| [1] |
周守为, 李清平, 朱军龙, 等. CO2海洋封存的思考与新路径探索[J]. 天然气工业, 2024, 44(4): 1-10, 199.
|
|
ZHOU Shouwei, LI Qingping, ZHU Junlong, et al. Consideration on CO2 marine storage and exploration of new paths[J]. Natural Gas Industry, 2024, 44(4): 1-10, 199.
|
| [2] |
WU Qiang, ZHANG Baoyong. Memory effect on the pressure-temperature condition and induction time of gas hydrate nucleation[J]. Journal of Natural Gas Chemistry, 2010, 19(4): 446-451.
|
| [3] |
MOHAMMADI A H, ESLAMIMANESH A, BELANDRIA V, et al. Phase equilibria of semiclathrate hydrates of CO2, N2, CH4, or H2+ tetra-n-butylammonium bromide aqueous solution[J]. Journal of Chemical & Engineering Data, 2011, 56(10): 3855-3865.
|
| [4] |
吴强, 周竹青, 高霞, 等. NaCl溶液中多组分瓦斯水合物的成核诱导时间[J]. 煤炭学报, 2015, 40(6): 1396-1401.
|
|
WU Qiang, ZHOU Zhuqing, GAO Xia, et al. Induction time of multi-component gas hydrate nucleation in NaCl solution[J]. Journal of China Coal Society, 2015, 40(6): 1396-1401.
|
| [5] |
李智峰, 张强, 吴强, 等. 驱动力对瓦斯气体水合物成核诱导时间的影响[J]. 黑龙江科技学院学报, 2013, 23(4): 329-332.
|
|
LI Zhifeng, ZHANG Qiang, WU Qiang, et al. Influence of different driving forces on nucleation induction time of multi-component mixed gas hydrate[J]. Journal of Heilongjiang Institute of Science and Technology, 2013, 23(4): 329-332.
|
| [6] |
ARJMANDI Mosayyeb, TOHIDI Bahman, DANESH Ali, et al. Is subcooling the right driving force for testing low-dosage hydrate inhibitors?[J]. Chemical Engineering Science, 2005, 60(5): 1313-1321.
|
| [7] |
李金平, 王立璞, 梁德青, 等. 表面活性剂对气体水合物生成过程的影响[J]. 中国科学技术大学学报, 2006, 36(4): 364-369.
|
|
LI Jinping, WANG Lipu, LIANG Deqinget al. The effects of surfactants on the formation of gas hydrate[J]. Journal of University of Science and Technology of China, 2006, 36(4): 364-369.
|
| [8] |
NGUYEN Ngoc N, NGUYEN Anh V, STEEL Karen M, et al. Interfacial gas enrichment at hydrophobic surfaces and the origin of promotion of gas hydrate formation by hydrophobic solid particles[J]. The Journal of Physical Chemistry C, 2017, 121(7): 3830-3840.
|
| [9] |
GUO Yong, XIAO Wei, PU Wanfen, et al. CH4 nanobubbles on the hydrophobic solid-water interface serving as the nucleation sites of methane hydrate[J]. Langmuir, 2018, 34(34): 10181-10186.
|
| [10] |
DUBE N K, OEFFINGER B E, WHEATLEY M A. Development and characterization of a nano-sized surfactant stabilized contrast agent for diagnostic ultrasound[C]//2003 IEEE 29th Annual Proceedings of Bioengineering Conference. IEEE, 2003: 102-103.
|
| [11] |
UCHIDA Tsutomu, YAMAZAKI Kenji, GOHARA Kazutoshi. Generation of micro-and nano-bubbles in water by dissociation of gas hydrates[J]. Korean Journal of Chemical Engineering, 2016, 33(5): 1749-1755.
|
| [12] |
UCHIDA Tsutomu, YAMAZAKI Kenji, GOHARA Kazutoshi. Gas nanobubbles as nucleation acceleration in the gas-hydrate memory effect[J]. The Journal of Physical Chemistry C, 2016, 120(47): 26620-26629.
|
| [13] |
FENG Yu, HAN Yuze, GAO Peng, et al. Study of hydrate nucleation and growth aided by micro-nanobubbles: Probing the hydrate memory effect[J]. Energy, 2024, 290: 130228.
|
| [14] |
LU Yi, LI Qingping, ZHANG Xiaoxin, et al. Molecular simulation on hydrate nucleation in the presence of initial ih ice and nanobubble[J]. Energy & Fuels, 2023, 37(4): 3307-3313.
|
| [15] |
蔡业彬, 国明成, 彭玉成, 等. 剪切流场中微孔发泡的气泡成核理论研究现状[J]. 中国塑料, 2004, 18(2): 5-11.
|
|
CAI Yebin, GUO Mingcheng, PENG Yucheng, et al. Research status quo of theory for cell nucleation of microcellular foam in shear flow field[J]. China Plastics, 2004, 18(2): 5-11.
|
| [16] |
CHEN Yuyu, HU Yue, WANG Benlong, et al. Interfacial thermal fluctuations stabilize bulk nanobubbles[J]. Physical Review Letters, 2024, 133(10): 104001.
|
| [17] |
KASHCHIEV Dimo, FIROOZABADI Abbas. Driving force for crystallization of gas hydrates[J]. Journal of Crystal Growth, 2002, 241(1/2): 220-230.
|
| [18] |
刘纾曼. 水合物分解和生成的动力学模型[J]. 化学工程与装备, 2011(9): 5-8.
|
|
LIU Shuman. Kinetic model of hydrate decomposition and formation[J]. Chemical Engineering & Equipment, 2011(9): 5-8.
|
| [19] |
ENGLEZOS P, KALOGERAKIS N, DHOLABHAI P D, et al. Kinetics of formation of methane and ethane gas hydrates[J]. Chemical Engineering Science, 1987, 42(11): 2647-2658.
|
| [20] |
李玉星, 朱超, 王武昌. 表面活性剂促进CO2水合物生成的实验及动力学模型[J]. 石油化工, 2012, 41(6): 699-703.
|
|
LI Yuxing, ZHU Chao, WANG Wuchang. Promoting effects of surfactants on carbon dioxide hydrate formation and the kinetics[J]. Petrochemical Technology, 2012, 41(6): 699-703.
|
| [21] |
周利民, 王兴亚, 张立娟, 等. 纳米气泡的同步辐射研究进展[J]. 中国科学: 物理学 力学 天文学, 2021, 51(9): 53-65.
|
|
ZHOU Limin, WANG Xingya, ZHANG Lijuan, et al. Recent developments in nanobubble research based on synchrotron radiation techniques[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2021, 51(9): 53-65.
|
| [22] |
ZHOU Limin, WANG Xingya, SHIN Hyun-Joon, et al. Ultrahigh density of gas molecules confined in surface nanobubbles in ambient water[J]. Journal of the American Chemical Society, 2020, 142(12): 5583-5593.
|
| [23] |
WANG Shuo, ZHOU Limin, WANG Xingya, et al. Force spectroscopy revealed a high-gas-density state near the graphite substrate inside surface nanobubbles[J]. Langmuir, 2019, 35(7): 2498-2505.
|
| [24] |
WANG Chunlei, LI Zhaoxia, LI Jingyuan, et al. High density gas state at water/graphite interface studied by molecular dynamics simulation[J]. Chinese Physics B, 2008, 17(7): 2646-2654.
|