Chemical Industry and Engineering Progress ›› 2017, Vol. 36 ›› Issue (08): 2764-2775.DOI: 10.16085/j.issn.1000-6613.2016-2323
Previous Articles Next Articles
ZHAN Hongren, HUI Yao, WU Zhong
Received:
2016-12-14
Revised:
2017-03-16
Online:
2017-08-05
Published:
2017-08-05
战洪仁, 惠尧, 吴众
通讯作者:
战洪仁(1964-),女,博士,教授,主要研究方向为强化传热与节能技术。
作者简介:
战洪仁(1964-),女,博士,教授,主要研究方向为强化传热与节能技术。E-mail:z_hr555@163.com。
基金资助:
CLC Number:
ZHAN Hongren, HUI Yao, WU Zhong. Research progress on heat transfer enhancement in closed thermosyphon[J]. Chemical Industry and Engineering Progress, 2017, 36(08): 2764-2775.
战洪仁, 惠尧, 吴众. 闭式热虹吸管强化传热研究进展[J]. 化工进展, 2017, 36(08): 2764-2775.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2016-2323
[1] EIDAN A A,NAJIM S E,JALIL J M. Experimental and numerical investigation of thermosyphon performance in HVAC system applications[J]. Heat & Mass Transfer,2016,52(12):2879-2893. [2] DUTOUR S,MAZET N,JOLY J L,et al. Modeling of heat and mass transfer coupling with gas-solid reaction in a sorption heat pump cooled by a two-phase closed thermosyphon[J]. Chemical Engineering Science,2005,60(15):4093-4104. [3] LU Z,WANG R. Novel adsorption refrigerators with separate type two phase closed thermosyphon designs[J]. International Journal of Energy Research,2015,39(12):1681-1688. [4] TAN L. Thermal performance of two-phase closed thermosyphon in application of concentrated thermoelectric power generator using phase change material thermal storage[C]//International Heat Pipe Symposium. Tamkang University Press,2011:1-6. [5] VIKNESWARAN N,PASUPATHY A,ARUMUGANAINAR K. Thermal presentation of two-phase congested thermosyphon in submission of determined thermoelectric dominance producer by means of phase change material thermal storage[J]. Advanced Materials Research,2014,984/985:1153-1162. [6] FENG Z,XIN T,MA G Y. Investigation into the energy consumption of a data center with a thermosyphon heat exchanger[J]. Science Bulletin,2011,56(20):2185-2190. [7] PIPATPAIBOON N,RITTIDECH S,MEENA P. Experimental study of a thermosyphon heat exchanger (TPHE) in a bio-diesel factory in Thailand[J]. Arabian Journal for Science and Engineering,2012,37(7):2047-2060. [8] JEBRAIL F F,ANDREWS M J. Performance of a heat pipe thermosyphon radiator[J]. International Journal of Energy Research,1997,21(2):101-112. [9] PARAMETTHANUWAT T,RITTIDECH S,PATTIYA A,et al. Application of silver nanofluid containing oleic acid surfactant in a thermosyphon economizer.[J]. Nanoscale Research Letters,2011,6(1):1-10. [10] HASSAN Z A,HOSSEIN A,HOSSEIN N S,et al. Experimental and numerical analysis of flow and heat transfer in a gas-liquid thermosyphon heat exchanger in a pilot plant[J]. Iranian Journal of Chemistry & Chemical Engineering-internation English Edition,2010,29(2):121-129. [11] YODRAK L,RITTIDECH S,POOMSA A N. Application of thermosyphon air-preheater for energy thrift from a furnace in a hot forging process[J]. Journal of Mechanical Science and Technology,2011,25(1):193-200. [12] SRIMUANG W,AMATACHAYA P. A review of the applications of heat pipe heat exchangers for heat recovery[J]. Renewable & Sustainable Energy Reviews,2012,16(6):4303-4315. [13] MARCINICHEN J B,LAMAISON N,ONG C L,et al. Two-phase mini-thermosyphon electronics cooling. Part 2:Model and steady-state validations[C]//Itherm. 2016. [14] TSAI T E,WU H H,ChANG C C,et al. Two-phase closed thermosyphon vapor-chamber system for electronic cooling[J]. International Communications in Heat & Mass Transfer,2010,37(5):484-489. [15] LAMAISON N,MARCINICHEN J,SZCZUKIEWICZ S,et al. Passive thermosyphon cooling system for high heat flux servers[J]. Interfacial Phenomena and Heat Transfer,2015,3(4):369-389. [16] GIMA S,NAGATA T,ZHANG X,et al. An experimental study on cooling of CPU using a two phase closed thermosyphon loop[C]//Nihon Kikai Gakkai Ronbunshu,B Hen/transactions of the Japan Society of Mechanical Engineers Part B,2004,70(694):1504-1509. [17] NADA S A,El-GHETANY H H,HUSSEIN H M S. Performance of a two-phase closed thermosyphon solar collector with a shell and tube heat exchanger[J]. Applied Thermal Engineering,2004,24(13):1959-1968. [18] HUSSEIN H M S. Optimization of a natural circulation two phase closed thermosyphon flat plate solar water heater[J]. Energy Conversion & Management,2003,44(44):2341-2352. [19] ABREU S L,COLLE S. An experimental study of two-phase closed thermosyphons for compact solar domestic hot-water systems[J]. Solar Energy,2004,76(1/2/3):141-145. [20] AUNG N Z,Li S. Numerical investigation on effect of riser diameter and inclination on system parameters in a two-phase closed loop thermosyphon solar water heater[J]. Energy Conversion & Management,2013,75(5):25-35. [21] CHIEN C C,KUNG C K,CHANG C C,et al. Theoretical and experimental investigations of a two-phase thermosyphon solar water heater[J]. Energy,2011,36(1):415-423. [22] TONINELLI P,MARIANI A,COL D D. Experiments and simulations on a thermosyphon solar collector with integrated storage[J/OL]. Journal of Physics:Conference Series,2015,655(1):012009. [23] MU Y,LI G,YU Q,et al. Numerical study of long-term cooling effects of thermosyphons around tower footings in permafrost regions along the Qinghai-Tibet power transmission line[J]. Cold Regions Science & Technology,2015,121:237-249. [24] WU D,JIN L,PENG J,et al. The thermal budget evaluation of the two-phase closed thermosyphon embankment of the Qinghai-Tibet highway in permafrost regions[J]. Cold Regions Science & Technology,2014,103:115-122. [25] BO Z,YU S,JI C,et al. In-situ test study on the cooling effect of two-phase closed thermosyphon in marshy permafrost regions along the Chaidaer-Muli railway,Qinghai province,China[J]. Cold Regions Science & Technology,2011,65(3):456-464. [26] XU J,GOERING D J. Experimental validation of passive permafrost cooling systems[J]. Cold Regions Science & Technology,2008,53(3):283-297. [27] ZHANG X,CHE H. Reducing heat loss of fluids in heavy oil wellbore using two-phase closed thermosyphon sucker rod[J]. Energy,2013,57(3):352-358. [28] AN Y S,ZHANG Y F. The Experimental research on the reduction of heat loss rate of wellbores with two-phase closed thermosyphon wellbore[J]. Research Journal of Applied Sciences Engineering & Technology,2013,5(22):5154-5158. [29] ZHANG Yufeng,WANG Xiaodong,TANG Shouceng,et al. Research on two-phase closed thermosyphon to improve fluid temperature distribution in wellbores[J]. Petroleum Science & Technology,2010,28(18):1884-1894. [30] KANNAN M,NATARAJAN E. Thermal performance of a two-phase closed thermosyphon for waste heat recovery system[J]. Journal of Applied Sciences,2010,10:413-418. [31] BARZI Y M,ASSADI M. Evaluation of a thermosyphon heat pipe operation and application in a waste heat recovery system[J]. Experimental Heat Transfer,2015,28(5):493-510. [32] BOLOZDYNYA A I,EFREMENKO Y V,KHROMOV V A,et al. Thermostabilization system based on two-phase closed cryogenic thermosyphon for RED100 detector[J]. Physics Procedia,2015,74:431-434. [33] USHAKOV K Y,PETERS A N,BOGOMOLOV A R,et al. Evaluation of thermosyphon application for cooling the modular automated control systems[J]. EDP Sciences,2016,72:01119. [34] ARUL A S,VELRAJ R. Experimental investigation and CFD analysis of a air cooled condenser heat pipe[J]. Thermal Science,2011,15(3):759-772. [35] NAJIM A,PISE S. Boiling heat transfer enhancement with surfactant on the tip of a submerged hypodermic needle as nucleation site[J]. Applied Thermal Engineering,2016,103:989-995. [36] GEDIK E. Experimental investigation of the thermal performance of a two-phase closed thermosyphon at different operating conditions[J]. Energy & Buildings,2016,127:1096-1107. [37] KANNAN M,NATERAJAN E. Thermal performance of a two-phase closed thermosyphon for waste heat recovery system[J]. Journal of Applied Sciences,2010,10(5):413-418. [38] JOUHARA H,ROBINSON A J. Experimental study of small diameter thermosyphons charged with water,FC-84,FC-77& FC-3283[J]. Applied Thermal Engineering,2010,30(2/3):201-211. [39] MUSTAFA A E,ABDULLAH Y. Thermoeconomic analysis of thermosyphon heat pipes[J]. Renewable & Sustainable Energy Reviews,2016,58:666-673. [40] JÖUHARA H,AJJI Z,KOUDSI Y,et al. Experimental investigation of an inclined-condenser wickless heat pipe charged with water and an ethanol-water azeotropic mixture[J]. Energy,2013,61(6):139-147. [41] SÖZEN A,MENLIK T,GURU M,et al. Upgrading of the thermal performance of two-phase closed thermosyphon(TPCT)using fusel oil[J]. Heat & Mass Transfer,2017:53(1):141-149. [42] MANIVASAGAN P,OH J. Marine polysaccharide-based nanomaterials as a novel source of nanobiotechnological applications[J]. International Journal of Biological Macromolecules,2016,82:315-327. [43] NAVYA P N,DAIMA H K. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives[J]. Nano Convergence,2016,2(1):1-14. [44] NARAYANASWAMY R,WANG T,TORCHILIN V P. Improving peptide applications using nanotechnology[J]. Current Topics in Medicinal Chemistry,2016,16(3):253-270. [45] PANDEY S,RAMONTJA J. Turning to nanotechnology for water pollution control:applications of nanocomposites[J]. Dartmouth Undergraduate Journal of Science,2016,2(2):1-10. [46] HUSSEIN A K. Applications of nanotechnology to improve the performance of solar collectors-recent advances and overview[J]. Renewable & Sustainable Energy Reviews,2016,62:767-792. [47] KHANDEKAR S,JOSHI Y M,MEHTA B. Thermal performance of closed two-phase thermosyphon using nanofluids[J]. International Journal of Thermal Sciences,2008,47(6):659-667. [48] 杨雪飞. 改性纳米流体的相变换热特性及其在重力热管中的应用[D]. 上海:上海交通大学,2011. YANG Xuefei. Investigation of phase-changing heat transfer characteristics of functionalized nanofluid and its application in gravity-assisted heat pipes[D]. Shanghai:Shanghai Jiaotong University,2011. [49] KAMYAR A,ONG K S,SAIDUR R. Effects of nanofluids on heat transfer characteristics of a two-phase closed thermosyphon[J]. International Journal of Heat & Mass Transfer,2013,65(7):610-618. [50] NOIE S H,HERIS S Z,KAHANI M,et al. Heat transfer enhancement using Al2O3/water nanofluid in a two-phase closed thermosyphon[J]. International Journal of Heat & Fluid Flow,2009,30(4):700-705. [51] MOHAMMADPUR F. Experimental study of two phase closed thermosyphon using CuO/water nanofluid in the presence of electric field[J]. Experimental Heat Transfer,2015,28(4):328-343. [52] THARVES M,SURESH K. An experimental investigation of the thermal performance of two-phase closed thermosyphon (TPCT) using zirconia (ZrO2/H2O) nanofluid[J]. Thermal Science,2014,6(17):116. [53] PARAMATTHANUWAT T,BOOTHAISONG S,RITTIDECH S,et al. Heat transfer characteristics of a two-phase closed thermosyphon using de ionized water mixed with silver nano[J]. Heat & Mass Transfer,2010,46(3):281-285. [54] HERIS S Z,MOHAMMADPUR F,SHAKOURI A. Effect of electric field on thermal performance of thermosyphon heat pipes using nanofluids[J]. Materials Research Bulletin,2014,53:21-27. [55] SALEHI H,HERIS S Z,NOIE S H. Experimental study of two-phase closed thermosyphon with nanofluid and magnetic field effect[J]. Journal of Enhanced Heat Transfer,2011,18(3):261-269. [56] 彭玉辉,黄素逸,黄锟剑. 热管中添加纳米颗粒[J]. 化工学报,2004,55(11):1768-1772. PENG Yuhui,HUANG Suyi,HUANG Kunjian. Experimental study on thermosyphon by adding nanoparticles to fluid[J]. Journal of Chemical Industry and Engineering (China),2004,55(11):1768-1772. [57] 彭玉辉,黄素逸,黄锟剑. 纳米颗粒强化热虹吸管传热特性的实验研究[J]. 热能动力工程,2005,20(2):138-141. PENG Yuhui,HUANG Suyi,HUANG Kunjian. Experimental study of the intensified heat transfer characteristics of a thermosiphon through the addition of nanoparticles[J]. Journal of Engineering for Thermal Energy and Power,2005,20(2):138-141. [58] KHANDEKAR S,JOSHI Y M,MEHTA B. Thermal performance of closed two-phase thermosyphon using nanofluids[J]. International Journal of Thermal Sciences,2008,47(6):659-667. [59] 刘俊红,顾建明,刘辉,等. 纳米级固体颗粒应用于热管的试验研究[J]. 核动力工程,2005,26(3):268-271. LIU Junhong,GU Jianming,LIU Hui,et al. Experimental study of heat pipe of nanometer particles[J]. Nuclear Power Engineering,2005,26(3):268-271. [60] 薛怀生,樊建人,胡亚才,等. 碳纳米管悬浮液在重力热管中的沸腾特性[J]. 化工学报,2006,57(11):2562-2567. XUE Huaisheng,FAN Jianren,HU Yacai,et al. Boiling characteristics of carbon nanotube suspension in gravity assisted thermosyphon[J]. Journal of Chemical Industry and Engineering (China),2006,57(11):2562-2567. [61] 黄素逸,李中洲,黄锟剑,等. 纳米材料在热管中的应用[J]. 华中科技大学学报(自然科学版),2006,34(5):105-107. HUANG Suyi,LI Zhongzhou,HUANG Kunjian,et al. The application of nanoparticles to heat pipes[J]. Huazhong Univ. of Sci&.Tech.(Nature Science Edition),2006,34(5):105-107. [62] KANG S W,WEI W C,TSAI S H,et al. Experimental investigation of nanofluids on sintered heat pipe thermal performance[J]. Applied Thermal Engineering,2009,29(5/6):973-979. [63] 薛怀生,樊建人,胡亚才,等. 碳纳米管悬浮液在重力热管中的沸腾特性[J}. 化工学报,2006,57(11):2562-2567. XUE Huaisheng,FAN Jianren,HU Yacai,et al. Boiling characteristics of carbon nanotube suspension in gravity assisted thermosyphon[J]. Journal of Chemical Industry and Engineering(China),2006,57(11):2562-2567. [64] DAS S K, PUTRA N, ROETZEL W. Pool boiling of nano-fluids on horizontal narrow tubes[J]. International Journal of Multiphase Flow,2003,29(8):1237-1247. [65] JIANG F,CHEN W J,LIU Z,et al. Heat transfer enhancement in a three-phase closed thermosyphon[J]. Applied Thermal Engineering,2014,65(1/2):495-501. [66] JIANG F,TAN Y,QI G P,et al. Heat transfer enhancement in a closed thermosyphon with thermally conductive PA6/water[J]. Applied Thermal Engineering,2016,101:322-329. [67] 刘泽. 闭式重力热管的传热性能研究[D]. 天津:天津大学,2012. LIU Ze. Study on heat transfer performance in closed gravity heat pipe[D].Tianjin:Tianjin University,2012. [68] 徐晓萍,史金涛,姜峰,等. 具有内置管的多相流闭式重力热管传热性能[J]. 天津大学学报(自然科学与工程技术版),2014(10):928-933. XU Xiaoping,SHI Jintao,JIANG Feng,et al. Heat transfer performance of multiphase flow closed thermosyphon with a built-in pipe[J]. Journal of Tianjin University (Science and Technology),2014(10):928-933. [69] 徐晓萍. 三相流闭式重力热管的强化传热研究[D]. 天津:天津大学,2010. XU Xiaoping. Study on heat transfer enhancement in three-phase flow closed gravity heat pipe[D]. Tianjin:Tianjin University,2010. [70] 史金涛. 三相流重力热管的传热性能研究[D]. 天津:天津大学,2010. SHI Jintao. Study on heat transfer performance in three-phase flow gravity heat pipe[D]. Tianjin:Tianjin University,2010. [71] NOIE S H,SARMASTI EMAMI M R,KHOSHNOODI M. Effect of inclination angle and filling ratio on thermal performance of a two-phase closed thermosyphon under normal operating conditions[J]. Heat Transfer Engineering,2007,28(4):365-371. [72] YONG J P,KANG H K,KIM C J. Heat transfer characteristics of a two-phase closed thermosyphon to the fill charge ratio[J]. International Journal of Heat & Mass Transfer,2002,45(23):4655-4661. [73] AMATACHAYA P,SRIMUANG W. Comparative heat transfer characteristics of a flat two-phase closed thermosyphon (FTPCT) and a conventional two-phase closed thermosyphon (CTPCT)[J]. International Communications in Heat & Mass Transfer,2010,37(3):293-298. [74] 田富中. 两相闭式热虹吸管强化传热特性研究[D]. 济南:山东大学,2014. TIAN Fuzhong. Heat transfer enhancement characteristics investigation of two-phase closed thermosyphon[D]. Ji'nan:Shandong University,2014. [75] 王鑫煜. 内螺纹重力热管强化传热特性研究[D]. 济南:山东大学,2013. WANG Xinyu. Heat transfer enhancement characteristics investigation of gravity heat pipe with internal helical microfin[D]. Ji'nan:Shandong University,2013. [76] KHAZAEE I. Experimental investigation and comparison of heat transfer coefficient of a two phase closed thermosyphon[J]. International Journal of Energy Environment & Economics,2014,5(4):495-504. [77] 史启辉. 两相闭式热虹吸管强化传热实验研究[D]. 郑州:郑州大学,2007. SHI Qihui. Heat transfer enhancement investigation of two-phase closed thermosyphon[D]. Zhengzhou:Zhengzhou University,2007. [78] 刘林龙. 碳钢-水重力式热管传热与稳定性能的实验与数值研究[D]. 沈阳:东北大学,2012. LIU Linlong. The experiment and numerical study on heat transfer and stable performance of steel-water gravity heat-pipe[D]. Shenyang:Northeastern University,2012. [79] 李斌彬. 重力热管传热强化表面改性技术开发与效果评价[D]. 上海:华东理工大学,2012. LI Binbin. Technology development and enhanced heat transfer effect evaluation of surface modification in gravity heat pipe[D]. Shanghai:East China University of Science and Technology,2012. [80] 刘卫火,蒋绿林,高伟. 重力热管性能测试的实验研究[J]. 化工机械,2012,39(1):13-16. LIU Weihuo,JIANG Lvlin,GAO Wei. Experimental study on thermosyphon performance testing[J]. Chemical Engineering & Machinery,2012,39(1):13-16. [81] KHAZAEE I,HOSSEINI R,KIANIFAR A,et al. Experimental consideration and correlation of heat transfer of a two-phase closed thermosyphon due to the inclination angle,filling ratio,and aspect ratio[J]. Journal of Enhanced Heat Transfer,2011,18(1):31-40. [82] SRIMUANG W,RITTIDECH S,BUBPHACHOT B. Heat transfer characteristics of a vertical flat thermosyphon (VFT)[J]. Journal of Mechanical Science & Technology,2009,23(9):2548-2554. [83] CHENG P. Microscale surface effects in boiling and condensation heat transfer[J]. Science,2016(4):8-11. [84] HAMAD M,ALWUEAIDI J. Experimental investigation on the heat transfer coefficient of the thermosyphon cross section shape[EB/OL].[2016-12-14]. https://doaj.org/article/484d029f78a74e538e0c3a14208988dc. [85] AGHEL B,RAHIMI M,ALMASI S. Heat-transfer enhancement of two-phase closed thermosyphon using a novel cross-flow condenser[J]. Heat & Mass Transfer,2017,53(3):765-773. [86] WANG X Y,XIN G M,TIAN F Z,et al. Effect of internal helical microfin on condensation performance of two-phase closed thermosyphon[J]. Advanced Materials Research,2012,516-517:9-14. [87] 德军. 三维内微肋热管传热强化实验[D]. 重庆:重庆大学,2003. DE Jun. Heat augmentation experiment of three dimensional thermosyphon[D]. Chongqing:Chongqing University,2003. [88] 德军,辛明道,廖全. 三维内微肋水热管强化传热实验[J]. 能源研究与信息,2002,18(4):237-242. DE Jun,XIN Mingdao,LIAO Quan. Experiments on heat transfer augmentation of the three-dimensional-internally microfinned water heat pipe[J]. Energy Research and Information,2002,18(4):237-242. [89] 杜猛. 螺纹槽重力热管传热性能实验研究[D]. 青岛:青岛理工大学,2014. DU Meng. Experimental research on heat transfer capability of spiral groove thermosyphon[D]. Qingdao:Qingdao Technological University,2014. [90] SOLOMON A B,MATHEW A,RAMACHANDRAN K,et al. Thermal performance of anodized two phase closed thermosyphon (TPCT)[J]. Experimental Thermal & Fluid Science,2013,48(48):49-57. [91] TONG W,TAN M,CHIN J,et al. Coupled effects of hydrophobic layer and vibration on thermal efficiency of two-phase closed thermosyphons[J]. RSC Advances,2015,5(14):10332-10340. [92] 郭广亮. 纳米流体强化小型热虹吸管换热特性的实验研究[D]. 上海:上海交通大学,2007. GUO Guangliang. Experimental investigation of heat transfer enhancement in the small thermosyphon using nanofluids[D]. Shanghai:Shanghai Jiao Tong University,2007. [93] 姜超. 铝-氨槽道热管的制造及传热特性分析[D]. 济南:山东大学,2013. JIANG Chao. Manufacturing and heat transfer characteristics of aluminum-ammonia axial grooved heat pipe[D]. Ji'nan:Shandong University,2013. [94] ZHANG M,LAI Y,PEI W,et al. Effect of inclination angle on the heat transfer performance of a two-phase closed thermosyphon under low-temperature conditions[J]. Journal of Cold Regions Engineering,2014,28(4). [95] 孟强. 高温熔盐重力热管的初步实验研究[D]. 北京:北京工业大学,2015. MENG Qiang. Preliminary experimental study of high temperature molten salt heat pipe[D]. Beijing:Beijing University of Technology,2015. [96] 贾鹏飞,金苏敏. 横管蒸发纵管冷凝式热管参数变化对其传热的影响[J]. 南通大学学报(自然科学版),2015,14(1):23-27. JIA Pengfei,JIN Sumin. Influence of parameter changes of horizontal tube evaporating and vertical tube condensate heat pipe on heat transfer performance[J]. Journal of Nantong University(Natural Science Edition),2015,14(1):23-27. |
[1] | LIU Shijie, MO Xun, TU Aimin, ZHU Dongsheng, TAN Lianyuan. Shell-side heat transfer enhancement of a novel longitudinal flow oil cooler [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3475-3482. |
[2] | LI Yifan, WANG Zhipeng. Flow and heat transfer characteristics in microchannels with periodic fluid disturbance structures [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2893-2901. |
[3] | LI Yongtong, LIU Jian, YANG Laishun. Thermo-hydraulic performance analysis of novel metal foam and pin fin hybrid heat sink [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2268-2276. |
[4] | YANG Honghai, ZHANG Miao, LIU Liwei, ZHOU Yi, SHEN Junjie, SHI Weigang, YIN Yong. Heat transfer performance enhancement and prediction in GO/water pulsating heat pipe [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1725-1734. |
[5] | LIN Qingyu, WANG Zhu, FENG Zhenfei, LING Biao, CHEN Zhen. Review progress on twisted tape structure for heat transfer and entropy generation in tube [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5709-5721. |
[6] | LIN Weixiang, SU Gangchuan, CHEN Qiang, WEN Jian, AKRAPHON Janon, WANG Simin. Influencing factors of ultrasound enhanced heat transfer of immersed coil heat exchanger [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 40-51. |
[7] | LIN Wenzhu, LING Ziye, FANG Xiaoming, ZHANG Zhengguo. Research progress on heat transfer of phase change material heat storage technology [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5166-5179. |
[8] | GONG Xue, WANG Chengyao, ZHU Qunzhi. Research progress on preparation and application of microcapsule phase change materials [J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5554-5576. |
[9] | Ziqian WANG, Linlin YANG, Hai SUN. Degradation mechanism and mitigation strategy of high temperature proton exchange membrane fuel cells—Part Ⅱ: Operation conditions [J]. Chemical Industry and Engineering Progress, 2021, 40(1): 111-129. |
[10] | Zhaoqi HUANG,Zhiwen QIN,Xumin SHANG,Yingfei HOU. Formulation and process optimization of chemical thermal washing of oily sludge [J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1478-1484. |
[11] | Guanglin LIU, Shuang CAO, Huan LIU, Zheng MIAO, Jinliang XU. Performance analysis of regenerative and non-regenerative organic Rankine cycle using single-screw expander [J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2626-2632. |
[12] | Xin GU, Zhiyang ZHENG, Yuankun LUO, Xiaochao XIONG, Dabo ZHANG. Optimization on shell side structure of twisty flow heat exchanger based on orthogonal experiment [J]. Chemical Industry and Engineering Progress, 2019, 38(04): 1688-1695. |
[13] | Lili SUN. Innovating heat transfer enhancement application to improve the competitiveness of refinery and petrochemical enterprises [J]. Chemical Industry and Engineering Progress, 2019, 38(02): 711-719. |
[14] | Yuxin YANG, Hongguang ZHANG, Rui ZHAO, Jian LI, Tenglong ZHAO, Mengru ZHANG. Effects of variable operating conditions of working fluid pumps on the performance of organic Rankine cycle system [J]. Chemical Industry and Engineering Progress, 2019, 38(02): 851-857. |
[15] | LIN Wenzhu, CAO Jiahao, FANG Xiaoming, ZHANG Zhengguo. Research progress of heat transfer enhancement of shell-and-tube heat exchanger [J]. Chemical Industry and Engineering Progress, 2018, 37(04): 1276-1286. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |