Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (8): 4606-4616.DOI: 10.16085/j.issn.1000-6613.2024-1836

• Process systems modeling and simulation • Previous Articles    

Research progress and prospects of petrochemical asset lifecycle management based on information models

GAO Libing1(), ZHAO Xueliang2, SUO Hansheng1, LIU Dongqing1, LUO Mengdi1, JING Linlin1   

  1. 1.Petro-Cyber Works Information Technology Co. , Ltd. , Beijing 100020, China
    2.China Petrochemical Corporation, Beijing 100728, China
  • Received:2024-11-10 Revised:2024-12-03 Online:2025-09-08 Published:2025-08-25
  • Contact: GAO Libing

基于信息模型的石化资产生命周期管理研究进展及展望

高立兵1(), 赵学良2, 索寒生1, 刘东庆1, 罗梦迪1, 井琳琳1   

  1. 1.石化盈科信息技术有限责任公司,北京 100020
    2.中国石油化工集团有限公司,北京 100728
  • 通讯作者: 高立兵
  • 作者简介:高立兵(1970—),男,硕士,高级工程师,研究方向为石化行业智能制造、石化智能工厂规划等。E-mail:libing.gao@pcitc.com
  • 基金资助:
    中国石化集团公司科技开发项目(E24006);中国石化集团公司科技开发项目(R24032)

Abstract:

Integrating ET, OT, and IT data to build a unique and trustworthy data source for petrochemical enterprises is the data foundation and key to data driven applications for digital transformation. However, ET data has characteristics such as large volume, complex relationships, frequent changes, and unstructured nature. How to achieve data integration and exchange among project stakeholders based on a unified information model faces many challenges. To this end, international organizations such as DEXPI and NAMUR are promoting standardization of asset lifecycle data management in the process industry. This paper firstly outlines the characteristics and management challenges of engineering data, introduces the concept of information modeling, and analyzes the characteristics of process system engineering modeling in terms of functionality, structure, and behavior. It focuses on the four aspects and three types of data structure involved in the integration and exchange of process asset lifecycle data, comprehensively analyzes the relevant standards for data exchange between homogeneous and heterogeneous systems, and summarizes the problems and challenges in existing standardization work. Finally, prospects are made from four aspects, including strengthening the standardization of asset lifecycle data management, developing engineering software, engineering data governance and digital capability building for operation platforms, and asset lifecycle digital twin applications.

Key words: process industry, information model, asset lifecycle management, engineering technology

摘要:

将ET、OT和IT数据融合,构建企业唯一可信数据源,是石化企业数字化转型的数据基础和数据应用的关键。而ET数据具有数据量大、关系复杂、变更频繁、非结构化等特征,如何基于统一信息模型在项目利益方之间实现数据集成和交换面临着诸多挑战。为此,DEXPI、NAMUR等国际性组织正在推动流程工业资产生命周期管理的标准化工作。本文首先概述了工程数据的特征及管理难题,介绍了信息模型概念,并从功能、结构和行为3个维度分析了过程系统工程建模的特征;重点阐述了石化资产生命周期数据集成和交换涉及的4大阶段、3种数据结构特征,全面分析了同构及异构系统之间数据交换的相关标准,总结了现有标准化工作存在的问题和挑战。最后,从资产生命周期管理标准化工作、研发设计类工业软件发展、工程数据治理及运营平台数字化能力建设、资产生命周期数字孪生应用等4个方面进行了展望。

关键词: 流程工业, 信息模型, 资产生命周期管理, 工程技术

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd