Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (12): 7019-7033.DOI: 10.16085/j.issn.1000-6613.2024-1978
• Materials science and technology • Previous Articles
HUANG Yan1(
), JI Haining1(
), LIU Dongqing2(
)
Received:2024-12-04
Revised:2025-03-22
Online:2026-01-06
Published:2025-12-25
Contact:
JI Haining, LIU Dongqing
通讯作者:
嵇海宁,刘东青
作者简介:黄燕(2000—),女,硕士研究生,研究方向为机器学习辅助材料。E-mail:huangyan221407@163.com。
CLC Number:
HUANG Yan, JI Haining, LIU Dongqing. Research advances in screening of machine learning-assisted materials[J]. Chemical Industry and Engineering Progress, 2025, 44(12): 7019-7033.
黄燕, 嵇海宁, 刘东青. 机器学习辅助材料筛选研究进展[J]. 化工进展, 2025, 44(12): 7019-7033.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1978
| [1] | AGRAWAL Ankit, CHOUDHARY Alok. Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science[J]. APL Materials, 2016, 4(5): 053208. |
| [2] | CHEN CHI, ZUO YUNXING, YE WEIKE, et al. A critical review of machine learning of energy materials[J]. Advanced Energy Materials, 2020, 10(8): 1903242. |
| [3] | LU Mingying, JI Haining, ZHAO Yong, et al. Machine learning-assisted synthesis of two-dimensional materials[J]. ACS Applied Materials & Interfaces, 2023, 15(1): 1871-1878. |
| [4] | WANG Jingting, LU Mingying, CHEN Yongxing, et al. Machine learning-assisted large-area preparation of MoS2 materials[J]. Nanomaterials, 2023, 13(16): 2283. |
| [5] | XIONG Gaoyang, JI Haining, CHEN Yongxing, et al. Preparation of thermochromic vanadium dioxide films assisted by machine learning[J]. Nanomaterials, 2024, 14(13): 1153. |
| [6] | CHEN Yongxing, JI Haining, LU Mingying, et al. Machine learning guided hydrothermal synthesis of thermochromic VO2 nanoparticles[J]. Ceramics International, 2023, 49(18): 30794-30800. |
| [7] | BELLE Carl E, AKSAKALLI Vural, RUSSO Salvy P. A machine learning platform for the discovery of materials[J]. Journal of Cheminformatics, 2021, 13(1): 42. |
| [8] | KALIDINDI Surya R, BROUGH David B, LI Shengyen, et al. Role of materials data science and informatics in accelerated materials innovation[J]. MRS Bulletin, 2016, 41(8): 596-602. |
| [9] | SUN Zhehao, YIN Hang, YIN Zongyou. Leveraging machine learning in the innovation of functional materials[J]. Matter, 2023, 6(8): 2553-2555. |
| [10] | 封俊杰, 周琨, 李木琛, 等. 数据驱动研究范式下材料数据库的构建与应用[J]. 科学通报, 2025, 70(24): 4044-4065. |
| FENG Junjie, ZHOU Kun, LI Muchen, et al. Construction and application of material database under data-driven research paradigm[J]. Chinese Science Bulletin, 2025, 70(24): 4044-4065. | |
| [11] | BUTLER Keith T, DAVIES Daniel W, CARTWRIGHT Hugh, et al. Machine learning for molecular and materials science[J]. Nature, 2018, 559: 547-555. |
| [12] | WEI Jing, CHU Xuan, SUN Xiangyu, et al. Machine learning in materials science[J]. InfoMat, 2019, 1(3): 338-358. |
| [13] | CHEN Yongxing, LONG Peng, LIU Bin, et al. Development and application of Few-shot learning methods in materials science under data scarcity[J]. Journal of Materials Chemistry A, 2024, 12(44): 30249-30268. |
| [14] | WANG Anthony Yu-Tung, MURDOCK Ryan J, KAUWE Steven K, et al. Machine learning for materials scientists: An introductory guide toward best practices[J]. Chemistry of Materials, 2020, 32(12): 4954-4965. |
| [15] | TAO Qiuling, YU Jinxin, MU Xiangyu, et al. Machine learning strategies for small sample size in materials science[J]. Science China Materials, 2025, 68(2): 387-405. |
| [16] | BOONPALIT Kajjana, KINCHAGAWAT Jiramet, NAMUANGRUK Supawadee. Expanding the applicability domain of machine learning model for advancements in electrochemical material discovery[J]. ChemElectroChem, 2024, 11(10): e202300681. |
| [17] | RAMPRASAD Rampi, BATRA Rohit, PILANIA Ghanshyam, et al. Machine learning in materials informatics: Recentapplications and prospects[J]. NPJ Computational Materials, 2017, 3: 54. |
| [18] | 何林, 贺常晴, 隋红. 人工智能驱动新型界面分离材料的创制[J]. 化工进展, 2024, 43(4): 1649-1654. |
| HE Lin, HE Changqing, SUI Hong. Prospects for the creation of novel interfacial separation materials driven by artificial intelligence[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1649-1654. | |
| [19] | MORGAN Dane, JACOBS Ryan. Opportunities and challenges for machine learning in materials science[J]. Annual Review of Materials Research, 2020, 50: 71-103. |
| [20] | HUANG Guannan, GUO Yani, CHEN Ye, et al. Application of machine learning in material synthesis and property prediction[J]. Materials, 2023, 16(17): 5977. |
| [21] | FANG Jiheng, XIE Ming, HE Xingqun, et al. Machine learning accelerates the materials discovery[J]. Materials Today Communications, 2022, 33: 104900. |
| [22] | JAIN Anubhav, Shyue Ping ONG, HAUTIER Geoffroy, et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation[J]. APL Materials, 2013, 1(1): 011002. |
| [23] | BELSKY Alec, HELLENBRANDT Mariette, KAREN Vicky Lynn, et al. New developments in the inorganic crystal structure database (ICSD): Accessibility in support of materials research and design[J]. Acta Crystallographica Section B, 2002, 58: 364-369. |
| [24] | KIRKLIN Scott, SAAL James E, MEREDIG Bryce, et al. The open quantum materials database (OQMD): Assessing the accuracy of DFT formation energies[J]. NPJ Computational Materials, 2015, 1: 15010. |
| [25] | DEVLIN Jacob, CHANG Mingwei, LEE Kenton, et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[C]//BURSTEIN Jill, DORAN Christy, SOLORIO Thamar. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Minnesota:Association for Computational Linguistics, 2019:4171-4186. |
| [26] | ZHANG Lei, HUANG Yiru, YAN Leiming, et al. Fast exploring literature by language machine learning for perovskite solar cell materials design[J]. Advanced Intelligent Systems, 2024, 6(6): 2300678. |
| [27] | LI Runzhao, HERREROS Jose Martin, TSOLAKIS Athanasios, et al. Machine learning-quantitative structure property relationship (ML-QSPR) method for fuel physicochemical properties prediction of multiple fuel types[J]. Fuel, 2021, 304: 121437. |
| [28] | ROY Kunal, KAR Supratik, Rudra Narayan DAS. A primer on QSAR/QSPR modeling: Fundamental concepts[M]. Cham: Springer International Publishing, 2015. |
| [29] | 何婷. 基于机器学习结合定量构效关系(QSPR)的含能材料爆轰性能预估及筛选方法研究[D]. 西安: 西北大学, 2021. |
| HE Ting. Study on prediction and screening method of detonation performance of energetic materials based on machine learning and quantitative structure-activity relationship (QSPR)[D]. Xi’an: Northwest University, 2021. | |
| [30] | WARD Logan, DUNN Alexander, FAGHANINIA Alireza, et al. Matminer: An open source toolkit for materials data mining[J]. Computational Materials Science, 2018, 152: 60-69. |
| [31] | HIMANEN Lauri, JÄGER Marc O J, MOROOKA Eiaki V, et al. DScribe: Library of descriptors for machine learning in materials science[J]. Computer Physics Communications, 2020, 247: 106949. |
| [32] | WINES Daniel, GURUNATHAN Ramya, GARRITY Kevin F, et al. Recent progress in the JARVIS infrastructure for next-generation data-driven materials design[J]. Applied Physics Reviews, 2023, 10(4): 041302. |
| [33] | MUTHUKRISHNAN R, ROHINI R. LASSO: A feature selection technique in predictive modeling for machine learning[C]//2016 IEEE International Conference on Advances in Computer Applications (ICACA). Coimbatore: IEEE, 2016: 18-20. |
| [34] | BREIMAN Leo. Random forests[J]. Machine Learning, 2001,45(1): 5-32. |
| [35] | CHEN Tianqi, GUESTRIN Carlos. XGBoost: A scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 785-794. |
| [36] | KE Guolin, MENG Qi, FINLEY Thomas, et al. LightGBM: A highly efficient gradient boosting decision tree[C]//LUXBURG Ulrike Von, GUYON Isabelle, BENGIO Samy, WALLACH Hanna, FERGUS Rob. Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, 2017: 3149-3157. |
| [37] | THENG Dipti, BHOYAR Kishor K. Feature selection techniques for machine learning: A survey of more than two decades of research[J]. Knowledge and Information Systems, 2024, 66(3): 1575-1637. |
| [38] | ARLOT Sylvain, CELISSE Alain. A survey of cross-validation procedures for model selection[J]. Statistics Surveys, 2010, 4: 40-79. |
| [39] | EFRON Bradley, TIBSHIRANI Robert. Improvements on cross-validation: The 632+ bootstrap method[J]. Journal of the American Statistical Association, 1997, 92(438): 548-560. |
| [40] | POWERS David M W. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation[EB/OL]. 2020: 2010.16061. . |
| [41] | FAWCETT Tom. An introduction to ROC analysis[J]. Pattern Recognition Letters, 2006, 27(8): 861-874. |
| [42] | PEDREGOSA Fabian, VAROQUAUX Gaël, GRAMFORT Alexandre, et al. Scikit-learn: Machine learning in Python[J]. Journal of Machine Learning Research, 2011, 12: 2825-2830. |
| [43] | 李金栋, 郝永勤, 孙旭, 等. 机器学习在永磁材料研究中的应用进展[J]. 功能材料, 2025, 56(1): 1064-1074. |
| LI Jindong, HAO Yongqin, SUN Xu, et al. Application of machine learning in permanent magnetic materials[J]. Journal of Functional Materials, 2025, 56(1): 1064-1074. | |
| [44] | 章本本, 缪林昌, 郑海忠, 等. 机器学习在声学超材料中的应用进展[J]. 振动与冲击, 2024, 43(23): 280-293. |
| ZHANG Benben, MIAO Linchang, ZHENG Haizhong, et al. Application Progress of machine learning in acoustic metamaterials[J]. Journal of Vibration and Shock, 2024, 43(23): 280-293. | |
| [45] | 王璐, 张磊. 机器学习高效筛选用于CO2/N2选择性吸附分离的沸石材料[J]. 化工进展, 2023, 42(1):148-158. |
| WANG Lu, ZHANG Lei. Lei. High-throughput screening of zeolite materials for CO2/N2 selective adsorption separation by machine learning[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 148-158. | |
| [46] | KIM Jaehyun, KANG Donghoon, KIM Sangbum, et al. Catalyze materials science with machine learning[J]. ACS Materials Letters, 2021, 3(8): 1151-1171. |
| [47] | WANG Ziman, YANG Ming, XIE Xixi, et al. Applications of machine learning in perovskite materials[J]. Advanced Composites and Hybrid Materials, 2022, 5(4): 2700-2720. |
| [48] | JUAN Yongfei, DAI Yongbing, YANG Yang, et al. Accelerating materials discovery using machine learning[J]. Journal of Materials Science & Technology, 2021, 79: 178-190. |
| [49] | MANTHIRAM Arumugam, FU Yongzhu, SU Yusheng. Challenges and prospects of lithium-sulfur batteries[J]. Accounts of Chemical Research, 2013, 46(5): 1125-1134. |
| [50] | GOODENOUGH John B, PARK Kyu-Sung. The Li-ion rechargeable battery: A perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176. |
| [51] | LU Jun, CHEN Zhongwei, PAN Feng, et al. High-performance anode materials for rechargeable lithium-ion batteries[J]. Electrochemical Energy Reviews, 2018, 1(1): 35-53. |
| [52] | SEVERSON Kristen A, ATTIA Peter M, JIN Norman, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4(5): 383-391. |
| [53] | AYKOL Muratahan, HERRING Patrick, ANAPOLSKY Abraham. Machine learning for continuous innovation in battery technologies[J]. Nature Reviews Materials, 2020, 5(10): 725-727. |
| [54] | ALLAM Omar, CHO Byung Woo, KIM Ki Chul, et al. Application of DFT-based machine learning for developing molecular electrode materials in Li-ion batteries[J]. RSC Advances, 2018, 8(69): 39414-39420. |
| [55] | JOSHI Rajendra P, EICKHOLT Jesse, LI Liling, et al. Machine learning the voltage of electrode materials in metal-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(20): 18494-18503. |
| [56] | MOSES Isaiah A, JOSHI Rajendra P, OZDEMIR Burak, et al. Machine learning screening of metal-ion battery electrode materials[J]. ACS Applied Materials & Interfaces, 2021, 13(45): 53355-53362. |
| [57] | WANG Guanyu, FEARN Tom, WANG Tengyao, et al. Machine-learning approach for predicting the discharging capacities of doped lithium nickel-cobalt-manganese cathode materials in Li-ion batteries[J]. ACS Central Science, 2021, 7(9): 1551-1560. |
| [58] | WANG Guanyu, FEARN Tom, WANG Tengyao, et al. Insight gained from using machine learning techniques to predict the discharge capacities of doped spinel cathode materials for lithium-ion batteries applications[J]. Energy Technology, 2021, 9(5): 2100053. |
| [59] | PARK Sohyun, PARK Sunhyeon, PARK Young, et al. A new material discovery platform of stable layered oxide cathodes for K-ion batteries[J]. Energy & Environmental Science, 2021, 14(11): 5864-5874. |
| [60] | RANSOM Brandi, ZHAO Nathan, SENDEK Austin D, et al. Two low-expansion Li-ion cathode materials with promising multi-property performance[J]. MRS Bulletin, 2021, 46(12): 1116-1129. |
| [61] | LIU Xiaoxu, WANG Tian, JI Tianyi, et al. Using machine learning to screen non-graphite carbon materials based on Na-ion storage properties[J]. Journal of Materials Chemistry A, 2022, 10(14): 8031-8046. |
| [62] | ZHANG Xin, DING Bin, WANG Yao, et al. Machine learning for screening small molecules as passivation materials for enhanced perovskite solar cells[J]. Advanced Functional Materials, 2024, 34(30): 2314529. |
| [63] | TANG Le, ZHANG Guozhen, JIANG Jun. Machine learning approach accelerates search for solid state electrolytes[J]. Chinese Journal of Chemical Physics, 2024, 37(4): 505-512. |
| [64] | GUO Xingyu, WANG Zhenbin, YANG Jihui, et al. Machine-learning assisted high-throughput discovery of solid-state electrolytes for Li-ion batteries[J]. Journal of Materials Chemistry A, 2024, 12(17): 10124-10136. |
| [65] | JAAFREH Russlan, PEREZNIETO Santiago, JEONG Seonghun, et al. Phonon DOS-based machine learning model for designing high-performance solid electrolytes in Li-ion batteries[J]. International Journal of Energy Research, 2024, 2024(1): 2138847. |
| [66] | WANG Xiangdong, SHENG Ye, NING Jinyan, et al. A critical review of machine learning techniques on thermoelectric materials[J]. The Journal of Physical Chemistry Letters, 2023, 14(7): 1808-1822. |
| [67] | FAN Tao, OGANOV Artem R. Combining machine-learning models with first-principles high-throughput calculations to accelerate the search for promising thermoelectric materials[J]. Journal of Materials Chemistry C, 2025, 13(3): 1439-1448. |
| [68] | TIRYAKI Hasan, YUSUF Aminu, BALLIKAYA Sedat. Determination of electrical and thermal conductivities of n- and p-type thermoelectric materials by prediction iteration machine learning method[J]. Energy, 2024, 292: 130597. |
| [69] | Mohammed AL-FAHDI, YUAN Kunpeng, YAO Yagang, et al. High-throughput thermoelectric materials screening by deep convolutional neural network with fused orbital field matrix and composition descriptors[J]. Applied Physics Reviews, 2024, 11(2): 021402. |
| [70] | VAITESSWAR U S, BASH Daniil, HUANG Tan, et al. Machine learning based feature engineering for thermoelectric materials by design[J]. Digital Discovery, 2024, 3(1): 210-220. |
| [71] | PARSE Nuttawat, PINITSOONTORN Supree. Machine learning for predicting ZT values of high-performance thermoelectric materials in mid-temperature range[J]. APL Materials, 2023, 11(8): 081117. |
| [72] | ZHOU Pan, WANG Ming, TANG Fei, et al. Machine learning accelerates the screening of efficient metal-oxide catalysts for photocatalytic water splitting[J]. Materials Research Bulletin, 2024, 179: 112956. |
| [73] | SUN Jikai, TU Rui, XU Yuchun, et al. Machine learning aided design of single-atom alloy catalysts for methane cracking[J]. Nature Communications, 2024, 15(1): 6036. |
| [74] | GOLDER Rahul, Shraman PAL, SATHISH KUMAR C, et al. Machine learning-enhanced optimal catalyst selection for water-gas shift reaction[J]. Digital Chemical Engineering, 2024, 12: 100165. |
| [75] | Moses ABRAHAM B, SINHA Priyanka, HALDER Prosun, et al. Fusing a machine learning strategy with density functional theory to hasten the discovery of 2D MXene-based catalysts for hydrogen generation[J]. Journal of Materials Chemistry A, 2023, 11(15): 8091-8100. |
| [76] | ZHANG Jingzi, WANG Yuelin, ZHOU Xuyan, et al. Accurate and efficient machine learning models for predicting hydrogen evolution reaction catalysts based on structural and electronic feature engineering in alloys[J]. Nanoscale, 2023, 15(26): 11072-11082. |
| [77] | WANG Song, JIANG Jun. Interpretable catalysis models using machine learning with spectroscopic descriptors[J]. ACS Catalysis, 2023, 13(11): 7428-7436. |
| [78] | YIN Peng, NIU Xiangfu, LI Shuobin, et al. Machine-learning-accelerated design of high-performance platinum intermetallic nanoparticle fuel cell catalysts[J]. Nature Communications, 2024, 15(1): 415. |
| [79] | ZHANG Sheng, LU Shuaihua, ZHANG Peng, et al. Accelerated discovery of single-atom catalysts for nitrogen fixation via machine learning[J]. Energy & Environmental Materials, 2023, 6(1): e12304. |
| [80] | HU Mingwei, TAN Qiyang, KNIBBE Ruth, et al. Recent applications of machine learning in alloy design: A review[J]. Materials Science and Engineering: R: Reports, 2023, 155: 100746. |
| [81] | LI Jiaheng, ZHANG Yingbo, CAO Xinyu, et al. Accelerated discovery of high-strength aluminum alloys by machine learning[J]. Communications Materials, 2020, 1: 73. |
| [82] | PAN Shaobin, WANG Yongjie, YU Jinxin, et al. Accelerated discovery of high-performance Cu-Ni-Co-Si alloys through machine learning[J]. Materials & Design, 2021, 209: 109929. |
| [83] | RAO Ziyuan, TUNG Po-Yen, XIE Ruiwen, et al. Machine learning-enabled high-entropy alloy discovery[J]. Science, 2022, 378(6615): 78-85. |
| [84] | WEN Cheng, SHEN Haicheng, TIAN Yuwan, et al. Accelerated discovery of refractory high-entropy alloys for strength-ductility co-optimization: An exploration in NbTaZrHfMo system by machine learning[J]. Scripta Materialia, 2024, 252: 116240. |
| [85] | YAN Yonggang, LU Dan, WANG Kun. Accelerated discovery of single-phase refractory high entropy alloys assisted by machine learning[J]. Computational Materials Science, 2021, 199: 110723. |
| [86] | PRIYA Pikee, ALURU N R. Accelerated design and discovery of perovskites with high conductivity for energy applications through machine learning[J]. NPJ Computational Materials, 2021, 7: 90. |
| [87] | WU Mengfan, TIKHONOV Evgenii, TUDI Abudukadi, et al. Target-driven design of deep-UV nonlinear optical materials via interpretable machine learning[J]. Advanced Materials, 2023, 35(23): 2300848. |
| [88] | CHEN Fengqing, WENG Longjie, WANG Jinhe, et al. An adaptive framework to accelerate optimization of high flame retardant composites using machine learning[J]. Composites Science and Technology, 2023, 231: 109818. |
| [89] | FAN Qingyang, MIN Gege, LIU Li, et al. Accelerate the design of new superhard carbon allotropes in Pca21 space group: High-throughput screening and machine learning strategies[J]. Diamond and Related Materials, 2024, 143: 110928. |
| [1] | SONG Yingjie, ZHANG Lei, DU Jian. Multi-flavor molecule prediction model based on pre-training and fine-tuning strategies [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 29-37. |
| [2] | LU Lanting, KANG Sheng, XU Wenke, JIANG Ziqiang, WANG Demin, LIU Dongyang, ZHAO Liang, XU Chunming. Artificial intelligence in the chemical industry: Applications and prospects of artificial neural network technology [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4808-4820. |
| [3] | ZHU Xiaozhong, FANG Wei, ZHAO Yi. Application of deep VGG model-based prediction in ethylene cracker plant [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4419-4429. |
| [4] | YANG Zhenglu, YANG Lifeng, LU Xiaofei, SUO Xian, ZHANG Anyun, CUI Xili, XING Huabin. Advances in machine learning accelerating the screening and discovery of porous adsorbents [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4288-4301. |
| [5] | LI Xiang, LI Jiaying, NI Heng, SUN Haoran, CAO Jiawei, CHEN Yuxuan, LIU Fengjiao. Advances in the prediction of activation energy barriers for hydrogen atom transfer reactions [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3336-3344. |
| [6] | LI Ming, ZHOU Yi, NAN Lan, YE Xiaosheng. Advances in automatic optimization of continuous synthesis [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3190-3198. |
| [7] | WANG Xiaonan, FU Siwei, LIU Kuan, LIN Congsheng, LIN Xiaofeng. Machine learning methods for sustainable alternatives and transition of energy materials [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2767-2776. |
| [8] | SUN Jian, ZHANG Haiyong, WANG Chengxiu, SUN Zeneng, LAN Xingying, GAO Jinsen, ZHU Jingxu. Cluster characteristics in gas-solids circulating fluidized bed based on k-means algorithm-assisted imaging method [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 625-634. |
| [9] | DAI Zhengshu, ZUO Yuanhao, CHEN Xiaoluo, ZHANG Li, ZHAO Gen, ZHANG Xuejun, ZHANG Hua. Process in the application of machine learning in ejector research [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 1-12. |
| [10] | ZHANG Zihang, WANG Shurong. Research advances in biomass pyrolysis conversion and low-carbon utilization of products [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3692-3708. |
| [11] | HUANG Zhixin, WANG Junyao, YUAN Xiangzhou, DENG Shuai, ZHAO Jie, ZHANG Xinyi. Research advances on upcycling organic solid waste into CO2 adsorbents: A cross-research review [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5748-5764. |
| [12] | WANG Xiong, YANG Zhenning, LI Yue, SHEN Weifeng. Optimization of methanol distillation process based on chemical mechanism and industrial digital twinning modeling [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 310-319. |
| [13] | CHEN Sen, YIN Pengyuan, YANG Zhenglu, MO Yiming, CUI Xili, SUO Xian, XING Huabin. Advances in the intelligent synthesis of functional solid materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3340-3348. |
| [14] | WANG Lu, ZHANG Lei, DU Jian. High-throughput screening of zeolite materials for CO2/N2 selective adsorption separation by machine learning [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 148-158. |
| [15] | LIAN Cheng, CHENG Jin, HUANG Pan, TAO Haolan, YANG Jie, LIU Honglai. Thermodynamics of new energy chemical engineering [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4711-4733. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |