[1] 高春雨. 新疆准东煤田煤炭矿业权整合方案及对策建议[J]. 煤炭经济研究, 2016, 36(3):16-20. GAO Chunyu. Integrated plan and countermeasure proposals on coal mining royalty of Xinjiang Zhundong coalfield[J]. Coal Economic Research, 2016, 36(3):16-20.
[2] WANG X, XU Z, WEI B, et al. The ash deposition mechanism in boilers burning Zhundong coal with high contents of sodium and calcium:a study from ash evaporating to condensing[J]. Applied Thermal Engineering, 2015, 80:150-159.
[3] NIU Y, TAN H, HUI S. Ash-related issues during biomass combustion:alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures[J]. Progress in Energy and Combustion Science, 2016, 52:1-61.
[4] 周永刚, 范建勇, 李培, 等. 高碱金属准东煤结渣特性试验[J]. 浙江大学学报(工学版), 2014, 48(11):2061-2065. ZHOU Yonggang, FAN Jianyong, LI Pei, et al. Slagging characteristics of high alkalis Zhundong coal[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(11):2061-2065.
[5] VAN EYK P J, ASHMAN P J, NATHAN G J. Mechanism and kinetics of sodium release from brown coal char particles during combustion[J]. Combustion and Flame, 2011, 158(12):2512-2523.
[6] 刘摇敬, 王智化, 项飞鹏, 等. 准东煤中碱金属的赋存形式及其在燃烧过程中的迁移规律实验研究[J]. 燃料化学学报, 2014, 42(3):317-321. LIU Jingyao, WANG Zhihua, XIANG Pengfei, et al. Modes of occurrence and transformation of alkali metals in Zhundong coal during combustion[J]. Journal of Fuel Chemistry and Technology, 2014, 42(3):317-321.
[7] YUAN Y, LI S, YAO Q. Dynamic behavior of sodium release from pulverized coal combustion by phase-selective laser-induced breakdown spectroscopy[J]. Proceedings of the Combustion Institute, 2015, 35(2):2339-2346.
[8] LI L, REN Q, LI S, et al. Effect of phosphorus on the behavior of potassium during the co-combustion of wheat straw with municipal sewage sludge[J]. Energy & Fuels, 2013, 27(10):5923-5930.
[9] ZHANG L, NINOMIYA Y. Transformation of phosphorus during combustion of coal and sewage sludge and its contributions to PM 10[J]. Proceedings of the Combustion Institute, 2007, 31(2):2847-2854.
[10] ASSAMOI B, LAWRYSHYN Y. The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion[J]. Waste Management, 2012, 32(5):1019-1030.
[11] WANG L, SKJEVRAK G, HUSTAD J E, et al. Sintering characteristics of sewage sludge ashes at elevated temperatures[J]. Fuel Processing Technology, 2012, 96:88-97.
[12] 陈午凤, 王长安, 魏邓昶泓, 等. 准东煤O2/CO2燃烧过程中硅铝矿物添加剂对钠/钙/铁释放与迁移的影响[J]. 新能源进展, 2017, 5(1):16-22. CHEN Wufeng, WANG Changan, WEI Dengchanghong, et al. Influence of salic mineral additives on release and migration of Na/Ca/Fe during O2/CO2 combustion of Zhundong coals[J]. Journal of Circuits and Systems, 2017, 5(1):16-22.
[13] LI G, WANG C, YAN Y, et al. Release and transformation of sodium during combustion of Zhundong coals[J]. Journal of the Energy Institute, 2016, 89(1):48-56.
[14] LI J, ZHU M, ZHANG Z, et al. Characterisation of ash deposits on a probe at different temperatures during combustion of a Zhundong lignite in a drop tube furnace[J]. Fuel Processing Technology, 2016, 144:155-163.
[15] GRIMM A, SKOGLUND N, BOSTROM D, et al. Bed agglomeration characteristics in fluidized quartz bed combustion of phosphorus-rich biomass fuels[J]. Energy & Fuels, 2011, 25(3):937-947.
[16] LI H, HAN K, WANG Q, et al. Influence of ammonium phosphates on gaseous potassium release and ash-forming characteristics during combustion of biomass[J]. Energy & Fuels, 2015, 29(4):2555-2563.
[17] ZHANG Q, LIU H, QIAN Y, et al. The influence of phosphorus on ash fusion temperature of sludge and coal[J]. Fuel Processing Technology, 2013, 110:218-226.
[18] ELLED A L, AMAND L E, LECKNER B, et al. Influence of phosphorus on sulphur capture during co-firing of sewage sludge with wood or bark in a fluidised bed[J]. Fuel, 2006, 85(12):1671-1678.
[19] 刘敬勇, 孙水裕, 陈涛. 固体添加剂对污泥焚烧过程中重金属迁移行为的影响[J]. 环境工程, 2013, 34(3):1166-1173. LIU Jingyong, SUN Shuiyu, CHEN Tao. Effects of adsorbents on partitioning and fixation of heavy metals in the incineration process of sewage sludge[J]. Environmental Engineering, 2013, 34(3):1166-1173.
[20] QI X, SONG G, SONG W, et al. Combustion performance and slagging characteristics during co-combustion of Zhundong coal and sludge[J]. Journal of the Energy Institute, 2018, 91(3):397-410.
[21] BRYERS R W. Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels[J]. Progress in Energy and Combustion Science, 1996, 22(1):29-120.
[22] BRIDGWATER A V, BOOCOCK D G B. Developments in thermochemical biomass conversion:Volume 1. Volume 2[M]. Springer Science & Business Media, 2013:1316-1330.
[23] DUNNU G, MAIER J, SCHEFFKNECHT G. Ash fusibility and compositional data of solid recovered fuels[J]. Fuel, 2010, 89(7):1534-1540.
[24] GRAY R J, MOORE G F. Burning sub-bituminous coals of montana and Wyoming in large utility boiler[C]//Mechanical Engineering. 345 E 47th st, New York, NY 10017:ASME-AMER SOC. MECHANICAL ENG., 1975, 97(4):61-61.
[25] WEN X, XU Z, ZHENG J, et al. Study on the state of slag on coal-fired boilers based on symmetric fuzzy cross entropy and vague sets[C]//Information and Automation (ICIA), 2010 IEEE International Conference on IEEE, 2010:1769-1774.
[26] 杨圣春.电站燃煤锅炉结渣预测的研究[J].热力发电, 2003(1):31-33. YANG Shengchun. A study on prediction of slagging in coal fired boilers at thermal power plant[J]. Thermal Power Generation, 2003(1):31-33.
[27] 管嵘清, 杜梅芳, 李洁, 等. 煤灰中霞石与钠长石的光学性质对熔融特性影响[J]. 上海理工大学学报, 2010, 32(6):597-601. GUAN Rongqing, DU Meifang, LI Jie, et al. Impact of optical properties of nepheline and albite on fusion characteristics in coal ash[J]. Journal of University of Shanghai for Science and Technology, 2010, 32(6):597-601.
[28] KYI S, CHADWICK B L. Screening of potential mineral additives for use as fouling preventatives in Victorian brown coal combustion[J]. Fuel, 1999, 78(7):845-855.
[29] 李文, 白进. 煤的灰化学[M]. 北京:科学出版社, 2013:34-45. LI Wen, BAI Jin. Chemistry of ash from coal[M]. Beijing:Science Press, 2013:34-45
[30] 李华. 生物质粉体燃烧过程分析与试验研究[D]. 南京:南京理工大学, 2012. LI Hua. Analysis and experimental studies of biomass powder burning process[D]. Nanjing:Nanjing University of Science & Technology, 2012.
[31] 杨贵海, 董建雄, 孙喜喜, 等. 干式防渗料在70kA自焙槽上的应用[J]. 轻金属, 2003(7):30-32. YANG Guihai, DONG Jianxiong, SUN Xixi, et al. Application of dry barrier mix in 70kA Soderberg pot[J]. Light Metals, 2003(7):30-32.
[32] 许志琴, 于戈文, 邓蜀平, 等. 助熔剂对高灰熔点煤影响的实验研究[J]. 煤炭转化, 2005, 28(3):22-25. XU Zhiqin, YU Gewen, DENG Shuping, et al. Experimental studies on the effect of fusion agents on high ash-melting coals[J]. Coal Conversion, 2005, 28(3):22-25.
[33] 白志民, 马鸿文. 透辉石对石英-粘土-长石三组分陶瓷显微结构的影响[J]. 硅酸盐学报, 2003, 31(1):9-14. BAI Zhimin, MA Hongwen. Effect of diopside on performance of quartz-clay-feldspar tercomponent ceramics[J]. Journal of The Chinese Ceramic Society, 2003, 31(1):9-14.
[34] 范建勇. 准东煤结渣特性及其配煤灰熔融性试验研究[D]. 杭州:浙江大学, 2014. FAN Jiangyong. Research on Zhundong coals slagging characteristic and its ash fusibility of blending coal[D]. Hangzhou:Zhejiang University, 2014.
[35] 须荣俊男. 粘土矿物学[J]. 严寿鹤译. 北京:北京地质出版社, 1981:235-265. TOSHIO SUDO. Clay mineralogy[J]. YAN Heshou trans. Beijing:Beijing Geology Publisher, 1981:235-265.
[36] 杨建国, 刘志, 赵虹, 等. 配煤煤灰内矿物质转变过程与熔融特性规律[J]. 中国电机工程学报, 2008, 28(14):61-66. YANG Jianguo, LIU Zhi, ZHAO Hong, et al. Minerals transition process and melting characteristics of blended coal-ashes[J]. Proceedings of the CSEE, 2008, 28(14):61-66.
[37] 周永刚, 范建勇, 李培, 等. 高碱金属准东煤灰熔融过程的矿物质衍变[J]. 浙江大学学报:工学版, 2015, 49(8):1559-1564. ZHOU Yonggang, FAN Jianyong, LI Pei, et al. Mineral transmutation of high alkali Zhundong coal in ash melting process[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(8):1559-1564.
[38] 李梅, 张洪, 孙明, 等. 高岭石对煤炭燃烧特性影响的研究[J]. 煤炭转化, 2004, 27(3):68-71. LI Mei, ZHANG Hong, SUN Ming, et al. Research on the effect of kaolinite on the combustion characteristics of coal[J]. Coal Conversion, 2004, 27(3):68-71.
[39] SANDSTROM M. Structural and solid state EMF studies of phases in the CaO-K2O-P2O5 system with relevance for biomass combustion[D]. Umea:Energiteknik Och Termisk Processkemi, 2006.
[40] DICKENS B, SCHROEDER L W, BROWN W E. Crystallographic studies of the role of Mg as a stabilizing impurity in β-Ca3(PO4)2. The crystal structure of pure β-Ca3(PO4)2[J]. Journal of Solid State Chemistry, 1974, 10(3):232-248.
[41] BOSTROM D, BOSTROM M, SKOGLUND N, et al. Ash transformation chemistry during energy conversion of biomass[C]//Impacts of Fuel Quality on Power Production & Environment, 2010.
[42] ABRAHAMS I, HAWKES G E, KNOWLES J. Phosphorus speciation in sodium-calcium-phosphate ceramics[J]. Journal of the Chemical Society, Dalton Transactions, 1997(9):1483-1484.
[43] MATINDE E, SASAKI Y, HINO M. Phosphorus gasification from sewage sludge during carbothermic reduction[J]. ISIJ International, 2008, 48(7):912-917.
[44] 吴成铁, 常江, 翟万银, 等. 镁黄长石生物活性陶瓷的研究[C]//中国生物医学工程学会第六次会员代表大会暨学术会议论文摘要汇编, 2004. WU Chengtie, CHANG Jiang, ZHAI Wanyin, et al. Study on magnesium feldspar bioactive ceramics[C]//Summary of the Sixth Congress and Academic Conference of the Chinese Society of Biomedical Engineer, 2004.
[45] WANG Xingrun, JIN Y, WANG Z, et al. A research on sintering characteristics and mechanisms of dried sewage sludge[J]. Journal of Hazardous Materials, 2008, 160(2/3):489-494.
[46] VAN DYK J C. Understanding the influence of acidic components (Si, Al, and Ti) on ash flow temperature of South African coal sources[J]. Minerals Engineering, 2006, 19(3):280-286.
[47] FOLGUERAS M B, IAZ R M, XIBERTA J, et al. Influence of sewage sludge addition on coal ash fusion temperatures[J]. Energy & Fuels, 2005, 19(6):2562-2570.
[48] VASSIELY, STANISLLAV V, TAKEDA S, et al. Influence of mineral and chemical composition of coal ashes on their fusibility[J]. Fuel Processing Technology, 1995, 45(1):27-51.
[49] ELLED A L, AMAND L E, ANDERSSON B A, et al. Phosphorous in ash from co-combustion of municipal sewage sludge with wood in a CFB boiler:a comparison of experimental data with predictions by a thermodynamic equilibrium model[C]//18th International Conference on Fluidized Bed Combustion. American Society of Mechanical Engineers, 2005:639-649.
[50] MASON, DAVID M., JITENDRA G, et al. Chemistry of ash agglomeration in the U-GAS® process[J]. Fuel Processing Technology, 1980, 3(3):181-206.
[51] ZHANG Z, WU X, ZHOU T, et al. The effect of iron-bearing mineral melting behavior on ash deposition during coal combustion[J]. Proceedings of the Combustion Institute, 2011, 33(2):2853-2861.
[52] SHAO J, LEE D H, TAN R, et al. Agglomeration characteristics of sludge combustion in a bench-scale fluidized bed combustor[J]. Energy & Fuels, 2007, 21(5):2608-2614. |