [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 42-48. |
[8] | Shuai DONG,Pengfei GENG,Xiangyong JI,Chunxi LI. Numerical simulation of microfluidic mixing enhancement via acoustically actuated bubbles [J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5271-5278. |
[9] | Ao ZHOU, Xiteng LI, Xinpei LI, Shaohua JU, Lihua ZHANG. Extraction and separation of In3+ and Fe3+ using a 3D printing multi-channel microreactor [J]. Chemical Industry and Engineering Progress, 2019, 38(05): 2093-2102. |
[10] | Xiu ZHANG, Rui XIE, Wei WANG, Xiaojie JU, Zhuang LIU, Liangyin CHU. Preparation and properties of polyvinyl butyral/Al2O3 composite phase change microfibers with peapod-like structure [J]. Chemical Industry and Engineering Progress, 2019, 38(02): 993-999. |
[11] | Wei WANG, Yaoyao SU, Zhuang LIU, Xiaojie JU, Rui XIE, Liangyin CHU. Controllable microfluidic fabrication of microscale functional materials [J]. Chemical Industry and Engineering Progress, 2019, 38(01): 421-433. |
[12] | Yankai LI, Kai WANG, Guangsheng LUO. Advances in liquid-liquid micro-dispersion and its applications in standard particle preparation [J]. Chemical Industry and Engineering Progress, 2019, 38(01): 30-44. |
[13] | WU Bingfeng, YANG Lina, LI Jian, BAI Jin. Application of biomass templates in the preparation of mesoporous materials [J]. Chemical Industry and Engineering Progress, 2018, 37(07): 2686-2693. |
[14] | HAN Tengteng, ZHANG Li, XUAN Jin, DONG Zheng, XU Hong. Modularized microchannel parallelization design and fabrication for mass production of functional materials [J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 51-57. |
[15] | ZHANG Wen, HAN Xiaodong, YU Kun, SU Hongying, JIA Qingming, SHAN Shaoyun. Synthesis and size control of dextran hydrogel microparticles using the inverse microemulsion technique [J]. Chemical Industry and Engineering Progress, 2017, 36(10): 3807-3814. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |