Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (12): 4523-4532.DOI: 10.16085/j.issn.1000-6613.2018-0605
Previous Articles Next Articles
LIN Yuanqing, LI Xialan, ZHANG Guangya
Received:
2018-03-26
Revised:
2018-05-30
Online:
2018-12-05
Published:
2018-12-05
林源清, 李夏兰, 张光亚
通讯作者:
张光亚,教授,博士生导师,研究方向为生物分离与生物催化。
作者简介:
林源清(1989-),男,博士研究生,研究方向为酶分离纯化及固定化。E-mail:linyqy@126.com。
基金资助:
CLC Number:
LIN Yuanqing, LI Xialan, ZHANG Guangya. Recent research progress of enzyme self-immobilization methods[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4523-4532.
林源清, 李夏兰, 张光亚. 酶自固定化方法研究进展[J]. 化工进展, 2018, 37(12): 4523-4532.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-0605
[1] DICOSIMO R,MCAULIFFE J,POULOSE A J,et al. Industrial use of immobilized enzymes[J]. Chemical Society Reviews,2013, 42(15):6437-6474. [2] BRADY D, JORDAAN J, SIMPSON C, et al. Spherezymes:a novel structured self-immobilisation enzyme technology[J]. BMC Biotechnology, 2008, 8:8. [3] BRADY D, JORDAAN J. Advances in enzyme immobilisation[J]. Biotechnology Letters, 2009, 31(11):1639-1650. [4] 柯彩霞, 范艳利, 苏枫, 等. 酶的固定化技术最新研究进展[J]. 生物工程学报, 2018, 34(2):1-17. KE Caixia, FAN Yanli, SU Feng, et al. Recent advances in enzyme immobilization[J]. Chinese Journal of Biotechnology, 2018, 34(2):1-17. [5] SHELDON R A, VAN PELT S. Enzyme immobilisation in biocatalysis:why, what and how[J]. Chemical Society Reviews, 2013, 42(15):6223-6235. [6] ILLANES A, CAUERHFF A, WILSON L, et al. Recent trends in biocatalysis engineering[J]. Bioresource Technology, 2012, 115:48-57. [7] SHELDON R A. Characteristic features and biotechnological applications of cross-linked enzyme aggregates (CLEAs)[J]. Applied Microbiology and Biotechnology, 2011, 92(3):467-477. [8] CUI J D, JIA S R. Optimization protocols and improved strategies of cross-linked enzyme aggregates technology:current development and future challenges[J]. Critical Reviews in Biotechnology, 2013, 35(1):15-28. [9] MOLAWA L, JORDAAN J, LIMSON J, et al. Modification of alcalase SphereZymeTM by entrapment in LentiKats® to impart improved particle stability[J]. Biocatalysis and Biotransformation, 2013, 31(2):71-78. [10] OVEIMAR BARBOSA A C O B, FERNANDEZ-LAFUENTE R C R D. Glutaraldehyde in biocatalysts design a useful crosslinker and a versatile tool in enzyme immobilization[J]. RSC Advances, 2014, 4(4):1583-1600. [11] DITZLER L R, SEN A, GANNON M J, et al. Self-assembled enzymatic monolayer directly bound to a gold surface:activity and molecular recognition force spectroscopy studies[J]. Journal of the American Chemical Society, 2011, 133(34):13284-13287. [12] DICKERSON M B, SANDHAGE K H, NAIK R R. Protein-and peptide-directed syntheses of inorganic materials[J]. Chemical Reviews, 2008, 108(11):4935-4978. [13] 王生杰, 蔡庆伟, 杜明轩, 等. 二氧化硅的仿生矿化[J]. 化学进展, 2015, 27(2/3):229-241. WANG Shengjie, CAI Qingwei, DU Mingxuan, et al. Biomimetic mineralization of silica[J]. Progress in Chemistry, 2015, 27(2/3):229-241. [14] LUCKARIFT H R, SPAIN J C, NAIK R R, et al. Enzyme immobilization in a biomimetic silica support[J]. Nature Biotechnology, 2004, 22(2):211-213. [15] BETANCOR L, LUCKARIFT H R. Bioinspired enzyme encapsulation for biocatalysis[J]. Trends in Biotechnology, 2008, 26(10):566-572. [16] LUCKARIFT H R, DICKERSON M B, SANDHAGE K H, et al. Rapid, room-temperature synthesis of antibacterial bionanocomposites of lysozyme with amorphous silica or titania[J]. Small, 2006, 2(5):640-643. [17] SHIOMI T, TSUNODA T, KAWAI A, et al. Biomimetic synthesis of lysozyme-silica hybrid hollow particles using sonochemical treatment:influence of pH and lysozyme concentration on morphology[J]. Chemistry of Materials, 2007, 19(18):4486-4493. [18] BASSINDALE A R, TAYLOR P G, ABBATE V, et al. Simple and mild preparation of silica-enzyme composites from silicic acid solution[J]. Journal of Materials Chemistry, 2009, 19(41):7606-7609. [19] ZHOU L, WANG C, JIANG Y, et al. Immobilization of papain in biosilica matrix and its catalytic property[J]. Chinese Journal of Chemical Engineering, 2013, 21(6):670-675. [20] YANG Y, WANG G, ZHU G, et al. The effect of amorphous calcium phosphate on protein protection against thermal denaturation[J]. Chemical Communications, 2015, 51(41):8705-8707. [21] GE J, LEI J, ZARE R N. Protein-inorganic hybrid nanoflowers[J]. Nature Nanotechnology, 2012, 7(7):428-432. [22] CUI J, JIA S. Organic-inorganic hybrid nanoflowers:a novel host platform for immobilizing biomolecules[J]. Coordination Chemistry Reviews, 2017, 352:249-263. [23] LIU Y, ZHANG Y, LI X, et al. Self-repairing metal-organic hybrid complexes for reinforcing immobilized chloroperoxidase reusability[J]. Chemical Communications, 2017, 53(22):3216-3219. [24] PATEL S, OTARI S V, LI J, et al. Synthesis of cross-linked protein-metal hybrid nanoflowers and its application in repeated batch decolorization of synthetic dyes[J]. Journal of Hazardous Materials, 2018, 347:442-450. [25] CHILKOTI A, MEYER D E. Purification of recombinant proteins by fusion with thermally-responsive polypeptides[J]. Nature Biotechnology, 1999, 17(11):1112-1115. [26] YEBOAH A, COHEN R I, RABOLLI C, et al. Elastin-like polypeptides:a strategic fusion partner for biologics[J]. Biotechnology and Bioengineering, 2016, 113(8):1617-1627. [27] 李存存, 张光亚. 酶定向固定化方法及应用的研究进展[J]. 化工进展, 2013, 32(10):2467-2474. LI Cuncun, ZHANG Guangya. Research progress of site-specific immobilization of enzymes and application[J]. Chemical Industry and Engineering Progress, 2013, 32(10):2467-2474. [28] LI C, ZHANG G. The fusions of elastin-like polypeptides and xylanase self-assembled into insoluble active xylanase particles[J]. Journal of Biotechnology, 2014, 177:60-66. [29] SHANBHAG B K, LIU B, FU J, et al. Self-assembled enzyme nanoparticles for carbon dioxide capture[J]. Nano Letters, 2016, 16(5):3379-3384. [30] LUO Q, HOU C, BAI Y, et al. Protein assembly:versatile approaches to construct highly ordered nanostructures[J]. Chemical Reviews, 2016, 116(22):13571-13632. [31] HAUSER C A E, MAURER-STROH S, MARTINS I C. Amyloid-based nanosensors and nanodevices[J]. Chemical Society Reviews, 2014, 43(15):5326-5345. [32] WEI G, SU Z, REYNOLDS N P, et al. Self-assembling peptide and protein amyloids:from structure to tailored function in nanotechnology[J]. Chemical Society Reviews, 2017, 46(15):4661-4708. [33] SAMBASHIVAN S, LIU Y, SAWAYA M R, et al. Amyloid-like fibrils of ribonuclease A with three-dimensional domain-swapped and native-like structure[J]. Nature, 2005, 437(7056):266-269. [34] GUGLIELMI F, MONTI D M, ARCIELLO A, et al. Enzymatically active fibrils generated by the self-assembly of the ApoA-I fibrillogenic domain functionalized with a catalytic moiety[J]. Biomaterials, 2009, 30(5):829-835. [35] ZHOU X, SHIMANOVICH U, HERLING T W, et al. Enzymatically active microgels from self-assembling protein nanofibrils for microflow chemistry[J]. ACS Nano, 2015, 9(6):5772-5781. [36] KNOWLES T P J, OPPENHEIM T W, BUELL A K, et al. Nanostructured films from hierarchical self-assembly of amyloidogenic proteins[J]. Nature Nanotechnology, 2010, 5(3):204-207. [37] KNOWLES T P, FITZPATRICK A W, MEEHAN S, et al. Role of intermolecular forces in defining material properties of protein nanofibrils[J]. Science, 2007, 318(5858):1900-1903. [38] HEYMAN A, LEVY I, ALTMAN A, et al. SP1 as a novel scaffold building block for self-assembly nanofabrication of submicron enzymatic structures[J]. Nano Letters, 2007, 7(6):1575-1579. [39] BANEYX F, MUJACIC M. Recombinant protein folding and misfolding in Escherichia coli[J]. Nature Biotechnology, 2004, 22(11):1399-1408. [40] RINAS U, GARCIA-FRUITÓS E, CORCHERO J L, et al. Bacterial inclusion bodies:discovering their better half[J]. Trends in Biochemical Sciences, 2017, 42(9):726-737. [41] PARK S, PARK S, CHOI S. Active inclusion body formation using Paenibacillus polymyxa PoxB as a fusion partner in Escherichia coli[J]. Analytical Biochemistry, 2012, 426(1):63-65. [42] KRAUSS U, JAGER V D, DIENER M, et al. Catalytically-active inclusion bodies-carrier-free protein immobilizates for application in biotechnology and biomedicine[J]. Journal of Biotechnology, 2017, 258:136-147. [43] WU W, XING L, ZHOU B, et al. Active protein aggregates induced by terminally attached self-assembling peptide ELK16 in Escherichia coli[J]. Microbial Cell Factories, 2011, 10(1):9. [44] KROGER N, DEUTZMANN R, SUMPER M. Polycationic peptides from diatom biosilica that direct silica nanosphere formation[J]. Science, 1999, 286(5442):1129-1132. [45] POULSEN N, BERNE C, SPAIN J, et al. Silica immobilization of an enzyme through genetic engineering of the diatom Thalassiosira pseudonana[J]. Angewandte Chemie International Edition, 2007, 46(11):1843-1846. [46] JO B H, SEO J H, YANG Y J, et al. Bioinspired silica nanocomposite with autoencapsulated carbonic anhydrase as a robust biocatalyst for CO2 sequestration[J]. ACS Catalysis, 2014, 4(12):4332-4340. [47] KROGER N, LORENZ S, BRUNNER E, et al. Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis[J]. Science, 2002, 298(5593):584-586. [48] KROGER N, DEUTZMANN R, SUMPER M. Polycationic peptides from diatom biosilica that direct silica nanosphere formation[J]. Science, 1999, 286(5442):1129-1132. [49] JIANG Y, SUN Q, JIANG Z, et al. The improved stability of enzyme encapsulated in biomimetic titania particles[J]. Materials Science and Engineering C, 2009, 29(1):328-334. [50] REN H, ZHANG Y, SU J, et al. Encapsulation of amine dehydrogenase in hybrid titania nanoparticles by polyethylenimine coating and templated biomineralization[J]. Journal of Biotechnology, 2017, 241:33-41. [51] CARE A, BERGQUIST P L, SUNNA A. Solid-binding peptides:smart tools for nanobiotechnology[J]. Trends in Biotechnology, 2015, 33(5):259-268. [52] KACAR T, ZIN M T, SO C, et al. Directed self-immobilization of alkaline phosphatase on micro-patterned substrates via genetically fused metal-binding peptide[J]. Biotechnology and Bioengineering, 2009, 103(4):696-705. [53] YANG M, CHOI B G, PARK T J, et al. Site-specific immobilization of gold binding polypeptide on gold nanoparticle-coated graphene sheet for biosensor application[J]. Nanoscale, 2011, 3(7):2950-2956. [54] CARE A, NEVALAINEN H, BERGQUIST P L, et al. Effect of Trichoderma reesei proteinases on the affinity of an inorganic-binding peptide[J]. Applied Biochemistry and Biotechnology, 2014, 173(8):2225-2240. [55] COYLE B L, BANEYX F. A cleavable silica-binding affinity tag for rapid and inexpensive protein purification[J]. Biotechnology and Bioengineering, 2014, 111(10):2019-2026. [56] COYLE B L, BANEYX F. Direct and reversible immobilization and microcontact printing of functional proteins on glass using a genetically appended silica-binding tag[J]. Chemical Communications, 2016, 52(43):7001-7004. [57] CHEN X, WANG Y, WANG P. Peptide-induced affinity binding of carbonic anhydrase to carbon nanotubes[J]. Langmuir, 2015, 31(1):397-403. [58] CARE A, PETROLL K, GIBSON E S Y, et al. Solid-binding peptides for immobilisation of thermostable enzymes to hydrolyse biomass polysaccharides[J]. Biotechnology for Biofuels, 2017, 10(1):29. [59] OLIVEIRA C, CARVALHO V, DOMINGUES L, et al. Recombinant CBM-fusion technology:applications overview[J]. Biotechnology Advances, 2015, 33(3/4):358-369. [60] WANG S, CUI G, SONG X, et al. Efficiency and stability enhancement of cis-epoxysuccinic acid hydrolase by fusion with a carbohydrate binding module and immobilization onto cellulose[J]. Applied Biochemistry and Biotechnology, 2012, 168(3):708-717. [61] KUMAR A, ZHANG S, WU G, et al. Cellulose binding domain assisted immobilization of lipase (GSlip-CBD) onto cellulosic nanogel:characterization and application in organic medium[J]. Colloids and Surfaces B:Biointerfaces, 2015, 136:1042-1050. [62] LINDER M B. Hydrophobins:proteins that selfassemble at interfaces[J]. Current Opinion in Colloid & Interface Science, 2009, 14(5):356-363. [63] PISCITELLI A, PENNACCHIO A, LONGOBARDI S, et al. Vmh2 hydrophobin as a tool for the development of "self-immobilizing" enzymes for biosensing[J]. Biotechnology and Bioengineering, 2017, 114(1):46-52. [64] REHM B H A. Bacterial polymers:biosynthesis, modifications and applications[J]. Nature Reviews Microbiology, 2010, 8(8):578-592. [65] BLATCHFORD P A, SCOTT C, FRENCH N, et al. Immobilization of organophosphohydrolase OpdA from Agrobacterium radiobacter by overproduction at the surface of polyester inclusions inside engineered Escherichia coli[J]. Biotechnology and Bioengineering, 2012, 109(5):1101-1108. [66] RAN G, TAN D, DAI W, et al. Immobilization of alkaline polygalacturonate lyase from Bacillus subtilis on the surface of bacterial polyhydroxyalkanoate nano-granules[J]. Applied Microbiology and Biotechnology, 2017, 101(8):3247-3258. [67] HAY I D, DU J, REYES P R, et al. In vivo polyester immobilized sortase for tagless protein purification[J]. Microbial Cell Factories, 2015, 14(1):190. [68] MULLANEY J A, REHM B H A. Design of a single-chain multi-enzyme fusion protein establishing the polyhydroxybutyrate biosynthesis pathway[J]. Journal of Biotechnology, 2010, 147(1):31-36. |
[1] | ZHANG Yaodan, SUN Ruoxi, CHEN Pengcheng. Advances of multi-enzyme co-immobilization carrier based on cascade reactions [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3167-3176. |
[2] | MAO Menglei, MENG Lingding, GAO Rui, MENG Zihui, LIU Wenfang. Research progress on enzyme immobilization on porous framework materials [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2516-2535. |
[3] | GU Haiyang, WANG Dong, ZONG Yongzhong, FU Shaohai. Preparation and property of tanning sludge based biomass flame retardant coating protein for cotton fabric [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 641-649. |
[4] | SONG Chao, YE Xuemin, LI Chunxi. Molecular dynamics study on the influence of self-assembly behaviors of nanoparticles and surfactants on the properties of silicone oil/water interface [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 366-375. |
[5] | ZHANG Yan, WANG Wei, XIE Rui, JU Xiaojie, LIU Zhuang, CHU Liangyin. Controllable fabrication of polymeric microparticles loaded with enzyme@ZIF-8 [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2022-2028. |
[6] | MAO Menglei, SUN Danyang, MENG Zihui, LIU Wenfang. Enzyme immobilization on graphene oxide and transition metal carbon/nitrogen compounds [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1941-1955. |
[7] | MENG Zihao, LI Qingyun, LIU Youyan, LIN Dongliang, TANG Aixing. MOF-immobilized lipase-catalyzed epoxidation of limonene in a single-phase system [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6540-6548. |
[8] | JIN Wen, CHEN Xiaoli, TANG Yu, LI Ruyu, SHEN Yinghua, ZHANG Kai. Construction and catalytic performance of CO2 responsive nanoreactors containing L-proline moieties [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5996-6002. |
[9] | FU Xin, ZHANG Yucang, LI Ruisong, LIU Qun, GUO Jiayi. Mechanism and application of aerosol assisted self-assembly to prepare hollow spherical silica materials [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 327-335. |
[10] | TONG Xinrui, LIU Yanjun, CAO Linfeng, BI Meiying, DONG Yanjia, WU Xinyu, TAN Junjie, YING Ming. Design of controllable citZ gene nanobox by DNA origami [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 344-349. |
[11] | LUO Juxiang, CHENG Deshu, LI Mingchun, XIN Meihua. Preparation of P2VP-b-PSt nano-objects via visible light-mediated polymerization-induced self-assembly at room temperature [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2676-2684. |
[12] | Mo ZHOU,Yanjun LIU,Xinrui TONG,Yanjia DONG,Xinyu WU,Yingxiang WANG,Ming YING. Self-assemble of gene nanocone with sdhC DNA sequence of E. coli K-12 [J]. Chemical Industry and Engineering Progress, 2020, 39(2): 679-685. |
[13] | Hao HAO, Qingxin YAO, Yuan GAO, Jianjun XIE. Application of enzyme-instructed supramolecular self-assembly in biomedicine [J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4568-4574. |
[14] | Zenghui CHENG,Jifu WANG,Daihui ZHANG,Chunpeng WANG,Fuxiang CHU,Feng XU. Synthesis and self-assembly of amphiphilic ethyl cellulose grafted dehydroabietic moiety polymer [J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1476-1481. |
[15] | YAO Yijun, WANG Hongru. Research progress of cellulose self-assembly materials [J]. Chemical Industry and Engineering Progress, 2018, 37(02): 599-609. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |