Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (04): 1730-1738.DOI: 10.16085/j.issn.1000-6613.2018-0897
• Industrial catalysis • Previous Articles Next Articles
Pei LIU1(),Xianmo GU2,Peng KONG1,2,Zhong LI1(),Zhanfeng ZHENG2()
Received:
2018-05-02
Revised:
2018-06-20
Online:
2019-04-05
Published:
2019-04-05
Contact:
Zhong LI,Zhanfeng ZHENG
通讯作者:
李忠,郑占丰
作者简介:
<named-content content-type="corresp-name">刘沛</named-content>(1992—),男,硕士研究生,研究方向为光催化绿色合成。E-mail:<email>Liu_P1992@126.com</email>。|李忠,博士,教授,博士生导师,研究方向为多相催化。E-mail:<email>lizhong@tyut.edu.cn</email>|郑占丰,博士,研究员,博士生导师,研究方向为光催化绿色合成。E-mail:<email>zfzheng@sxicc.ac.cn</email>
基金资助:
CLC Number:
Pei LIU, Xianmo GU, Peng KONG, Zhong LI, Zhanfeng ZHENG. Research progress in catalytic hydroamination of IB and IIB metal catalysts[J]. Chemical Industry and Engineering Progress, 2019, 38(04): 1730-1738.
刘沛, 谷献模, 孔鹏, 李忠, 郑占丰. IB和IIB族金属催化氢胺化反应的研究进展[J]. 化工进展, 2019, 38(04): 1730-1738.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-0897
1 | BYTSCHKOV I , DOYE S . Microwave-assisted catalytic intermolecular hydroamination of alkynes[J]. European Journal of Organic Chemistry, 2001, 23: 4411-4418. |
2 | PEARLMAN D S . Antihistamines: pharmacology and clinical use[J]. Drugs, 1976, 12(4): 258-273. |
3 | AGER D J , PRAKASH I , SCHAAD D R . 1,2-Amino alcohols and their heterocyclic derivatives as chiral auxiliaries in asymmetric synthesis[J]. Chemical Reviews, 1996, 27(30): 835-876. |
4 | VORBRŨGGEN H , KROLIKIEWICZ K . Amination, Ⅲ. trimethylsilanol as leaving group, Ⅴ. silylation-amination of hydroxy N-heterocycles[J]. Chemische Berichte, 1984, 117(4): 1523-1541. |
5 | BALARAMAN E , GNANAPRAKASAM B , SHIMON L J W , et al . Direct hydrogenation of amides to alcohols and amines under mild conditions[J]. Journal of the American Chemical Society, 2010, 132(47): 16756-16758. |
6 | LORITSCH J A , VOGT R R . The addition of aryl amines to alkynes[J]. Journal of the American Chemical Society, 1939, 61: 1462-1463. |
7 | WALSH P J , BARANGER A M , BERGMAN R G . Stoichiometric and catalytic hydroamination of alkynes and allene by zirconium bisamides Cp2Zr(NHR)2 [J]. Journal of the American Chemical Society, 1992, 114(5): 1708-1719. |
8 | MCGRANE P L , JENSEN M , LIVINGHOUSE T . Intramolecular [2+2] cycloadditions of group-Ⅳ metal imido complexes-applications to the synthesis of dihydropyrrole and tetrahydropyridine derivatives[J]. Journal of the American Chemical Society, 1992, 114(13): 5459-5460. |
9 | LI Y W , MARKS T J . Organolanthanide-catalyzed intramolecular hydroamination/cyclization of aminoalkynes[J]. Journal of the American Chemical Society, 1996, 118(39): 9295-9306. |
10 | HONG S W , MARKS T J . Highly stereoselective intramolecular hydroamination/cyclization of conjugated aminodienes catalyzed by organolanthanides[J]. Journal of the American Chemical Society, 2002, 124(27): 7886-7887. |
11 | HUANG L , ARNDT M , GOOBEN K , et al . Late transition metal-catalyzed hydroamination and hydroamidation[J]. Chemical Reviews, 2015, 115(7): 2596-2697. |
12 | POHLKI F , DOYE S . The catalytic hydroamination of alkynes[J]. Chemical Society Reviews, 2003, 32(2): 104-114. |
13 | SEVERIN R , DOYE S . The catalytic hydroamination of alkynes[J]. Chemical Society Reviews, 2007, 36(9): 1407-1420. |
14 | HAGGIN J . Chemists seek greater recognition for catalysis[J]. Chemical & Engineering News, 1993, 71(22): 23-27. |
15 | ANANIKOV V P , BELETSKAYA I P . Alkyne and alkene insertion into metal-heteroatom and metal-hydrogen bonds: the key stages of hydrofunctionalization process[J]. Hydrofunctionalization, 2013, 43:1-19. |
16 | MŨLLER T E , PLEIER A K . Intramolecular hydroamination of alkynes catalysed by late transition metals[J]. Journal of the Chemical Society, Dalton Transactions, 1999(4): 583-587. |
17 | SENGUPTA M , BAG A, DAS S, et al . Reaction and mechanistic studies of heterogeneous hydroamination over support-stabilized gold nanoparticles[J]. Chem. Cat. Chem., 2016, 8(19): 3121-3130. |
18 | ZHAO J , ZHENG Z , BOTTLE S , et al . Highly efficient and selective photocatalytic hydroamination of alkynes by supported gold nanoparticles using visible light at ambient temperature[J]. Chemical Communications, 2013, 49(26): 2676-2678. |
19 | MUNRO-LEIGHTON C , DELP S A , ALSOP N M , et al . Anti-markovnikov hydroamination and hydrothiolation of electron-deficient vinylarenes catalyzed by well-defined monomeric copper(Ⅰ) amido and thiolate complexes[J]. Chemical Communications, 2008(1): 111-113. |
20 | SEAYAD J , TILLACK A , HARTUNG C G , et al . Base-catalyzed hydroamination of olefins: an environmentally friendly route to amines[J]. Advanced Synthesis & Catalysis, 2002, 344(8): 795-813. |
21 | OHMIYA H , MORIYA T , SAWAMURA M . Cu(Ⅰ)-catalyzed intramolecular hydroamination of unactivated alkenes bearing a primary or secondary amino group in alcoholic solvents[J]. Organic Letters, 2009, 11(10): 2145-2147. |
22 | POUY M J , DELP S A , UDDIN J , et al . Intramolecular hydroalkoxylation and hydroamination of alkynes catalyzed by Cu(Ⅰ) complexes supported by N-heterocyclic carbene ligands[J]. ACS Catalysis, 2012, 2(10): 2182-2193. |
23 | SENGUPTA M , DAS S, BORDOLOI A . Cu/Cu2O nanoparticle interface: rational designing of a heterogeneous catalyst system for selective hydroamination[J]. Molecular Catalysis, 2017, 440:57-65. |
24 | BIYIKAL M , LÖHNWITZ K , MEYER N , et al . β-Diketiminate zinc complexes for the hydroamination of alkynes[J]. European Journal of Inorganic Chemistry, 2010(7): 1070-1081. |
25 | SARISH S P , SCHAFFNER D , SUN Y , et al . Evidence for the formation of a metal alkyl intermediate in the zinc mediated intramolecular hydroamination[J]. Chemical Communications, 2013, 49(83): 9672-9674. |
26 | EISENSTEIN O , HOFFMANN R . Activation of a coordinated olefin toward nucleophilic-attack[J]. Journal of the American Chemical Society, 1980, 102(19): 6148-6149. |
27 | EISENSTEIN O , HOFFMANN R . Transition-metal complexed olefins-how their reactivity towards a nucleophile relates to their electronic-structure[J]. Journal of the American Chemical Society, 1981, 103(15): 4308-4320. |
28 | CHENG X , KUOK HII K . Palladium-catalyzed addition of R2NH to double bonds. synthesis of α-amino tetrahydrofuran and pyran rings[J]. Tetrahedron, 2001, 57(25): 5445-5450. |
29 | HUDRLIK P F , HUDRLIK A M . Enol acetates, enol ethers, and amines by mercuration of acetylenes[J]. Journal of Organic Chemistry, 1973, 38(25): 4254-4258. |
30 | DUAN H F , SENGUPTA S , PETERSEN J L , et al . Triazole-Au(Ⅰ) complexes: a new class of catalysts with improved thermal stability and reactivity for intermolecular alkyne hydroamination[J]. Journal of the American Chemical Society, 2009, 131(34): 12100-12102. |
31 | PATIL N T , MUTYALA A K , LAKSHMI P G , et al . Au(Ⅰ)-catalyzed cascade reaction involving formal double hydroamination of alkynes bearing tethered carboxylic groups: an easy access to fused dihydrobenzimidazoles and tetrahydroquinazolines[J]. Journal of Organic Chemistry, 2010, 75(17): 5963-5975. |
32 | PATIL N T , LAKSHMI P G V V , SINGH V . AuI-catalyzed direct hydroamination/hydroarylation and double hydroamination of terminal alkynes[J]. European Journal of Organic Chemistry, 2010, 24: 4719-4731. |
33 | MIZUSHIMA E , HAYASHI T , TANAKA M . Au(Ⅰ)-catalyzed highly efficient intermolecular hydroamination of alkynes[J]. Organic Letters, 2003, 5(18): 3349-3352. |
34 | LIANG S , HAMMOND L , XU B , et al . Commercial supported gold nanoparticles catalyzed alkyne hydroamination and indole synthesis[J]. Advanced Synthesis & Catalysis, 2016, 358(20): 3313-3318. |
35 | KITAHARA H , SAKURAI H . Catalytic activity of gold nanoclusters in intramolecular hydroamination of alkenes and alkynes with toluenesulfonamide under aerobic and basic conditions[J]. Journal of Organometallic Chemistry, 2011, 696(1): 442-449. |
36 | BISTONI G , BELANZONI P , BELPASSI L , et al . π Activation of alkynes in homogeneous and heterogeneous gold catalysis[J]. The Journal of Physical Chemistry A, 2016, 120(27): 5239-5247. |
37 | BEEREN S R , DABB S L , MESSERLE B A . Intramolecular hydroamination catalysed by Ag complexes stabilised in situ by bidentate ligands[J]. Journal of Organometallic Chemistry, 2009, 694(2): 309-312. |
38 | SU Y , LU M , DONG B , et al . Silver-catalyzed alkyne activation: the surprising ligand effect[J]. Advanced Synthesis & Catalysis, 2014, 356(4): 692-696. |
39 | ZHANG X , ZHOU Y , WANG H , et al . Silver-catalyzed intramolecular hydroamination of alkynes in aqueous media: efficient and regioselective synthesis for fused benzimidazoles[J]. Green Chemistry, 2011, 13(2): 397-405. |
40 | CHONG Q , XIN X , WANG C , et al . Synthesis of polysubstituted pyrroles via Ag(Ⅰ)-mediated conjugate addition and cyclization reaction of terminal alkynes with amines[J]. Tetrahedron, 2014, 70(2): 490-494. |
41 | LIU Y , WU G , CUI Y . Ag/CNT-catalyzed hydroamination of activated alkynes with aromatic amines[J]. Applied Organometallic Chemistry, 2013, 27(4): 206-208. |
42 | PENZIEN J , HAEBNER C , JENTYS A , et al . Heterogeneous catalysts for hydroamination reactions: structure-activity relationship[J]. Journal of Catalysis, 2004, 221(2): 302-312. |
43 | JOSEPH T , SHANBHAG G V , HALLIGUDI S B . Copper(Ⅱ) ion-exchanged montmorillonite as catalyst for the direct addition of N—H bond to CC triple bond[J]. Journal of Molecular Catalysis A: Chemical, 2005, 236(1/2): 139-144. |
44 | SHANBHAG G , JOSEPH T , HALLIGUDI S . Copper(Ⅱ) ion exchanged AlSBA-15: a versatile catalyst for intermolecular hydroamination of terminal alkynes with aromatic amines[J]. Journal of Catalysis, 2007, 250(2): 274-282. |
45 | BÓDIS J , MÜLLER T E , LERCHER J A . Novel hydroamination reactions in a liquid-liquid two-phase catalytic system[J]. Green Chemistry, 2003, 5(2): 227-231. |
46 | SHANBHAG G V , HALLIGUDI S B . Intermolecular hydroamination of alkynes catalyzed by zinc-exchanged montmorillonite clay[J]. Journal of Molecular Catalysis A: Chemical, 2004, 222(1/2): 223-228. |
47 | PEETERS A , VALVEKENS P , AMELOOT R , et al . Zn-Co double metal cyanides as heterogeneous catalysts for hydroamination: a structure-activity relationship[J]. ACS Catalysis, 2013, 3(4): 597-607. |
[1] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[2] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[3] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[4] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[5] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[6] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[7] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[8] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[9] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[10] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[11] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[12] | ZHANG Yaojie, ZHANG Chuanxiang, SUN Yue, ZENG Huihui, JIA Jianbo, JIANG Zhendong. Application of coal-based graphene quantum dots in supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4340-4350. |
[13] | GUO Lixing, PANG Weiying, MA Keyao, YANG Jiahan, SUN Zehui, ZHANG Pan, FU Dong, ZHAO Kun. Hierarchically multilayered TiO2 with spatial pore-structure for efficient photocatalytic CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3643-3651. |
[14] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
[15] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |