Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (12): 7281-7289.DOI: 10.16085/j.issn.1000-6613.2024-2011
• Resources and environmental engineering • Previous Articles
NIE Yanqi1(
), LI Yizhang1, HE Xuyang1, ZHANG Dingyuan1, LI Weihua1(
), GAO Weijie2, ZHAO Changxia2, SUN Yingjie1, SUN Haoran1, WANG Yufeng1, ZHU Jinlin1, BIAN Rongxing1, LU Chenggang1
Received:2024-12-10
Revised:2025-01-13
Online:2026-01-06
Published:2025-12-25
Contact:
LI Weihua
聂彦琪1(
), 李祎璋1, 何旭阳1, 张丁元1, 李卫华1(
), 高伟杰2, 赵长霞2, 孙英杰1, 孙浩然1, 王玉凤1, 朱金林1, 卞荣星1, 路成刚1
通讯作者:
李卫华
作者简介:聂彦琪(1999—),女,硕士研究生,研究方向为焚烧飞灰污染控制与资源化。E-mail:1640649050@qq.com。
基金资助:CLC Number:
NIE Yanqi, LI Yizhang, HE Xuyang, ZHANG Dingyuan, LI Weihua, GAO Weijie, ZHAO Changxia, SUN Yingjie, SUN Haoran, WANG Yufeng, ZHU Jinlin, BIAN Rongxing, LU Chenggang. Preparation of ceramsite by coupling sintering MSW incineration fly ash with construction waste micro-powder and municipal sludge[J]. Chemical Industry and Engineering Progress, 2025, 44(12): 7281-7289.
聂彦琪, 李祎璋, 何旭阳, 张丁元, 李卫华, 高伟杰, 赵长霞, 孙英杰, 孙浩然, 王玉凤, 朱金林, 卞荣星, 路成刚. 垃圾焚烧飞灰耦合建筑垃圾微粉-市政污泥烧结制备陶粒[J]. 化工进展, 2025, 44(12): 7281-7289.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-2011
| 类型 | 指标 | 仪器/方法 |
|---|---|---|
| 陶粒性能 | 颗粒强度 | 微机控制电子万能试验机(WDW-50) |
| 表观密度、堆积密度、1h吸水率、筒压强度、空隙率 | 《轻集料及其试验方法 第2部分:轻集料试验方法》(GB/T 17431.2—2010) | |
| 材料特性 | 元素组成 | X射线荧光光谱仪(XRF,Zetium) |
| 矿物组成 | X射线衍射仪(XRD,Smartlab9) | |
| 重金属含量 | 石墨炉消解+电感耦合等离子体发射光谱仪(ICP-OES,iCAP7000) | |
| 热稳定性 | 热重分析仪(TG-DTG,STA 449 F3) |
| 类型 | 指标 | 仪器/方法 |
|---|---|---|
| 陶粒性能 | 颗粒强度 | 微机控制电子万能试验机(WDW-50) |
| 表观密度、堆积密度、1h吸水率、筒压强度、空隙率 | 《轻集料及其试验方法 第2部分:轻集料试验方法》(GB/T 17431.2—2010) | |
| 材料特性 | 元素组成 | X射线荧光光谱仪(XRF,Zetium) |
| 矿物组成 | X射线衍射仪(XRD,Smartlab9) | |
| 重金属含量 | 石墨炉消解+电感耦合等离子体发射光谱仪(ICP-OES,iCAP7000) | |
| 热稳定性 | 热重分析仪(TG-DTG,STA 449 F3) |
| 实验组别 | CW掺量变化 | MS掺量变化 | FA掺量变化 |
|---|---|---|---|
| FA∶CW∶MS | FA∶CW∶MS | FA∶CW∶MS | |
| G1 | 15∶65∶20 | 10∶60∶30 | 25∶60∶15 |
| G2 | 20∶60∶20 | 15∶60∶25 | 30∶60∶15 |
| G3 | 25∶55∶20 | 20∶60∶20 | 35∶60∶15 |
| G4 | 30∶50∶20 | 25∶60∶15 | 40∶60∶15 |
| G5 | 35∶45∶20 | 30∶60∶10 | 45∶60∶15 |
| 实验组别 | CW掺量变化 | MS掺量变化 | FA掺量变化 |
|---|---|---|---|
| FA∶CW∶MS | FA∶CW∶MS | FA∶CW∶MS | |
| G1 | 15∶65∶20 | 10∶60∶30 | 25∶60∶15 |
| G2 | 20∶60∶20 | 15∶60∶25 | 30∶60∶15 |
| G3 | 25∶55∶20 | 20∶60∶20 | 35∶60∶15 |
| G4 | 30∶50∶20 | 25∶60∶15 | 40∶60∶15 |
| G5 | 35∶45∶20 | 30∶60∶10 | 45∶60∶15 |
| 序号 | 因素 | 陶粒性能 | ||||
|---|---|---|---|---|---|---|
| FA | CW | MS | 筒压强度/MPa | 表观密度/g·cm-3 | 1h吸水率/% | |
| 1 | 20 | 55 | 10 | 10.80 | 2.06 | 1.00 |
| 2 | 20 | 60 | 15 | 12.00 | 2.22 | 2.33 |
| 3 | 20 | 65 | 20 | 11.20 | 2.22 | 1.52 |
| 4 | 25 | 55 | 15 | 10.10 | 2.30 | 1.93 |
| 5 | 25 | 60 | 20 | 11.50 | 2.28 | 1.04 |
| 6 | 25 | 65 | 10 | 12.20 | 2.22 | 1.15 |
| 7 | 30 | 55 | 20 | 12.30 | 2.30 | 1.38 |
| 8 | 30 | 60 | 15 | 8.10 | 2.34 | 1.55 |
| 9 | 30 | 65 | 10 | 13.10 | 2.17 | 0.35 |
| 序号 | 因素 | 陶粒性能 | ||||
|---|---|---|---|---|---|---|
| FA | CW | MS | 筒压强度/MPa | 表观密度/g·cm-3 | 1h吸水率/% | |
| 1 | 20 | 55 | 10 | 10.80 | 2.06 | 1.00 |
| 2 | 20 | 60 | 15 | 12.00 | 2.22 | 2.33 |
| 3 | 20 | 65 | 20 | 11.20 | 2.22 | 1.52 |
| 4 | 25 | 55 | 15 | 10.10 | 2.30 | 1.93 |
| 5 | 25 | 60 | 20 | 11.50 | 2.28 | 1.04 |
| 6 | 25 | 65 | 10 | 12.20 | 2.22 | 1.15 |
| 7 | 30 | 55 | 20 | 12.30 | 2.30 | 1.38 |
| 8 | 30 | 60 | 15 | 8.10 | 2.34 | 1.55 |
| 9 | 30 | 65 | 10 | 13.10 | 2.17 | 0.35 |
| 项目 | 筒压强度/MPa | 表观密度/g·cm-³ | 1h吸水率/% | ||||||
|---|---|---|---|---|---|---|---|---|---|
| FA | CW | MS | FA | CW | MS | FA | CW | MS | |
| K1 | 34.00 | 33.20 | 36.10 | 6.50 | 6.66 | 6.45 | 4.85 | 4.31 | 2.5 |
| K2 | 33.80 | 31.60 | 30.20 | 6.80 | 6.84 | 6.86 | 4.12 | 4.92 | 5.81 |
| K3 | 33.50 | 36.50 | 35.00 | 6.81 | 6.61 | 6.80 | 3.28 | 3.02 | 3.94 |
| k1 | 11.33 | 11.07 | 12.03 | 2.17 | 2.22 | 2.15 | 1.62 | 1.44 | 0.83 |
| k2 | 11.27 | 10.53 | 10.07 | 2.27 | 2.28 | 2.29 | 1.37 | 1.64 | 1.94 |
| k3 | 11.17 | 12.17 | 11.67 | 2.27 | 2.20 | 2.27 | 1.09 | 1.01 | 1.31 |
| R | 0.16 | 1.64 | 1.96 | 0.102 | 0.075 | 0.137 | 0.53 | 0.63 | 1.11 |
| 优选方案 | FA1 | CW3 | MS1 | FA1 | CW3 | MS1 | FA3 | CW3 | MS1 |
| 项目 | 筒压强度/MPa | 表观密度/g·cm-³ | 1h吸水率/% | ||||||
|---|---|---|---|---|---|---|---|---|---|
| FA | CW | MS | FA | CW | MS | FA | CW | MS | |
| K1 | 34.00 | 33.20 | 36.10 | 6.50 | 6.66 | 6.45 | 4.85 | 4.31 | 2.5 |
| K2 | 33.80 | 31.60 | 30.20 | 6.80 | 6.84 | 6.86 | 4.12 | 4.92 | 5.81 |
| K3 | 33.50 | 36.50 | 35.00 | 6.81 | 6.61 | 6.80 | 3.28 | 3.02 | 3.94 |
| k1 | 11.33 | 11.07 | 12.03 | 2.17 | 2.22 | 2.15 | 1.62 | 1.44 | 0.83 |
| k2 | 11.27 | 10.53 | 10.07 | 2.27 | 2.28 | 2.29 | 1.37 | 1.64 | 1.94 |
| k3 | 11.17 | 12.17 | 11.67 | 2.27 | 2.20 | 2.27 | 1.09 | 1.01 | 1.31 |
| R | 0.16 | 1.64 | 1.96 | 0.102 | 0.075 | 0.137 | 0.53 | 0.63 | 1.11 |
| 优选方案 | FA1 | CW3 | MS1 | FA1 | CW3 | MS1 | FA3 | CW3 | MS1 |
| 序号 | 因素 | 陶粒性能 | |||||
|---|---|---|---|---|---|---|---|
| A/℃ | B/min | C/℃ | D/min | 筒压强度/MPa | 表观密度/g·cm-³ | 1h吸水率/% | |
| 1 | 450 | 15 | 1140 | 15 | 5.55 | 2.022 | 0.97 |
| 2 | 500 | 20 | 1140 | 25 | 7.46 | 2.107 | 0.22 |
| 3 | 400 | 25 | 1140 | 20 | 6.45 | 2.111 | 0.57 |
| 4 | 500 | 25 | 1145 | 15 | 6.86 | 2.209 | 0.43 |
| 5 | 450 | 20 | 1145 | 20 | 6.94 | 2.217 | 0.49 |
| 6 | 400 | 15 | 1145 | 25 | 7.27 | 2.136 | 0.06 |
| 7 | 450 | 25 | 1150 | 25 | 8.41 | 2.104 | 0.73 |
| 8 | 400 | 20 | 1150 | 15 | 7.89 | 1.890 | 0.47 |
| 9 | 500 | 15 | 1150 | 20 | 7.66 | 2.020 | 0.24 |
| 序号 | 因素 | 陶粒性能 | |||||
|---|---|---|---|---|---|---|---|
| A/℃ | B/min | C/℃ | D/min | 筒压强度/MPa | 表观密度/g·cm-³ | 1h吸水率/% | |
| 1 | 450 | 15 | 1140 | 15 | 5.55 | 2.022 | 0.97 |
| 2 | 500 | 20 | 1140 | 25 | 7.46 | 2.107 | 0.22 |
| 3 | 400 | 25 | 1140 | 20 | 6.45 | 2.111 | 0.57 |
| 4 | 500 | 25 | 1145 | 15 | 6.86 | 2.209 | 0.43 |
| 5 | 450 | 20 | 1145 | 20 | 6.94 | 2.217 | 0.49 |
| 6 | 400 | 15 | 1145 | 25 | 7.27 | 2.136 | 0.06 |
| 7 | 450 | 25 | 1150 | 25 | 8.41 | 2.104 | 0.73 |
| 8 | 400 | 20 | 1150 | 15 | 7.89 | 1.890 | 0.47 |
| 9 | 500 | 15 | 1150 | 20 | 7.66 | 2.020 | 0.24 |
| 项目 | 筒压强度/MPa | 表观密度/g·cm-³ | 1h吸水率/% | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| A | B | C | D | A | B | C | D | A | B | C | D | |
| K1 | 21.61 | 20.48 | 19.46 | 20.30 | 6.14 | 6.18 | 6.24 | 6.12 | 1.10 | 1.27 | 1.76 | 1.87 |
| K2 | 20.90 | 22.29 | 21.07 | 21.05 | 6.34 | 6.21 | 6.56 | 6.35 | 2.19 | 1.18 | 0.98 | 1.30 |
| K3 | 21.98 | 21.72 | 23.96 | 23.14 | 6.34 | 6.42 | 6.01 | 6.35 | 0.89 | 1.73 | 1.44 | 1.01 |
| k1 | 7.20 | 6.83 | 6.49 | 6.77 | 2.05 | 2.06 | 2.08 | 2.04 | 0.37 | 0.42 | 0.59 | 0.62 |
| k2 | 6.97 | 7.43 | 7.02 | 7.02 | 2.11 | 2.07 | 2.19 | 2.12 | 0.73 | 0.39 | 0.33 | 0.43 |
| k3 | 7.33 | 7.24 | 7.99 | 7.71 | 2.11 | 2.14 | 2.00 | 2.12 | 0.30 | 0.58 | 0.48 | 0.34 |
| R | 0.36 | 0.60 | 1.50 | 0.94 | 0.06 | 0.08 | 0.19 | 0.08 | 0.43 | 0.19 | 0.26 | 0.28 |
| 优选方案 | A3 | B2 | C3 | D3 | A1 | B1 | C3 | D1 | A3 | B2 | C2 | D3 |
| 项目 | 筒压强度/MPa | 表观密度/g·cm-³ | 1h吸水率/% | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| A | B | C | D | A | B | C | D | A | B | C | D | |
| K1 | 21.61 | 20.48 | 19.46 | 20.30 | 6.14 | 6.18 | 6.24 | 6.12 | 1.10 | 1.27 | 1.76 | 1.87 |
| K2 | 20.90 | 22.29 | 21.07 | 21.05 | 6.34 | 6.21 | 6.56 | 6.35 | 2.19 | 1.18 | 0.98 | 1.30 |
| K3 | 21.98 | 21.72 | 23.96 | 23.14 | 6.34 | 6.42 | 6.01 | 6.35 | 0.89 | 1.73 | 1.44 | 1.01 |
| k1 | 7.20 | 6.83 | 6.49 | 6.77 | 2.05 | 2.06 | 2.08 | 2.04 | 0.37 | 0.42 | 0.59 | 0.62 |
| k2 | 6.97 | 7.43 | 7.02 | 7.02 | 2.11 | 2.07 | 2.19 | 2.12 | 0.73 | 0.39 | 0.33 | 0.43 |
| k3 | 7.33 | 7.24 | 7.99 | 7.71 | 2.11 | 2.14 | 2.00 | 2.12 | 0.30 | 0.58 | 0.48 | 0.34 |
| R | 0.36 | 0.60 | 1.50 | 0.94 | 0.06 | 0.08 | 0.19 | 0.08 | 0.43 | 0.19 | 0.26 | 0.28 |
| 优选方案 | A3 | B2 | C3 | D3 | A1 | B1 | C3 | D1 | A3 | B2 | C2 | D3 |
| 项目 | 烧结陶粒 | 高强轻质粗集料 |
|---|---|---|
| 颗粒强度/kN | 7.89 | — |
| 筒压强度/MPa | 13.01 | ≥6.5 |
| 表观密度/kg·m-3 | 2094 | — |
| 堆积密度/kg·m-³ | 1087 | >1000 |
| 1h吸水率/% | 0.43 | ≤10 |
| 项目 | 烧结陶粒 | 高强轻质粗集料 |
|---|---|---|
| 颗粒强度/kN | 7.89 | — |
| 筒压强度/MPa | 13.01 | ≥6.5 |
| 表观密度/kg·m-3 | 2094 | — |
| 堆积密度/kg·m-³ | 1087 | >1000 |
| 1h吸水率/% | 0.43 | ≤10 |
| 元素 | 含量 | 烧结损失率/% | 沸点/℃ | ||
|---|---|---|---|---|---|
| 生料球 | 陶粒 | 氯化态 | 氧化态 | ||
| Cl | 8.88% | 3.61% | 50.01 | — | — |
| Cd | 53.47mg/kg | 6.26mg/kg | 85.59 | 960 | 1385 |
| Cr | 87.27mg/kg | 68.40mg/kg | 3.48 | 1302 | 4000 |
| Cu | 155.42mg/kg | 36.74mg/kg | 70.89 | 993 | 1516 |
| Ni | 64.30mg/kg | 49.73mg/kg | 4.76 | 987 | — |
| Pb | 343.20mg/kg | 18.98mg/kg | 93.19 | 950 | 1535 |
| Zn | 1469.52mg/kg | 353.97mg/kg | 70.34 | 732 | 2360 |
| 元素 | 含量 | 烧结损失率/% | 沸点/℃ | ||
|---|---|---|---|---|---|
| 生料球 | 陶粒 | 氯化态 | 氧化态 | ||
| Cl | 8.88% | 3.61% | 50.01 | — | — |
| Cd | 53.47mg/kg | 6.26mg/kg | 85.59 | 960 | 1385 |
| Cr | 87.27mg/kg | 68.40mg/kg | 3.48 | 1302 | 4000 |
| Cu | 155.42mg/kg | 36.74mg/kg | 70.89 | 993 | 1516 |
| Ni | 64.30mg/kg | 49.73mg/kg | 4.76 | 987 | — |
| Pb | 343.20mg/kg | 18.98mg/kg | 93.19 | 950 | 1535 |
| Zn | 1469.52mg/kg | 353.97mg/kg | 70.34 | 732 | 2360 |
| [1] | 中华人民共和国国家统计局. 中国统计年鉴2023 [M]. 北京: 中国统计出版社, 2023. |
| National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook 2023[M]. Beijing: China Statistics Press, 2023. | |
| [2] | LI Xue, SUN Yingjie, LI Weihua, et al. Solidification/stabilization pre-treatment coupled with landfill disposal of heavy metals in MSWI fly ash in China: A systematic review[J]. Journal of Hazardous Materials, 2024, 478: 135479. |
| [3] | 孔祥蕊, 董玥岑, 张蒙雨, 等. 生活垃圾焚烧飞灰处理技术研究进展[J]. 化工进展, 2024, 43(7): 4102-4117. |
| KONG Xiangrui, DONG Yuecen, ZHANG Mengyu, et al. Treatment technologies of fly ash from municipal solid waste incineration[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4102-4117. | |
| [4] | 尹俊权, 吴寅凯, 李卫华, 等. 垃圾焚烧典型工段灰/渣理化特性及环境风险性[J]. 化工进展, 2024, 43(8): 4714-4725. |
| YIN Junquan, WU Yinkai, LI Weihua, et al. Physicochemical characteristics and environmental risk of ash/slag in typical sections of MSW incineration[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4714-4725. | |
| [5] | LONG Yuyang, PU Kai, YANG Yuqiang, et al. Preparation of high-strength ceramsite from municipal solid waste incineration fly ash and clay based on CaO-SiO2-Al2O3 system[J]. Construction and Building Materials, 2023, 368: 130492. |
| [6] | 吴海仁, 郭辉东, 翟凌阁. 建筑垃圾资源化处理及掺烧技术研究[J]. 中国资源综合利用, 2024, 42(10): 126-129. |
| WU Hairen, GUO Huidong, ZHAI Lingge. Research on resource utilization and co-incineration technology of construction waste[J]. China Resources Comprehensive Utilization, 2024, 42(10): 126-129. | |
| [7] | 王玉, 余广炜, 林佳佳, 等. 沼渣、飞灰和污泥生物炭制备建筑陶粒[J]. 化工进展, 2023, 42(2): 1039-1050. |
| WANG Yu, YU Guangwei, LIN Jiajia, et al. Preparation of building ceramsite from food waste digestate residues, incineration fly ash and sludge biochar[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1039-1050. | |
| [8] | 方伟成, 程星星, 孙常荣. 响应曲面法优化污泥/粉煤灰复合陶粒滤料的制备[J]. 无机盐工业, 2022, 54(9): 119-125, 142. |
| FANG Weicheng, CHENG Xingxing, SUN Changrong. Optimization of preparation of sludge/fly ash composite ceramsite filler materials by response surface methodology[J]. Inorganic Chemicals Industry, 2022, 54(9): 119-125, 142. | |
| [9] | 裴军军, 苑博文, 高敏, 等. 再生微粉多元复合胶凝体系的性能研究[J]. 硅酸盐通报, 2024, 43(5): 1812-1821. |
| PEI Junjun, YUAN Bowen, GAO Min, et al. Properties of multi-component composite cementitious system of regenerated micropowder[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(5): 1812-1821. | |
| [10] | 高瑞晓, 荣辉, 王海良, 等. 800密度等级的渣土陶粒制备及性能研究[J]. 硅酸盐通报, 2017, 36(5): 1646-1650. |
| GAO Ruixiao, RONG Hui, WANG Hailiang, et al. Preparation and performance of 800 density grades muck-ceramsite[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(5): 1646-1650. | |
| [11] | 季维生. 700密度等级渣土陶粒制备及其性能研究[J]. 硅酸盐通报, 2017, 36(7): 2209-2214. |
| JI Weisheng. Preparation and performance of 700 density grades muck-ceramsite[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(7): 2209-2214. | |
| [12] | FURLANI Erika, Sergio BRÜCKNER, MINICHELLI Dino, et al. Synthesis and characterization of ceramics from coal fly ash and incinerated paper mill sludge[J]. Ceramics International, 2008, 34(8): 2137-2142. |
| [13] | RILEY CHARLES M. Relation of chemical properties to the bloating of clays[J]. Journal of the American Ceramic Society, 1951, 34(4): 121-128. |
| [14] | MI Hongcheng, YI Longsheng, WU Qian, et al. Preparation of high-strength ceramsite from red mud, fly ash, and bentonite[J]. Ceramics International, 2021, 47(13): 18218-18229. |
| [15] | MORENO-MAROTO José Manuel, Manuel UCEDA-RODRÍGUEZ, COBO-CEACERO Carlos Javier, et al. Studying the feasibility of a selection of Southern European ceramic clays for the production of lightweight aggregates[J]. Construction and Building Materials, 2020, 237: 117583. |
| [16] | WANG Xuxu, QIN Yuhong, OKEKE Ikechukwu, et al. Revealing the intrinsic sintering mechanism of high-strength ceramsite from CFB fly ash: Focus on the role of CaO[J]. Ceramics International, 2024, 50(13): 24281-24292. |
| [17] | ZHU Ying, SHAO Yingying, TIAN Chao, et al. Preparation of municipal solid waste incineration fly ash/granite sawing mud ceramsite and the morphological transformation and migration properties of chlorine[J]. Waste Management, 2024, 173: 1-9. |
| [18] | LIU Shunbo, ZHANG Hengyun, XU Xiaobin. A study on the transient heat generation rate of lithium-ion battery based on full matrix orthogonal experimental design with mixed levels[J]. Journal of Energy Storage, 2021, 36: 102446. |
| [19] | XIONG Xin, CHEN Hu, JIANG Pengcheng, et al. Honeycombed pomegranate-like sludge ceramsite particles: Preparation with fly ash floating beads as the pore-forming template and performance optimization[J]. Construction and Building Materials, 2024, 453: 139017. |
| [20] | 杨珊珊. 城市污水处理厂污泥固化及制备陶粒初探[D]. 北京: 北京工业大学, 2015. |
| YANG Shanshan. Sewage sludge curing experiment and preparation of ceramsite[D]. Beijing: Beijing University of Technology, 2015. | |
| [21] | LI Tianpeng, SUN Tingting, LI Dengxin. Preparation, sintering behavior, and expansion performance of ceramsite filter media from dewatered sewage sludge, coal fly ash, and river sediment[J]. Journal of Material Cycles and Waste Management, 2018, 20(1): 71-79. |
| [22] | WANG Dong, HUANG Jinlou, PENG Hongtao, et al. Sinterability and expansion property of ceramsite made with lead-zinc mine tailings[J]. Applied Mechanics and Materials, 2014, 551: 23-27. |
| [23] | LI Pengwei, LUO Shaohua, ZHANG Lin, et al. Study on preparation and performance of iron tailings-based porous ceramsite filter materials for water treatment[J]. Separation and Purification Technology, 2021, 276: 119380. |
| [24] | XIAO Tingting, FAN Xuyang, ZHOU Chenyu, et al. Preparation of ultra-lightweight ceramsite from waste materials: Using phosphate tailings as pore-forming agent[J]. Ceramics International, 2024, 50(9): 15218-15229. |
| [25] | FUERTES V, REINOSA J J, FERNÁNDEZ J F, et al. Engineered feldspar-based ceramics: A review of their potential in ceramic industry[J]. Journal of the European Ceramic Society, 2022, 42(2): 307-326. |
| [26] | CHEESEMAN C R, MAKINDE A, BETHANIS S. Properties of lightweight aggregate produced by rapid sintering of incinerator bottom ash[J]. Resources, Conservation and Recycling, 2005, 43(2): 147-162. |
| [27] | FENG Jinyang, WU Donghua, LONG Min, et al. Diopside glass-ceramics were fabricated by sintering the powder mixtures of waste glass and Kaolin[J]. Ceramics International, 2022, 48(18): 27088-27096. |
| [28] | MÉNARD Y, ASTHANA A, PATISSON F, et al. Thermodynamic study of heavy metals behaviour during municipal waste incineration[J]. Process Safety and Environmental Protection, 2006, 84(4): 290-296. |
| [29] | JIANG Jianguo, XU Xin, WANG Jun, et al. Investigation of basic properties of fly ash from urban waste incinerators in China[J]. Journal of Environmental Sciences, 2007, 19(4): 458-463. |
| [30] | 严建华, 李建新, 池涌, 等. 垃圾焚烧飞灰重金属蒸发特性试验分析[J]. 环境科学, 2004, 25(2): 170-173. |
| YAN Jianhua, LI Jianxin, CHI Yong, et al. Characteristic analysis of heavy metals’ evaporation of MSWI fly ash[J]. Environmental Science, 2004, 25(2): 170-173. | |
| [31] | 杨凤玲, 李鹏飞, 叶泽甫, 等. 城市生活垃圾焚烧飞灰组成特性及重金属熔融固化处理技术研究进展[J]. 洁净煤技术, 2021, 27(1):169-180. |
| YANG Fengling, LI Pengfei, YE Zefu, et al. Study progress on the composition characteristics of fly ash from municipal solid waste incineration and treatment technology of heavy metal melting and solidification[J]. Clean Coal Technology, 2021, 27(1): 169-180. |
| [1] | ZHANG Guanghui, JIANG Jinxu, HUANG Lei, CHEN Shixiang, MA Tiantian. Influencing factors analysis and prediction for oxygen-enriched combustion characteristics of municipal sludge [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5460-5470. |
| [2] | XIU Haoran, WANG Yungang, BAI Yanyuan, ZOU Li, LIU Yang. Combustion characteristics and ash melting behavior of Zhundong coal/municipal sludge blended combustion [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3242-3252. |
| [3] | WANG Yu, YU Guangwei, LIN Jiajia, LI Changjiang, JIANG Ruqing, XING Zhenjiao, YU Cheng. Preparation of building ceramsite from food waste digestate residues, incineration fly ash and sludge biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1039-1050. |
| [4] | GU Kai, WU Yinkai, YIN Junquan, LI Weihua, SUN Yingjie, ZHANG Qingjian, GE Yanchen, HE Yiyang, ZHAO Lingyan, WANG Huawei. Leaching behavior of heavy metals in solidified/stabilized fly ash under diversified leaching scenarios [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 6113-6125. |
| [5] | Xianli LIU, Zhaoyin HOU. Ccooperative disposal and resource utilization of heavy metal contaminated soil by rotary kiln [J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 287-291. |
| [6] | Yingying YANG, Shunyu FU, Weidong WU, Bing ZHANG. Preparation and performance evaluation of a new type of binary shaped phase change material for buildings [J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4119-4126. |
| [7] | XIE Daolei, KONG Ciming, XU Longqian, XU Xiaojun, LI Tianguo, DUAN Zhengyang, LIU Shuli, LIU Wei. Developments of the speciation, removal and stabilization of heavy metals in municipal sludge [J]. Chemical Industry and Engineering Progress, 2018, 37(01): 330-342. |
| [8] | ZHU Mengyuan, WU Guoguang, HU Yuanfeng, MENG Xianliang, MA Shaolian. Effect of alkali-treated sludge on sludge-coal water slurry performance [J]. Chemical Industry and Engineering Progress, 2017, 36(07): 2691-2697. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |