Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (04): 1702-1713.DOI: 10.16085/j.issn.1000-6613.2018-1485
• Energy processes and technology • Previous Articles Next Articles
Kang CHEN(),Ting YAN,Zhao JIANG,Tao FANG()
Received:
2018-07-17
Revised:
2018-08-19
Online:
2019-04-05
Published:
2019-04-05
Contact:
Tao FANG
通讯作者:
方涛
作者简介:
<named-content content-type="corresp-name">陈康</named-content>(1993—),男,硕士研究生,研究方向为超临界流体。E-mail:<email>1437143821@qq.com</email>。|方涛,教授,博士生导师,研究方向为生物质能,超临界流体,化学储氢,微纳米材料。E-mail:<email>taofang@mail.xjtu.edu.cn</email>。
基金资助:
CLC Number:
Kang CHEN, Ting YAN, Zhao JIANG, Tao FANG. Progress on application of supercritical fluids to upgrade coal tar[J]. Chemical Industry and Engineering Progress, 2019, 38(04): 1702-1713.
陈康, 闫挺, 姜召, 方涛. 超临界流体改质煤焦油研究进展[J]. 化工进展, 2019, 38(04): 1702-1713.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1485
流体 | 操作温度 /K | 压力 /MPa | 密度 /g·cm-3 | 黏度 /μPa·s | 扩散系数 /cm2·s-1 | 介电常数 | 电离常数 /mol2·kg-2 | 用途 |
---|---|---|---|---|---|---|---|---|
超临界二氧化碳 | 304~373 | 5.8~30 | 0.240~0.940 | 20~30 | 10-3 | 1.0~1.5 | 难电离 | 萃取分离、有机化学反应、印染 |
超临界甲醇 | 513~623 | 7.5~15.0 | 0.177~0.550 | 30~60 | 10-3 | 2.0~7.0 | 难电离,在323K、25MPa,值为10-16.6 | 生物柴油、重油的轻质化、有机化学反应 |
超临界水 | 623~873 | 15.0~35.0 | 0.065~0.475 | 28~56 | 10-3 | 1.0~9.0 | 难电离,在713K、25MPa,值为10-21.33 | 燃料加工、生物资源的处理、有害材料无毒化、有机化学反应 |
水 | 298 | 0.1 | 0.998 | 1000 | 10-5 | 80 | 难电离,值为10-14 |
流体 | 操作温度 /K | 压力 /MPa | 密度 /g·cm-3 | 黏度 /μPa·s | 扩散系数 /cm2·s-1 | 介电常数 | 电离常数 /mol2·kg-2 | 用途 |
---|---|---|---|---|---|---|---|---|
超临界二氧化碳 | 304~373 | 5.8~30 | 0.240~0.940 | 20~30 | 10-3 | 1.0~1.5 | 难电离 | 萃取分离、有机化学反应、印染 |
超临界甲醇 | 513~623 | 7.5~15.0 | 0.177~0.550 | 30~60 | 10-3 | 2.0~7.0 | 难电离,在323K、25MPa,值为10-16.6 | 生物柴油、重油的轻质化、有机化学反应 |
超临界水 | 623~873 | 15.0~35.0 | 0.065~0.475 | 28~56 | 10-3 | 1.0~9.0 | 难电离,在713K、25MPa,值为10-21.33 | 燃料加工、生物资源的处理、有害材料无毒化、有机化学反应 |
水 | 298 | 0.1 | 0.998 | 1000 | 10-5 | 80 | 难电离,值为10-14 |
原料 | 溶剂 | 添加物 | 研究重点 | 参考文献 |
---|---|---|---|---|
煤焦油沥青 | 超临界水 | 无 | 操作参数 | [ |
高温煤焦油 | 超临界水 | 无 | 操作参数,模型化合物 | [ |
3种煤焦油 | 超临界水 | 无 | 操作参数,反应机理,模型化合物 | [ |
油砂沥青 | 超临界水 | 无 | 操作参数,超临界水的影响 | [ |
沥青 | 超临界水 | 无 | 操作参数,反应机理 | [ |
武钢煤焦油 | 超临界水 | 无 | 操作参数 | [ |
埃索石油沥青 | 超临界水 | O2 | 操作参数,水煤气变换 | [ |
减压渣油 | 超临界水 | 无 | 操作参数,反应机理 | [ |
沥青 | 超临界水 | 无 | 反应机理,相变化 | [ |
重油 | 超临界水 | DTBP | 反应机理 | [ |
渣油 | 超临界水 | 无 | 反应机理,超临界水作用,相变化 | [ |
沥青质 | 超临界水 | NaOH | 强化改质,三集总动力学 | [ |
重油 | 超临界水 | 氧气,活性炭 | 水煤气变换,强化改质 | [ |
沥青 | 超临界水 | HCOOH | 操作参数 | [ |
重油 | 超临界水 | 十氢萘,软沥青 | 供氢强化改质,四集总动力学 | [ |
沥青,重油 | 超临界水 | 过渡金属,催化剂 | 强化供氢,反应路径 | [ |
渣油 | 超临界水 | 聚乙烯 | 相变化,反应机理 | [ |
重油 | 超临界水 | O2 | 部分氧化,水煤气变换 | [ |
减压渣油 | 超临界水 | 无 | 两相四集总动力学 | [ |
沥青 | 超临界水 | CO | 水煤气变换 | [ |
重油 | 超临界水 | 无 | 四集总动力学,五集总动力学 | [ |
原油 | 超临界水 | 无 | 轻质化与脱硫 | [ |
重油 | 超临界水 | 无 | 减粘裂化 | [ |
低温煤焦油 | 超临界汽油 | 无 | 三集总动力学 | [ |
高/低温煤焦油 | 超临界二甲苯,超临界汽油 | 无 | 操作参数 | [ |
煤焦油 | 超临界汽油 | 催化剂,氢气 | 操作参数,催化剂特性 | [ |
武钢煤焦油 | 超临界甲醇 | 无 | 操作参数 | [ |
卡拉玛依重油 | 超临界甲醇 | 无 | 最优操作参数 | [ |
减压渣油,沥青 | 超临界甲醇 | 无 | 操作参数,反应机理,杂原子脱除 | [ |
重油 | 超临界甲醇 | 无 | 四集总动力学 | [ |
减压渣油 | 超临界甲醇 | 二丁二酮肟合镍 | 催化剂性能,操作参数 | [ |
原料 | 溶剂 | 添加物 | 研究重点 | 参考文献 |
---|---|---|---|---|
煤焦油沥青 | 超临界水 | 无 | 操作参数 | [ |
高温煤焦油 | 超临界水 | 无 | 操作参数,模型化合物 | [ |
3种煤焦油 | 超临界水 | 无 | 操作参数,反应机理,模型化合物 | [ |
油砂沥青 | 超临界水 | 无 | 操作参数,超临界水的影响 | [ |
沥青 | 超临界水 | 无 | 操作参数,反应机理 | [ |
武钢煤焦油 | 超临界水 | 无 | 操作参数 | [ |
埃索石油沥青 | 超临界水 | O2 | 操作参数,水煤气变换 | [ |
减压渣油 | 超临界水 | 无 | 操作参数,反应机理 | [ |
沥青 | 超临界水 | 无 | 反应机理,相变化 | [ |
重油 | 超临界水 | DTBP | 反应机理 | [ |
渣油 | 超临界水 | 无 | 反应机理,超临界水作用,相变化 | [ |
沥青质 | 超临界水 | NaOH | 强化改质,三集总动力学 | [ |
重油 | 超临界水 | 氧气,活性炭 | 水煤气变换,强化改质 | [ |
沥青 | 超临界水 | HCOOH | 操作参数 | [ |
重油 | 超临界水 | 十氢萘,软沥青 | 供氢强化改质,四集总动力学 | [ |
沥青,重油 | 超临界水 | 过渡金属,催化剂 | 强化供氢,反应路径 | [ |
渣油 | 超临界水 | 聚乙烯 | 相变化,反应机理 | [ |
重油 | 超临界水 | O2 | 部分氧化,水煤气变换 | [ |
减压渣油 | 超临界水 | 无 | 两相四集总动力学 | [ |
沥青 | 超临界水 | CO | 水煤气变换 | [ |
重油 | 超临界水 | 无 | 四集总动力学,五集总动力学 | [ |
原油 | 超临界水 | 无 | 轻质化与脱硫 | [ |
重油 | 超临界水 | 无 | 减粘裂化 | [ |
低温煤焦油 | 超临界汽油 | 无 | 三集总动力学 | [ |
高/低温煤焦油 | 超临界二甲苯,超临界汽油 | 无 | 操作参数 | [ |
煤焦油 | 超临界汽油 | 催化剂,氢气 | 操作参数,催化剂特性 | [ |
武钢煤焦油 | 超临界甲醇 | 无 | 操作参数 | [ |
卡拉玛依重油 | 超临界甲醇 | 无 | 最优操作参数 | [ |
减压渣油,沥青 | 超临界甲醇 | 无 | 操作参数,反应机理,杂原子脱除 | [ |
重油 | 超临界甲醇 | 无 | 四集总动力学 | [ |
减压渣油 | 超临界甲醇 | 二丁二酮肟合镍 | 催化剂性能,操作参数 | [ |
1 | ANGELES M J , LEYVA C , ANCHEYTA J , et al . A review of experimental procedures for heavy oil hydrocracking with dispersed catalyst[J]. Catalysis Today, 2014, 220/221/222: 274-294. |
2 | 李贵贤, 曹彦伟, 李梦晨, 等 . 煤焦油加氢脱氮反应网络及催化剂研究进展[J]. 化工进展, 2015, 34(5): 1283-1290. |
LI Guixian , CAO Yanwei , LI Mengchen , et al . Research progress in hydrodenitrogenation reaction network and its catalysts for coal tar[J]. Chemical Industry and Engineering Progress, 2015, 34(5): 1283-1290. | |
3 | SUN Z , LI D , MA H, et al . Characterization of asphaltene isolated from low-temperature coal tar[J]. Fuel Processing Technology, 2015, 138:413-418. |
4 | KAN T , WANG H , HE H , et al . Experimental study on two-stage catalytic hydroprocessing of middle-temperature coal tar to clean liquid fuels[J]. Fuel, 2011, 90(11): 3404-3409. |
5 | YUE Y , LI J , DONG P , et al . From cheap natural bauxite to high-efficient slurry-phase hydrocracking catalyst for high temperature coal tar:a simple hydrothermal modification[J]. Fuel Processing Technology, 2018, 175: 123-130. |
6 | YAN T , XU J , WANG L , et al . A review of upgrading heavy oils with supercritical fluids[J]. RSC Advances, 2015, 5(92): 75129-75140. |
7 | BELLAN J . Supercritical (and subcritical) fluid behavior and modeling: drops, streams, shear and mixing layers, jets and sprays[J]. Progress in Energy and Combustion Science, 2000, 26(4): 329-366. |
8 | MACHIDA H , TAKESUE M , SMITH R L . Green chemical processes with supercritical fluids: properties, materials, separations and energy[J]. The Journal of Supercritical Fluids, 2011, 60: 2-15. |
9 | TAKEBAYASHI Y , HOTTA H , SHONO A , et al . Spectroscopic study of acid-base equilibria and ion pairing in supercritical methanol[J]. Journal of Solution Chemistry, 2009, 38(5): 545-555. |
10 | JESSOP P G , IKARIYA T , NOYORI R . Homogeneous catalysis in supercritical fluids[J]. Chemical Reviews, 1999, 99(2): 475-494. |
11 | HAN L , ZHANG R , BI J . Experimental investigation of high temperature coal tar upgrading in supercritical water[J]. Fuel Processing Technology, 2009, 90(2): 292-300. |
12 | HAN L , ZHANG R , BI J , et al . Pyrolysis of coal tar asphaltene in supercritical water[J]. Journal of Analytical and Applied Pyrolysis, 2011, 91(2): 281-287. |
13 | KANG J , MYINT A A , SIM S, et al . Kinetics of the upgrading of heavy oil in supercritical methanol[J]. The Journal of Supercritical Fluids, 2018, 133: 133-138. |
14 | KOZHEVNIKOV I V , NUZHDIN A L , MARTYANOV O N . Transformation of petroleum asphaltenes in supercritical water[J]. The Journal of Supercritical Fluids, 2010, 55(1): 217-222. |
15 | HAN L , ZHANG R , BI J . Upgrading of coal tar pitch in supercritical water[J]. Journal of Fuel Chemistry and Technology, 2008, 36(1): 1-5. |
16 | GU Z , CHANG N , HOU X , et al . Experimental study on the coal tar hydrocracking process in supercritical solvents[J]. Fuel, 2012, 91(1): 33-39. |
17 | TIMKO M T , GHONIEM A F , GREEN W H . Upgrading and desulfurization of heavy oils by supercritical water[J]. The Journal of Supercritical Fluids, 2015, 96: 114-123. |
18 | DEMIRBAS A . Sulfur removal from crude oil using supercritical water[J]. Petroleum Science and Technology, 2016, 34(7): 622-626. |
19 | VILCÁEZ J , WATANABE M , WATANABE N , et al . Hydrothermal extractive upgrading of bitumen without coke formation[J]. Fuel, 2012, 102: 379-385. |
20 | LIU J , XING Y , CHEN Y , et al . Visbreaking of heavy oil under supercritical water environment[J]. Industrial & Engineering Chemistry Research, 2018, 57(3): 867-875. |
21 | KWEK W , KHAN M K , SARKAR B , et al . Supercritical methanol as an effective medium for producing asphaltenes-free light fraction oil from vacuum residue[J]. The Journal of Supercritical Fluids, 2018, 133: 184-194. |
22 | YAN T , CHEN K , WANG L , et al . Experimental investigation of upgrading heavy oil with supercritical methanol[J]. Energy & Fuels, 2017, 31(6): 5882-5890. |
23 | 何选明, 李铁鲁, 王宽强, 等 . 煤焦油超临界甲醇抽提反应过程特性的研究[J]. 煤炭转化, 2011, 34(02): 59-63. |
HE Xuanming , LI Tielu , WANG Kuanqiang , et al . Study on the reaction properties of coal tar[J]. Coal Conversion, 2011, 34(02): 59-63. | |
24 | ZHANG D , REN Z , WANG D , et al . Upgrading of crude oil in supercritical water: a five-lumped kinetic model[J]. Journal of Analytical and Applied Pyrolysis, 2017, 123: 56-64. |
25 | GUDIYELLA S , LAI L , BORNE I H , et al . An experimental and modeling study of vacuum residue upgrading in supercritical water[J]. AIChE Journal, 2018, 64(5): 1732-1743. |
26 | LIU Q , ZHU D , TAN X , et al . Lumped reaction kinetic models for pyrolysis of heavy oil in the presence of supercritical water[J]. AIChE Journal, 2016, 62(1): 207-216. |
27 | TAN X , LIU Q , ZHU D , et al . Pyrolysis of heavy oil in the presence of supercritical water: the reaction kinetics in different phases[J]. AIChE Journal, 2015, 61(3): 857-866. |
28 | XIN S , LIU Q , WANG K , et al . Solvation of asphaltenes in supercritical water: a molecular dynamics study[J]. Chemical Engineering Science, 2016, 146: 115-125. |
29 | ZHANG J , WENG X , HAN Y , et al . The effect of supercritical water on coal pyrolysis and hydrogen production: a combined Reax FF and DFT study[J]. Fuel, 2013, 108: 682-690. |
30 | JIN H , WU Y , GUO L , et al . Molecular dynamic investigation on hydrogen production by polycyclic aromatic hydrocarbon gasification in supercritical water[J]. International Journal of Hydrogen Energy, 2016, 41(6): 3837-3843. |
31 | YUAN P Q , ZHU C C , LIU Y , et al . Solvation of hydrocarbon radicals in sub-CW and SCW: an ab initio MD study[J]. The Journal of Supercritical Fluids, 2011, 58(1): 93-98. |
32 | 韩丽娜, 张荣, 毕继诚 . 煤焦油及其组分在超临界水中的反应特性研究[J]. 燃料化学学报, 2008, 36(6): 653-659. |
HAN Lina , ZHANG Rong , BI Jicheng . Reaction property of coal tar and its fractions in supercritical water[J]. Journal of Fuel Chemistry and Technology, 2008, 36(6): 653-659. | |
33 | 韩丽娜, 张荣, 毕继诚 . 超临界水中煤焦油沥青轻质化的实验研究[J]. 燃料化学学报, 2008, 36(1): 1-5. |
HAN Lina , ZHANG Rong , BI Jicheng . Upgrading of coal tar pitch in supercritical water[J]. Journal of Fuel Chemistry and Technology, 2008, 36(1): 1-5. | |
34 | MORIMOTO M , SUGIMOTO Y , SAOTOME Y , et al . Effect of supercritical water on upgrading reaction of oil sand bitumen[J]. The Journal of Supercritical Fluids, 2010, 55(1): 223-231. |
35 | DUTTA R P , MCCAFFREY W C , GRAY M R , et al . Thermal cracking of Athabasca bitumen: influence of steam on reaction chemistry[J]. Energy & Fuels, 2000, 14(3): 671-676. |
36 | SCHLEPP L , ELIE M , LANDAIS P , et al . Pyrolysis of asphalt in the presence and absence of water[J]. Fuel Processing Technology, 2001, 74(2): 107-123. |
37 | 马彩霞, 张荣, 毕继诚 . 煤焦油在超临界水中的改质研究[J]. 燃料化学学报, 2003, 31(2): 103-110. |
Caixia MA , ZHANG Rong , BI Jicheng . Upgrading of coal tar in supercritical water[J]. Journal of Fuel Chemistry and Technology, 2003, 31(2): 103-110. | |
38 | SATO T , ADSCHIRI T , ARAI K , et al . Upgrading of asphalt with and without partial oxidation in supercritical water[J]. Fuel, 2003, 82(10): 1231-1239. |
39 | ZHAO L , CHENG Z , DING Y , et al . Experimental study on vacuum residuum upgrading through pyrolysis in supercritical water[J]. Energy & Fuels, 2006, 20(5): 2067-2071. |
40 | CHENG Z , DING Y , ZHAO L , et al . Effects of supercritical water in vacuum residue upgrading[J]. Energy & Fuels, 2009, 23(6): 3178-3183. |
41 | ZHU C , REN C , TAN X , et al . Initiated pyrolysis of heavy oil in the presence of near-critical water[J]. Fuel Processing Technology, 2013, 111: 111-117. |
42 | CHANG J , FUJIMOTO K , TSUBAKI N . Effect of initiative additives on hydro-thermal cracking of heavy oils and model compound[J]. Energy & Fuels, 2003, 17(2): 457-461. |
43 | LIU Y , BAI F , ZHU C , et al . Upgrading of residual oil in sub- and supercritical water: an experimental study[J]. Fuel Processing Technology, 2013, 106: 281-288. |
44 | LI N , YAN B , ZHANG L , et al . Effect of NaOH on asphaltene transformation in supercritical water[J]. The Journal of Supercritical Fluids, 2015, 97: 116-124. |
45 | FEDYAEVA O N , ANTIPENKO V R , VOSTRIKOV A A . Heavy oil upgrading at oxidation of activated carbon by supercritical water-oxygen fluid[J]. The Journal of Supercritical Fluids, 2017, 126: 55-64. |
46 | SATO T , MORI S , WATANABE M , et al . Upgrading of bitumen with formic acid in supercritical water[J]. The Journal of Supercritical Fluids, 2010, 55(1): 232-240. |
47 | LIU Q , XU Y , TAN X , et al . Pyrolysis of asphaltenes in subcritical and supercritical water: influence of H-donation from hydrocarbon surroundings[J]. Energy & Fuels, 2017, 31(4): 3620-3628. |
48 | CLARK P D , KIRK M J . Studies on the upgrading of bituminous oils with water and transition metal catalysts[J]. Energy & Fuels, 1994, 8(2): 380-387. |
49 | HOSSEINPOUR M , FATEMI S , AHMADI S J . Deuterium tracing study of unsaturated aliphatics hydrogenation by supercritical water in upgrading heavy oil. Part Ⅱ: Hydrogen donating capacity of water in the presence of iron(Ⅲ) oxide nanocatalyst[J]. The Journal of Supercritical Fluids, 2016, 110: 75-82. |
50 | HOSSEINPOUR M , FATEMI S , AHMADI S J . Catalytic cracking of petroleum vacuum residue in supercritical water media: impact of α-Fe2O3 in the form of free nanoparticles and silica-supported granules[J]. Fuel, 2015, 159: 538-549. |
51 | KOSARI M , GOLMOHAMMADI M , AHMADI S J , et al . On the catalysis capability of transition metal oxide nanoparticles in upgrading of heavy petroleum residue by supercritical water[J]. The Journal of Supercritical Fluids, 2017, 126: 14-24. |
52 | BAI F , ZHU C , LIU Y , et al . Co-pyrolysis of residual oil and polyethylene in sub- and supercritical water[J]. Fuel Processing Technology, 2013, 106: 267-274. |
53 | SATO T . Upgrading of heavy oil by hydrogenation through partial oxidation and water-gas shift reaction in supercritical water[J]. Journal of the Japan Petroleum Institute, 2014, 57(1): 1-10. |
54 | SATO T , SUMITA T , ITOH N . Effect of CO addition on upgrading bitumen in supercritical water[J]. The Journal of Supercritical Fluids, 2015, 104: 171-176. |
55 | FEDYAEVA O N , ANTIPENKO V R , VOSTRIKOV A A . Conversion of sulfur-rich asphaltite in supercritical water and effect of metal additives[J]. The Journal of Supercritical Fluids, 2014, 88: 105-116. |
56 | FEDYAEVA O N , VOSTRIKOV A A . The products of heavy sulfur-rich oil conversion in a counter supercritical water flow and their desulfurization by ZnO nanoparticles[J]. The Journal of Supercritical Fluids, 2016, 111: 121-128. |
57 | CHANG N , GU Z . Kinetic model of low temperature coal tar hydrocracking in supercritical gasoline for reducing coke production[J]. Korean Journal of Chemical Engineering, 2014, 31(5): 780-784. |
58 | ZHANG L , LIU Z , GU Z . Fuel oil production through high-temperature coal tar catalytic hydrocracking in supercritical xylene[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2016, 38(22): 3375-3382. |
59 | 常娜, 侯雄坡, 刘宗宽, 等 . 超临界汽油中煤焦油加氢裂化催化剂研究[J]. 化学工程, 2010, 38(8): 83-86. |
CHANG Na , HOU Xiongpo , LIU Zongkuan , et al . Catalyst study for coal tar hydrocracking in supercritical gasoline[J]. Chemical Engineering (China), 2010, 38(8): 83-86. | |
60 | KHAN M K , KWEK W , KIM J . Conversion of petroleum emulsion into light fraction-rich upgraded oil in supercritical methanol[J]. Fuel, 2018, 218: 78-88. |
61 | KHAN M K , KWEK W , KIM J . Upgrading heavy crude oils and extra heavy fractions in supercritical methanol[J]. Energy & Fuels, 2017, 31(11): 12054-12063. |
62 | KHAN M K , SARKAR B , ZEB H, et al . Simultaneous breaking and conversion of petroleum emulsions into synthetic crude oil with low impurities[J]. Fuel, 2017, 199: 135-144. |
63 | KWEK W , KHAN M K , SARKAR B , et al . A non-catalytic, supercritical methanol route for producing high-yield saturated and aromatic compounds from de-oiled asphaltenes[J]. The Journal of Supercritical Fluids, 2017, 120: 140-150. |
64 | SARKAR B , KWEK W , VERMA D , et al . Effective vacuum residue upgrading using sacrificial nickel(Ⅱ) dimethylglyoxime complex in supercritical methanol[J]. Applied Catalysis A: General, 2017, 545: 148-158. |
65 | ZHOU J , WANG W C , ZHONG C L . Molecular dynamics investigation of benzene in supercritical water[J]. Chinese Journal of Chemical Engineering, 2001, 9(2): 196-199. |
66 | 中华人民共和国国家能源局 . 石油沥青四组分测定法: NB/SH/T 0509—2010[S]. 北京: 中国标准出版社, 2010. |
National Energy Bureau of People's Republic of China . Test method of separation of asphalt into fractions: NB/SH/T0509—2010[S]. Beijing: Standards Press of China, 2010. | |
67 | LUIK H , LUIK L . Extraction of fossil fuels with sub- and supercritical water[J]. Energy Sources, 2000, 23(5): 449-459. |
68 | YEN T F . The colloidal aspect of a macrostructure of petroleum asphalt[J]. Fuel Science and Technology International, 1992, 10(4/5/6): 723-733. |
69 | SAVAGE M K S K PE . Asphaltene reaction pathways 3 effect of reaction environment[J]. Energy & Fuels, 1988, 2(5): 619-628. |
70 | AKIYA N , SAVAGE P E . Roles of water for chemical reactions in high-temperature water[J]. Chemical Reviews, 2002, 102(8): 2725-2750. |
71 | CONNOLLY J F . Solubility of hydrocarbons in water near the critical solution temperatures[J]. Journal of Chemical & Engineering Data, 1966, 11(1): 13-16. |
72 | 郑赞胜 . 高温高压下有机物与水的互溶度研究[D]. 杭州: 浙江大学, 2003. |
ZHENG Zansheng . Studies on the mutual solubilities of organics-water under high temperature and high pressure[D]. Hangzhou: Zhejiang University, 2003. | |
73 | OLOBUNMI M . OGUNSOLA N B. Removal of heterocyclic S and N from oil precursors by supercritical water[J]. Fuel, 1995, 74(10): 1485-1490. |
74 | STALKER L , FARRIMOND P , LARTER S R . Water as an oxygen source for the production of oxygenated compounds (including CO2 precursors) during kerogen maturation[J]. Organic Geochemistry, 1994, 22(3): 474-477. |
75 | CESAR OVALLES A H I R . Upgrading of extra-heavy crude oil by direct use of methane in the presence of water: deuterium-labelled experiments and mechanistic considerations[J]. Fuel, 1995, 74(8): 1162-1168. |
76 | LEWAN M D . Experiments on the role of water in petroleum formation[J]. Geochimica et Cosmochimica Acta, 1997, 61(17): 3691-3723. |
77 | OVALLES C , FILGUEIRAS E , MORALES A , et al . Use of a dispersed iron catalyst for upgrading extra-heavy crude oil using methane as source of hydrogen [J]. Fuel, 2003, 82(8): 887-892. |
78 | LEIF R N , SIMONEIT B R T . The role of alkenes produced during hydrous pyrolysis of a shale[J]. Organic Geochemistry, 2000, 31(11): 1189-1208. |
79 | HOSSEINPOUR M , AHMADI S J , FATEMI S . Deuterium tracing study of unsaturated aliphatics hydrogenation by supercritical water in upgrading heavy oil. PartⅠ: Non-catalytic cracking[J]. The Journal of Supercritical Fluids, 2016, 107: 278-285. |
80 | WATANABE M , HIRAKOSO H , SAWAMOTO S , et al . Polyethylene conversion in supercritical water[J]. The Journal of Supercritical Fluids, 1998, 13(1): 247-252. |
81 | EDERER H J , KRUSE A , MAS C, et al . Modelling of the pyrolysis of tert-butylbenzene in supercritical water[J]. The Journal of Supercritical Fluids, 1999, 15(3): 191-204. |
82 | 徐涛 . 超临界水供氢行为研究[D]. 北京: 北京化工大学, 2012. |
XU Tao . The study on the hydrogen donation capability of supercritical water[D]. Beijing: Beijing University of Chemical Technology, 2012. | |
83 | LV G , GAO F , LIU G , et al . The properties of asphaltene at the oil-water interface: a molecular dynamics simulation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 515: 34-40. |
84 | YUAN P , CHENG Z , JIANG W , et al . Catalytic desulfurization of residual oil through partial oxidation in supercritical water[J]. The Journal of Supercritical Fluids, 2005, 35(1): 70-75. |
85 | BRUNNER E . Fluid mixtures at high pressures Ⅸ. Phase separation and critical phenomena in 23 (n-alkane+water) mixtures[J]. The Journal of Chemical Thermodynamics, 1990, 22(4): 335-353. |
86 | BRUNNER E , THIES M C , SCHNEIDER G M . Fluid mixtures at high pressures: phase behavior and critical phenomena for binary mixtures of water with aromatic hydrocarbons[J]. The Journal of Supercritical Fluids, 2006, 39(2): 160-173. |
87 | AMANI M J , GRAY M R , SHAW J M . Phase behavior of Athabasca bitumen+water mixtures at high temperature and pressure[J]. The Journal of Supercritical Fluids, 2013, 77: 142-152. |
88 | AMANI M J , GRAY M R , SHAW J M . Volume of mixing and solubility of water in Athabasca bitumen at high temperature and pressure[J]. Fluid Phase Equilibria, 2013, 358: 203-211. |
89 | WATANABE M , KATO S , ISHIZEKI S , et al . Heavy oil upgrading in the presence of high density water: basic study[J]. The Journal of Supercritical Fluids, 2010, 53(1/2//3): 48-52. |
90 | SARRADE S , FÉRON D , ROUILLARD F , et al . Overview on corrosion in supercritical fluids[J]. The Journal of Supercritical Fluids, 2017, 120: 335-344. |
91 | KRITZER P . Corrosion in high-temperature and supercritical water and aqueous solutions a review[J]. The Journal of Supercritical Fluids, 2004, 29(1/2): 1-29. |
92 | TANG X , WANG S , XU D , et al . Corrosion behavior of Ni-based alloys in supercritical water containing high concentrations of salt and oxygen[J]. Industrial & Engineering Chemistry Research, 2013, 52(51): 18241-18250. |
93 | ROMÁN-FIGUEROA C , OLIVARES-CARRILLO P , PANEQUE M , et al . High-yield production of biodiesel by non-catalytic supercritical methanol transesterification of crude castor oil (Ricinus communis)[J]. Energy, 2016, 107: 165-171. |
94 | MOHAMADZADEH SHIRAZI H , KARIMI-SABET J , GHOTBI C . Biodiesel production from spirulina microalgae feedstock using direct transesterification near supercritical methanol condition[J]. Bioresource Technology, 2017, 239: 378-386. |
95 | ASAHI N , NAKAMURA Y . Chemical shift study of liquid and supercritical methanol[J]. Chemical Physics Letters, 1998, 290(1): 63-67. |
96 | TAKEBAYASHI Y , HOTTA H , SHONO A , et al . Noncatalytic ortho-selective methylation of phenol in supercritical methanol: the mechanism and acid/base effect[J]. Industrial & Engineering Chemistry Research, 2008, 47(3): 704-709. |
97 | 常娜, 顾兆林, 侯雄坡, 等 . 高温煤焦油加氢裂解反应动力学研究[J]. 煤炭转化, 2010, 33(2): 52-56. |
CHANG Na , GU Zhaolin , HOU Xiongpo , et al . Limping kinetic model of high temperature coal tar hydrocracking[J]. Coal Conversion, 2010, 33(2): 52-56. | |
98 | ARAI K , ADSCHIRI T , WATANABE M . Hydrogenation of hydrocarbons through partial oxidation in supercritical water[J]. Industrial & Engineering Chemistry Research, 2000, 39(12): 4697-4701. |
[1] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[2] | LUO Cheng, FAN Xiaoyong, ZHU Yonghong, TIAN Feng, CUI Louwei, DU Chongpeng, WANG Feili, LI Dong, ZHENG Hua’an. CFD simulation of liquid distribution in different distributors in medium-low temperature coal tar hydrogenation reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4538-4549. |
[3] | CHANG Yinlong, ZHOU Qimin, WANG Qingyue, WANG Wenjun, LI Bogeng, LIU Pingwei. Research progress in high value chemical recycling of waste polyolefins [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3965-3978. |
[4] | TAN Lipeng, SHEN Jun, WANG Yugao, LIU Gang, XU Qingbai. Research progress on blending modification of coal tar pitch and petroleum asphalt [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3749-3759. |
[5] | ZHANG Lele, QIAN Yundong, ZHU Huatong, FENG Silong, YANG Xiuna, YU Ying, YANG Qiang, LU Hao. Study on optimization limits of dehydration and desalination pretreatment of hydrogenated coal tar [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2298-2305. |
[6] | XU Xian, CUI Louwei, LIU Jie, SHI Junhe, ZHU Yonghong, LIU Jiaojiao, LIU Tao, ZHENG Hua’an, LI Dong. Effect of raw material composition on the development of semicoke mesophase structure [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2343-2352. |
[7] | WANG Zizong, LIU Gang, WANG Zhenwei. Progress and reflection on process intensification technology for ethylene/propylene production [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1669-1676. |
[8] | XIAO Zhourong, LI Guozhu, WANG Li, ZHANG Xiangwen, GU Jianmin, WANG Desong. Research progress of the catalysts for hydrogen production via liquid hydrocarbon fuels steam reforming [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 97-107. |
[9] | YAN Peng, CHENG Yi. Numerical simulation of membrane reactor of methane steam reforming for distributed hydrogen production [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3446-3454. |
[10] | SHI Yici, PAN Yanqiu, WANG Chengyu, FAN Jiahe, YU Lu. Experimental investigations on Joule effect enhanced air gap membrane distillation for water desalination [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2285-2291. |
[11] | SUN Xun, ZHAO Yue, XUAN Xiaoxu, ZHAO Shan, YOON Joon Yong, CHEN Songying. Advances in process intensification based on hydrodynamic cavitation [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2243-2255. |
[12] | SONG Fei, WANG Junyan, HE Lin, SUI Hong, LI Xingang. Surfactant enhancement of bubbling for separation of residual solvent from oil sands residue after solvent extraction [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2007-2014. |
[13] | YANG Yongbin, DONG Yinrui, ZHONG Qiang, LI Qian, WANG Lin, JIANG Tao. Application and research progress of carbonization consolidation of high temperature coal tar pitch binder in formed carbon material [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6419-6429. |
[14] | WANG Yuhan, SHEN Chong, SU Yuanhai. Fundamentals and research progress of photochemical microreaction technology [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4749-4761. |
[15] | WANG Xiaoda, CHEN Yu, WANG Qinglian, HUANG Zhixian, YANG Chen, WANG Hongxing, QIU Ting. Review on etherification by reactive distillation [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1797-1811. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |