Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (11): 6642-6659.DOI: 10.16085/j.issn.1000-6613.2024-1674
• Resources and environmental engineering • Previous Articles
NIU Fangfang1,2(
), SUN Yangjie1,2, YANG Shenghua1,2, WANG Jiancheng2, MI Jie1,2, FENG Yu1,2(
)
Received:2024-10-18
Revised:2024-11-25
Online:2025-12-08
Published:2025-11-25
Contact:
FENG Yu
牛芳芳1,2(
), 孙阳杰1,2, 杨盛华1,2, 王建成2, 米杰1,2, 冯宇1,2(
)
通讯作者:
冯宇
作者简介:牛芳芳(1998—),女,硕士研究生,研究方向为气体净化。E-mail:1053940147@qq.com。
基金资助:CLC Number:
NIU Fangfang, SUN Yangjie, YANG Shenghua, WANG Jiancheng, MI Jie, FENG Yu. Research progress on the purification of gas pollutants by MOFs/electrospun nanofibers and their derived materials[J]. Chemical Industry and Engineering Progress, 2025, 44(11): 6642-6659.
牛芳芳, 孙阳杰, 杨盛华, 王建成, 米杰, 冯宇. MOFs/静电纺丝纳米纤维及其衍生材料对气体污染物净化的研究进展[J]. 化工进展, 2025, 44(11): 6642-6659.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1674
| 序号 | MOF | 化学式 | 备注 |
|---|---|---|---|
| 1 | ZIF-8 | Zn(MIM)2 | MIM:2-甲基咪唑盐 |
| 2 | ZIF-67 | Co(MIM)2 | |
| 3 | MIL-53(Al)-NH2 | Al(OH)(BDC-NH2) | BDC-NH2:1,4-苯二甲酰二胺 |
| 4 | MIL-53 | Al(OH)(BDC) | BDC:苯二甲酸 |
| 5 | MIL-101 | Cr3O(H2O)2F·(BDC)3·nH2O | |
| 6 | UiO-66 | Zr6O6(BDC)6 | |
| 7 | UiO-67 | Zr6O6(BPDC)6 | BPDC:4,4-联苯二甲酸 |
| 8 | UiO-68 | Zr6O6(TPDC)6 | TPDC:三联苯二甲酸 |
| 9 | IRMOF-1 | Zn4O(BDC)3·7DEF·3H2O | DEF:N,N-二乙基甲酰胺 |
| 10 | IRMOF-16 | Zn4O(TPDC)3·17DEF·2H2O | |
| 11 | MOF-101 | Cu2(BDC-Br)2(H2O)2 | BDC-Br:2-溴-1,4-对苯二甲酸 |
| 12 | MOF-303 | Al(OH)(PZDC) | PZDC:吡嗪-2,3-二羧酸酯 |
| 13 | MOF-545 | Zr6O8(H2O)8(TCPP-H2)2 | TCPP:四(4-羧基苯基)卟啉 |
| 14 | MOF-808 | Zr6O4(OH)4(BTC)2(HCOO)6 | BTC:1,3,5-苯三甲酸 |
| 序号 | MOF | 化学式 | 备注 |
|---|---|---|---|
| 1 | ZIF-8 | Zn(MIM)2 | MIM:2-甲基咪唑盐 |
| 2 | ZIF-67 | Co(MIM)2 | |
| 3 | MIL-53(Al)-NH2 | Al(OH)(BDC-NH2) | BDC-NH2:1,4-苯二甲酰二胺 |
| 4 | MIL-53 | Al(OH)(BDC) | BDC:苯二甲酸 |
| 5 | MIL-101 | Cr3O(H2O)2F·(BDC)3·nH2O | |
| 6 | UiO-66 | Zr6O6(BDC)6 | |
| 7 | UiO-67 | Zr6O6(BPDC)6 | BPDC:4,4-联苯二甲酸 |
| 8 | UiO-68 | Zr6O6(TPDC)6 | TPDC:三联苯二甲酸 |
| 9 | IRMOF-1 | Zn4O(BDC)3·7DEF·3H2O | DEF:N,N-二乙基甲酰胺 |
| 10 | IRMOF-16 | Zn4O(TPDC)3·17DEF·2H2O | |
| 11 | MOF-101 | Cu2(BDC-Br)2(H2O)2 | BDC-Br:2-溴-1,4-对苯二甲酸 |
| 12 | MOF-303 | Al(OH)(PZDC) | PZDC:吡嗪-2,3-二羧酸酯 |
| 13 | MOF-545 | Zr6O8(H2O)8(TCPP-H2)2 | TCPP:四(4-羧基苯基)卟啉 |
| 14 | MOF-808 | Zr6O4(OH)4(BTC)2(HCOO)6 | BTC:1,3,5-苯三甲酸 |
| 序号 | MOF种类 | 制备方法 | 应用 | 吸附性能 | 参考文献 |
|---|---|---|---|---|---|
| 1 | MIL-125① | 溶剂热法 | SO2 | 10.9mmol/g | [ |
| 2 | NH2-MIL-53(Al) | 溶剂热法 | SO2 | 5.21mmol/g | [ |
| 3 | (Na,Mn)-BTC② | 溶剂热法、空气煅烧 | SO2 | 46.8mmol/g | [ |
| 4 | Mg-MOF-74③ | 溶剂热法 | H2S | 0.24mmol/g | [ |
| 5 | MIL-101 | 溶剂热法 | H2S | 38.4mmol/g | [ |
| 6 | (Na,Mn)-BTC | 溶剂热法、空气煅烧 | H2S | 818.7mg/g | [ |
| 7 | Mg-MOF-74 | 溶剂热法 | CO2 | 1.35mmol/g | [ |
| 8 | Cu-BTC(HKUST-1)④ | 溶剂热法 | CO2 | 9.33mmol/g | [ |
| 序号 | MOF种类 | 制备方法 | 应用 | 吸附性能 | 参考文献 |
|---|---|---|---|---|---|
| 1 | MIL-125① | 溶剂热法 | SO2 | 10.9mmol/g | [ |
| 2 | NH2-MIL-53(Al) | 溶剂热法 | SO2 | 5.21mmol/g | [ |
| 3 | (Na,Mn)-BTC② | 溶剂热法、空气煅烧 | SO2 | 46.8mmol/g | [ |
| 4 | Mg-MOF-74③ | 溶剂热法 | H2S | 0.24mmol/g | [ |
| 5 | MIL-101 | 溶剂热法 | H2S | 38.4mmol/g | [ |
| 6 | (Na,Mn)-BTC | 溶剂热法、空气煅烧 | H2S | 818.7mg/g | [ |
| 7 | Mg-MOF-74 | 溶剂热法 | CO2 | 1.35mmol/g | [ |
| 8 | Cu-BTC(HKUST-1)④ | 溶剂热法 | CO2 | 9.33mmol/g | [ |
| MOFs种类 | 复合纳米纤维 | 制备方法 | 应用 | 性能 | 参考文献 |
|---|---|---|---|---|---|
| ZIF-8 | PAN/MOF | 直接混纺 | PMs | 91.79%(PM2.5) | [ |
| ZIF-8 | PI-ZIF-10 | 直接混纺 | PMs | 96.60%(PM2.5) | [ |
| ZIF-8 | PES@7%ZIF-8 | 直接混纺 | PMs | 99.95%(PM0.3) | [ |
| ZIF-67 | PEI/ZIF-67–2 | 直接混纺 | PMs | 98.68%(PM2.5) | [ |
| Cu-MOF①、Tb-MOF② | Cu/Tb SBS-NFs | 直接混纺 | PMs | 90.20%(PM0.3) | [ |
| MOF-801③ | MOF-801-30@PVDF MNF | 直接混纺 | PMs | 64.46%(PM2.5) | [ |
| UiO-66-NH2 | OPASS/UiO-66-NH2(15min) | 原位生长 | PMs | 99.98%(PM2.5) | [ |
| MOF-303 | PI@MOF-303 | 原位生长 | PMs | 95.70%(PM0.3) | [ |
| ZIF-67 | ZIF-67@PAN | 原位生长 | PMs | 87.20%(PM2.5) | [ |
| ZIF-8 | PLA/TZ | 原位生长 | PMs | 99.97%(PM2.5) | [ |
| ZIF-67 | MnO2@Co-C@SiO2 | 原位生长、氧化 | PMs | 99.99%(PM2.5) | [ |
| ZIF-67 | Co3O4-C300@SiO2 | 原位生长、碳化、氧化 | PMs | 99.99%(PM2.5) | [ |
| Ni-CAT-1④ | PAN-MH3 | 二次生长 | PMs | 90.00%(PM2.5) | [ |
| ZIF-67 | PLA@ZIF-67 | 喷雾 | PMs | 97.10%(PM0.3) | [ |
| UiO-66-NH2 | UiO-66-NH2/PAN | 直接混纺 | 气态污染物 | 0.019g/g(SO2) | [ |
| UiO-66 | 6FDA-DMN/90 | 直接混纺 | 气态污染物 | 142mg/g(甲苯) | [ |
| ZIF-8 | N-CF-N2 | 直接混纺、碳化 | 气态污染物 | 694mg/g(苯) | [ |
| MIL-101 | PAN/MIL-101-20% | 直接混纺 | 气态污染物 | 2.48mmol/g(CO2) | [ |
| HKUST-1 | PAN/HKUST-1(60%) | 直接混纺 | 气态污染物 | 2.55mmol/g(CO2) | [ |
| ZIF-8 | ZIF@PLA-P | 原位生长 | 气态污染物 | 0.169mmol/g(SO2) | [ |
| ZIF-67 | ZIF-67@SiO2-24h | 原位生长 | 气态污染物 | 1013mg/g(SO2) | [ |
| ZIF-67 | ZIF-67/RSCA-0.1mol/L | 原位生长 | 气态污染物 | 1.33mmol/g(CO2) | [ |
| HKUST-1 | HK@Cu-NF | 原位生长 | 气态污染物 | 2.73mmol/g(甲苯) | [ |
| Zn-Co-ZIF⑤ | Zn x Co3-x O4/CNFs | 原位生长、碳化、氧化 | 气态污染物 | 12.4g S/(100g吸附剂)(H2S) | [ |
| HKUST-1 | MOF-PP/ALD(ZnO) | 原子层沉积 | 气态污染物 | 5.93mol/kg(NH3) | [ |
| HKUST-1 | HKUST-1/聚丙烯 | 原子层沉积 | 气态污染物 | 1.49mol/kg(H2S) | [ |
| ZIF-8 | PAN@ZIF-8 | 二次生长 | 气态污染物 | 13.3cm3/g(CO2) | [ |
| HKUST-1 | PAN/HK@HK3-A NFMs | 二次生长 | 气态污染物 | 3.9mmol/g(CO2) | [ |
| HKUST-1 | PAN/HKUST-1 | 二次生长 | 气态污染物 | 31.2cm3/g(CO2) | [ |
| Cu-BTC | CNFs/Cu/BTC-3 | 逐层组装 | 气态污染物 | 9.5cm3/g(CO2) | [ |
| UTSA-16⑥ | CHF-UTSA-16 | 逐层组装 | 气态污染物 | 2mmol/g(CO2) | [ |
| MOF-545-Cu⑦ | MCP-500 | 直接混纺、碳化 | CO2转化 | 98.00%(在-0.8V FCO的法拉第效率) | [ |
| ZIF-67 | Co@CNFs | 直接混纺、碳化 | CO2转化 | 93.50%(产物选择性) | [ |
| ZIF-67 | SZIF-67/PAN | 原位生长、碳化 | CO2转化 | 39250μmol/(g·h)(CO生成率) | [ |
| ZIF-67 | Co@HCNFs-0.6-0.1 | 原位生长、碳化 | CO2转化 | 838mmol/(min·g)(环加成性能) | [ |
| MOFs种类 | 复合纳米纤维 | 制备方法 | 应用 | 性能 | 参考文献 |
|---|---|---|---|---|---|
| ZIF-8 | PAN/MOF | 直接混纺 | PMs | 91.79%(PM2.5) | [ |
| ZIF-8 | PI-ZIF-10 | 直接混纺 | PMs | 96.60%(PM2.5) | [ |
| ZIF-8 | PES@7%ZIF-8 | 直接混纺 | PMs | 99.95%(PM0.3) | [ |
| ZIF-67 | PEI/ZIF-67–2 | 直接混纺 | PMs | 98.68%(PM2.5) | [ |
| Cu-MOF①、Tb-MOF② | Cu/Tb SBS-NFs | 直接混纺 | PMs | 90.20%(PM0.3) | [ |
| MOF-801③ | MOF-801-30@PVDF MNF | 直接混纺 | PMs | 64.46%(PM2.5) | [ |
| UiO-66-NH2 | OPASS/UiO-66-NH2(15min) | 原位生长 | PMs | 99.98%(PM2.5) | [ |
| MOF-303 | PI@MOF-303 | 原位生长 | PMs | 95.70%(PM0.3) | [ |
| ZIF-67 | ZIF-67@PAN | 原位生长 | PMs | 87.20%(PM2.5) | [ |
| ZIF-8 | PLA/TZ | 原位生长 | PMs | 99.97%(PM2.5) | [ |
| ZIF-67 | MnO2@Co-C@SiO2 | 原位生长、氧化 | PMs | 99.99%(PM2.5) | [ |
| ZIF-67 | Co3O4-C300@SiO2 | 原位生长、碳化、氧化 | PMs | 99.99%(PM2.5) | [ |
| Ni-CAT-1④ | PAN-MH3 | 二次生长 | PMs | 90.00%(PM2.5) | [ |
| ZIF-67 | PLA@ZIF-67 | 喷雾 | PMs | 97.10%(PM0.3) | [ |
| UiO-66-NH2 | UiO-66-NH2/PAN | 直接混纺 | 气态污染物 | 0.019g/g(SO2) | [ |
| UiO-66 | 6FDA-DMN/90 | 直接混纺 | 气态污染物 | 142mg/g(甲苯) | [ |
| ZIF-8 | N-CF-N2 | 直接混纺、碳化 | 气态污染物 | 694mg/g(苯) | [ |
| MIL-101 | PAN/MIL-101-20% | 直接混纺 | 气态污染物 | 2.48mmol/g(CO2) | [ |
| HKUST-1 | PAN/HKUST-1(60%) | 直接混纺 | 气态污染物 | 2.55mmol/g(CO2) | [ |
| ZIF-8 | ZIF@PLA-P | 原位生长 | 气态污染物 | 0.169mmol/g(SO2) | [ |
| ZIF-67 | ZIF-67@SiO2-24h | 原位生长 | 气态污染物 | 1013mg/g(SO2) | [ |
| ZIF-67 | ZIF-67/RSCA-0.1mol/L | 原位生长 | 气态污染物 | 1.33mmol/g(CO2) | [ |
| HKUST-1 | HK@Cu-NF | 原位生长 | 气态污染物 | 2.73mmol/g(甲苯) | [ |
| Zn-Co-ZIF⑤ | Zn x Co3-x O4/CNFs | 原位生长、碳化、氧化 | 气态污染物 | 12.4g S/(100g吸附剂)(H2S) | [ |
| HKUST-1 | MOF-PP/ALD(ZnO) | 原子层沉积 | 气态污染物 | 5.93mol/kg(NH3) | [ |
| HKUST-1 | HKUST-1/聚丙烯 | 原子层沉积 | 气态污染物 | 1.49mol/kg(H2S) | [ |
| ZIF-8 | PAN@ZIF-8 | 二次生长 | 气态污染物 | 13.3cm3/g(CO2) | [ |
| HKUST-1 | PAN/HK@HK3-A NFMs | 二次生长 | 气态污染物 | 3.9mmol/g(CO2) | [ |
| HKUST-1 | PAN/HKUST-1 | 二次生长 | 气态污染物 | 31.2cm3/g(CO2) | [ |
| Cu-BTC | CNFs/Cu/BTC-3 | 逐层组装 | 气态污染物 | 9.5cm3/g(CO2) | [ |
| UTSA-16⑥ | CHF-UTSA-16 | 逐层组装 | 气态污染物 | 2mmol/g(CO2) | [ |
| MOF-545-Cu⑦ | MCP-500 | 直接混纺、碳化 | CO2转化 | 98.00%(在-0.8V FCO的法拉第效率) | [ |
| ZIF-67 | Co@CNFs | 直接混纺、碳化 | CO2转化 | 93.50%(产物选择性) | [ |
| ZIF-67 | SZIF-67/PAN | 原位生长、碳化 | CO2转化 | 39250μmol/(g·h)(CO生成率) | [ |
| ZIF-67 | Co@HCNFs-0.6-0.1 | 原位生长、碳化 | CO2转化 | 838mmol/(min·g)(环加成性能) | [ |
| [79] | RU Ziwei, ZHANG Xin, ZHANG Man, et al. Bimetallic-MOF-derived Zn x Co3- x O4/carbon nanofiber composited sorbents for high-temperature coal gas desulfurization[J]. Environmental Science & Technology, 2022, 56(23): 17288-17297. |
| [80] | ZHANG Ziying, DAI Yu, ZHANG Shiyi, et al. Porous framework materials for CO2 capture[J]. Journal of Energy Chemistry, 2025, 101: 278-297. |
| [81] | REN Xiaomin, LI He, CHEN Jian, et al. N-doped porous carbons with exceptionally high CO2 selectivity for CO2 capture[J]. Carbon, 2017, 114: 473-481. |
| [82] | ZHU Chang, SHEN Guofei, CHEN Wei, et al. Copper hollow fiber electrode for efficient CO2 electroreduction[J]. Journal of Power Sources, 2021, 495: 229814. |
| [83] | XIN Zhifeng, YUAN Zibo, LIU Jingjing, et al. Cu cluster embedded porous nanofibers for high-performance CO2 electroreduction[J]. Chinese Chemical Letters, 2023, 34(4): 107458. |
| [84] | LIN Pengfei, QU Xiwei, DEKA Bhaskar Jyoti, et al. Engineering ZIF-67 loaded nanofibrous membrane with thermal stabilization treatment for efficient photocatalytic CO2 reduction[J]. Chemical Engineering Journal, 2024, 489: 151268. |
| [85] | ATIGHI Milad, HASANZADEH Miladi, SADATALHOSSEINI Ali Asghar, et al. Metal-organic framework@graphene oxide composite-incorporated polyacrylonitrile nanofibrous filters for highly efficient particulate matter removal and breath monitoring[J]. Industrial & Engineering Chemistry Research, 2022, 61(51): 18613-18624. |
| [86] | HAO Zhimin, WU Juntao, WANG Chaolu, et al. Electrospun polyimide/metal-organic framework nanofibrous membrane with superior thermal stability for efficient PM2.5 capture[J]. ACS Applied Materials & Interfaces, 2019, 11(12): 11904-11909. |
| [87] | LI Yajian, YUAN Ding, GENG Qian, et al. MOF-embedded bifunctional composite nanofiber membranes with a tunable hierarchical structure for high-efficiency PM0.3 purification and oil/water separation[J]. ACS Applied Materials & Interfaces, 2021, 13(33): 39831-39843. |
| [88] | ZHOU Changzhe, HAN Wenjing, YANG Xingda, et al. Electrospun polyetherimide/zeolitic imidazolate framework nanofibrous membranes for enhanced air filtration performance under high temperature and high humidity conditions[J]. Chemical Engineering Journal, 2022, 433: 134069. |
| [89] | LEE Minju, OJHA Gunendra Prasad, Hyun Ju OH, et al. Copper//terbium dual metal organic frameworks incorporated side-by-side electrospun nanofibrous membrane: A novel tactics for an efficient adsorption of particulate matter and luminescence property[J]. Journal of Colloid and Interface Science, 2020, 578: 155-163. |
| [90] | JANG Sanha, JUNG Sungwoo, SONG Sehwan, et al. Preparation and characterization of multifunctional nanofibers containing metal-organic frameworks and Cu2O nanoparticles: Particulate matter capture and antibacterial activity[J]. Environmental Science: Nano, 2021, 8(5): 1226-1235. |
| [91] | WEI Zhimei, GONG Ao, SU Qing, et al. In-situ grown UiO-66-NH2 nanofibrous membrane for highly effective capture PM2.5 and VOCs[J]. Industrial & Engineering Chemistry Research, 2023, 62(26): 10133-10143. |
| [92] | Won-Tae KOO, HONG Youngsun, JOUNG Daeha, et al. Surface hydration of fibrous filters by using water-absorbing metal-organic frameworks for efficient ultrafine particulate matter removal[J]. Chemical Engineering Journal, 2022, 446: 136710. |
| [93] | BIAN Ye, WANG Rutao, WANG Shijie, et al. Metal-organic framework-based nanofiber filters for effective indoor air quality control[J]. Journal of Materials Chemistry A, 2018, 6(32): 15807-15814. |
| [94] | LIN Minggang, SHEN Jinlin, QIAN Qiaonan, et al. Fabrication of poly(lactic acid)@TiO2 electrospun membrane decorated with metal-organic frameworks for efficient air filtration and bacteriostasis[J]. Polymers, 2024, 16(7): 889. |
| [95] | LEE Hansol, JEON Sangmin. Polyacrylonitrile nanofiber membranes modified with Ni-based conductive metal organic frameworks for air filtration and respiration monitoring[J]. ACS Applied Nano Materials, 2020, 3(8): 8192-8198. |
| [96] | ZHANG Yuanyuan, YUAN Shuai, FENG Xiao, et al. Preparation of nanofibrous metal-organic framework filters for efficient air pollution control[J]. Journal of the American Chemical Society, 2016, 138(18): 5785-5788. |
| [97] | TOPUZ Fuat, ABDULHAMID Mahmoud A, HARDIAN Rifan, et al. Nanofibrous membranes comprising intrinsically microporous polyimides with embedded metal-organic frameworks for capturing volatile organic compounds[J]. Journal of Hazardous Materials, 2022, 424: 127347. |
| [98] | CHOI Chungjung, KADAM Rahul L, GAIKWAD Sanjit, et al. Metal organic frameworks immobilized polyacrylonitrile fiber mats with polyethyleneimine impregnation for CO2 capture[J]. Microporous and Mesoporous Materials, 2020, 296: 110006. |
| [99] | LEE Jinwook, JUNG Seojin, PARK Hanjou, et al. Bifunctional ZIF-8 grown webs for advanced filtration of particulate and gaseous matters: Effect of charging process on the electrostatic capture of nanoparticles and sulfur dioxide[J]. ACS Applied Materials & Interfaces, 2021, 13(42): 50401-50410. |
| [100] | YIN Linghui, HU Min, LI Dongyan, et al. Multifunctional ZIF-67@SiO2 membrane for high efficiency removal of particulate matter and toxic gases[J]. Industrial & Engineering Chemistry Research, 2020, 59(40): 17876-17884. |
| [101] | MO Jieqiong, HU Die, LIU Xin, et al. Eco-friendly ZIF-67/rice straw-derived cellulose acetate electrospun nanofiber mats for efficient CO2 capturing and selectivity removal of methyl orange dye[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108989. |
| [102] | LIU Liming, LI Junjie, SUBHAN Sidra, et al. Construction of HKUST-1@Cu nanofibers with thermal conductive adsorption sites for synchronous enhancement of toluene adsorption and desorption efficiency[J]. Separation and Purification Technology, 2024, 339: 126624. |
| [1] | DUAN Xiaoyi, CHEN Xiangmeng, LI Cheng, et al. Progress of MOFs and their derivatives for mitigating air pollution[J]. Advanced Composites and Hybrid Materials, 2024, 7(4): 114. |
| [2] | WANG Fei, GAO Ya, LIU Shanshan, et al. Fabrication strategies of metal-organic frameworks derivatives for catalytic aqueous pollutants elimination[J]. Chemical Engineering Journal, 2023, 463: 142466. |
| [3] | CHEN Liyu, WANG Haofan, LI Caixia, et al. Bimetallic metal-organic frameworks and their derivatives[J]. Chemical Science, 2020, 11(21): 5369-5403. |
| [4] | LI Xiangye, ZHOU Ruifeng, WANG Zhenzhen, et al. Electrospun metal-organic framework based nanofibers for energy storage and environmental applications: Current approaches and challenges[J]. Journal of Materials Chemistry A, 2022, 10(4): 1642-1681. |
| [5] | PETERSON Gregory W, LEE Dennis T, BARTON Heather F, et al. Fibre-based composites from the integration of metal-organic frameworks and polymers[J]. Nature Reviews Materials, 2021, 6(7): 605-621. |
| [6] | ZHANG Xiongfei, WANG Zhongguo, DING Meili, et al. Advances in cellulose-metal organic framework composites: Preparation and applications[J]. Journal of Materials Chemistry A, 2021, 9(41): 23353-23363. |
| [7] | YAGHI O M, LI Guangming, LI Hailian. Selective binding and removal of guests in a microporous metal-organic framework[J]. Nature, 1995, 378(6558): 703-706. |
| [8] | YU Meihui, GENG Lin, CHANG Ze, et al. Coordination bonding directed molecular assembly toward functional metal-organic frameworks: From structural regulation to properties modulation[J]. Accounts of Materials Research, 2023, 4(10): 839-853. |
| [9] | STOCK Norbert, BISWAS Shyam. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites[J]. Chemical Reviews, 2012, 112(2): 933-969. |
| [10] | SAFAEI Mohadeseh, FOROUGHI Mohammad Mehdi, EBRAHIMPOOR Nasser, et al. A review on metal-organic frameworks: Synthesis and applications[J]. TrAC Trends in Analytical Chemistry, 2019, 118: 401-425. |
| [11] | SHI Jing, WANG Shun, WANG Mingjie, et al. Robust salen-typed Ce-MOFs supported Fe(Ⅲ) catalyst fabricated by metalloligand strategy for catalytic epoxides with alcohols[J]. Molecular Catalysis, 2022, 533: 112764. |
| [12] | LEI Yuanhang, XIE Jiangqin, QUAN Wenxuan, et al. Advances in the adsorption of heavy metal ions in water by UiO-66 composites[J]. Frontiers in Chemistry, 2023, 11: 1211989. |
| [103] | ZHAO Junjie, LOSEGO Mark D, LEMAIRE Paul C, et al. Highly adsorptive, MOF-functionalized nonwoven fiber mats for hazardous gas capture enabled by atomic layer deposition[J]. Advanced Materials Interfaces, 2014, 1(4): 1400040. |
| [104] | GAO Ming, ZENG Lingwang, NIE Jun, et al. Polymer-metal-organic framework core-shell framework nanofibers via electrospinning and their gas adsorption activities[J]. RSC Advances, 2016, 6(9): 7078-7085. |
| [105] | Wahiduzzaman, KHAN Mujibur R, HARP Spencer, et al. Processing and performance of MOF (metal organic framework)-loaded PAN nanofibrous membrane for CO2 adsorption[J]. Journal of Materials Engineering and Performance, 2016, 25(4): 1276-1283. |
| [106] | LAWSON Shane, ROWNAGHI Ali A, REZAEI Fateme. Carbon hollow fiber-supported metal-organic framework composites for gas adsorption[J]. Energy Technology, 2018, 6(4): 694-701. |
| [107] | QU Zhengyan, ZHOU Minghui, ZHANG Jiuxuan, et al. ZIF-derived Co@carbon nanofibers for enhanced chemical fixation of CO2 [J]. Separation and Purification Technology, 2023, 310: 123196. |
| [108] | QU Zhengyan, WANG Yingfan, ZHOU Minghui, et al. ZIF-derived Co@hollow carbon nanofibers boost CO2 chemical fixation[J]. Separation and Purification Technology, 2024, 346: 127561. |
| [13] | GAO Ya, WANG Fei, WANG Chongchen, et al. Microwave-assisted production of metal-organic frameworks for water purification: A mini-review[J]. Surfaces and Interfaces, 2024, 44: 103724. |
| [14] | WANG Fei, WANG Chongchen, YI Shouliang. Rational design and synthesis of metal-organic frameworks derivatives: A perspective on emerging techniques[J]. Chemical Engineering Journal, 2024, 495: 153398. |
| [15] | ZHANG Zhonghui, YANG Bolun, WU Yue, et al. Post modification of oxo-clusters in robust Zirconium-based metal organic framework for durable SO2 capture from flue gas[J]. Separation and Purification Technology, 2021, 276: 119349. |
| [16] | ABID Hussein Rasool, RADA Zana Hassan, LI Yuan, et al. Boosting CO2 adsorption and selectivity in metal-organic frameworks of MIL-96(Al) via second metal Ca coordination[J]. RSC Advances, 2020, 10(14): 8130-8139. |
| [17] | SUN Mingzhe, HANIF Aamir, WANG Tianqi, et al. Ambient temperature NO2 removal by reversible NO2 adsorption on copper-based metal-organic frameworks (MOFs)-derived nanoporous adsorbents[J]. Separation and Purification Technology, 2023, 314: 123563. |
| [18] | MOUNFIELD William P, HAN Chu, PANG Simon H, et al. Synergistic effects of water and SO2 on degradation of MIL-125 in the presence of acid gases[J]. The Journal of Physical Chemistry C, 2016, 120(48): 27230-27240. |
| [19] | NOUSHADI Atefeh, FOTOVAT Farzam, HAMZEHLOUYAN Tayebeh, et al. Application of an amino-functionalized MIL-53(Al) MOF as an efficient, selective, and durable adsorbent for SO2 removal[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108768. |
| [20] | GUPTA Nishesh Kumar, Jiyeol BAE, BAEK Soyoung, et al. Metal-organic framework-derived NaM x O y adsorbents for low-temperature SO2 removal[J]. Chemosphere, 2022, 291: 132836. |
| [21] | LIU Jia, WEI Yajuan, LI Peizhou, et al. Selective H2S/CO2 separation by metal-organic frameworks based on chemical-physical adsorption[J]. The Journal of Physical Chemistry C, 2017, 121(24): 13249-13255. |
| [22] | HAMON Lomig, SERRE Christian, DEVIC Thomas, et al. Comparative study of hydrogen sulfide adsorption in the MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) metal-organic frameworks at room temperature[J]. Journal of the American Chemical Society, 2009, 131(25): 8775-8777. |
| [23] | GUPTA Nishesh Kumar, Jiyeol BAE, KIM Kwang Soo. Metal-organic framework-derived NaMn x O y hexagonal microsheets for superior adsorptive-oxidative removal of hydrogen sulfide in ambient conditions[J]. Chemical Engineering Journal, 2022, 427: 130909. |
| [24] | CHOI Sunho, WATANABE Taku, Tae-Hyun BAE, et al. Modification of the Mg/DOBDC MOF with amines to enhance CO2 adsorption from ultradilute gases[J]. The Journal of Physical Chemistry Letters, 2012, 3(9): 1136-1141. |
| [25] | LIU Yuanyuan, LIU Suqin, GONÇALVES Alexandre A S, et al. Effect of metal-ligand ratio on the CO2 adsorption properties of Cu-BTC metal-organic frameworks[J]. RSC Advances, 2018, 8(62): 35551-35556. |
| [26] | SALEEM Haleema, TRABZON Levent, KILIC Ali, et al. Recent advances in nanofibrous membranes: Production and applications in water treatment and desalination[J]. Desalination, 2020, 478: 114178. |
| [27] | ABDULHUSSAIN Rand, ADEBISI Adeola, CONWAY Barbara R, et al. Electrospun nanofibers: Exploring process parameters, polymer selection, and recent applications in pharmaceuticals and drug delivery[J]. Journal of Drug Delivery Science and Technology, 2023, 90: 105156. |
| [28] | KANG Yutang, Ze-Xian LOW, ZOU Dong, et al. Multifunctional nanofibrous membranes for integrated air purification[J]. Advanced Fiber Materials, 2024, 6(5): 1306-1342. |
| [29] | GENG Qian, PU Yi, LI Yajian, et al. Multi-component nanofiber composite membrane enabled high PM0.3 removal efficiency and oil/water separation performance in complex environment[J]. Journal of Hazardous Materials, 2022, 422: 126835. |
| [30] | SONG Xiaofeng, WANG Zhaojie, LI Zhenyu, et al. Ultrafine porous carbon fibers for SO2 adsorption via electrospinning of polyacrylonitrile solution[J]. Journal of Colloid and Interface Science, 2008, 327(2): 388-392. |
| [31] | ZAINAB Ghazala, BABAR Aijaz Ahmed, Nadir ALI, et al. Electrospun carbon nanofibers with multi-aperture/opening porous hierarchical structure for efficient CO2 adsorption[J]. Journal of Colloid and Interface Science, 2020, 561: 659-667. |
| [32] | ZHANG Xin, RU Ziwei, SUN Yangjie, et al. Recent advances in applications for air pollutants purification and perspectives of electrospun nanofibers[J]. Journal of Cleaner Production, 2022, 378: 134567. |
| [33] | SUN Yangjie, ZHANG Xin, ZHANG Man, et al. Rational design of electrospun nanofibers for gas purification: Principles, opportunities, and challenges[J]. Chemical Engineering Journal, 2022, 446: 137099. |
| [34] | ROSE Marcus, Bertram BÖHRINGER, JOLLY Marc, et al. MOF processing by electrospinning for functional textiles[J]. Advanced Engineering Materials, 2011, 13(4): 356-360. |
| [35] | WU Huizhi, HU Zunpeng, GENG Qian, et al. Facile preparation of CuMOF-modified multifunctional nanofiber membrane for high-efficient filtration/separation in complex environments[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651: 129656. |
| [36] | ZHAO Guodong, LIU Ya, PAN Jingyu, et al. Flexible nanofibrous membranes of dual metallic metal-organic framework with enhanced Lewis basic sites and high loading mass for efficient CO2 capture[J]. Journal of Colloid and Interface Science, 2023, 651: 200-210. |
| [37] | ZHAO Rui, TIAN Yuyang, LI Shuying, et al. An electrospun fiber based metal-organic framework composite membrane for fast, continuous, and simultaneous removal of insoluble and soluble contaminants from water[J]. Journal of Materials Chemistry A, 2019, 7(39): 22559-22570. |
| [38] | JIN Rizhe, BIAN Zheng, LI Jizhen, et al. ZIF-8 crystal coatings on a polyimide substrate and their catalytic behaviours for the Knoevenagel reaction[J]. Dalton Transactions, 2013, 42(11): 3936-3940. |
| [39] | ZHANG Yuge, ZHANG Yufei, WANG Xianfeng, et al. Ultrahigh metal-organic framework loading and flexible nanofibrous membranes for efficient CO2 capture with long-term, ultrastable recyclability[J]. ACS Applied Materials & Interfaces, 2018, 10(40): 34802-34810. |
| [40] | ARMSTRONG Mitchell R, SHAN Bohan, MU Bin. Microscopy study of morphology of electrospun fiber-MOF composites with secondary growth[J]. MRS Advances, 2017, 2(46): 2457-2463. |
| [41] | CHANG Mengjie, CUI Wenna, CHAI Xiaojiao, et al. Fabrication of flexible MIL-100(Fe) supported SiO2 nanofibrous membrane for visible light photocatalysis[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(2): 1009-1016. |
| [42] | SHANGGUAN Jinhong, BAI Lu, LI Yang, et al. Layer-by-layer decoration of MOFs on electrospun nanofibers[J]. RSC Advances, 2018, 8(19): 10509-10515. |
| [43] | BECHELANY M, DROBEK M, VALLICARI C, et al. Highly crystalline MOF-based materials grown on electrospun nanofibers[J]. Nanoscale, 2015, 7(13): 5794-5802. |
| [44] | ZHAO Junjie, LEE Dennis T, YAGA Robert W, et al. Ultra-fast degradation of chemical warfare agents using MOF-nanofiber kebabs[J]. Angewandte Chemie International Edition, 2016, 55(42): 13224-13228. |
| [45] | BIAN Ye, NIU Zhuolun, ZHANG Chencheng, et al. Encrusting MOF nanoparticles onto nanofibers via spray-initiated synthesis to boost the filtration performances of nanofiber membranes[J]. Separation and Purification Technology, 2024, 331: 125569. |
| [46] | ZHU Guiying, LI Xinyu, LI Xiaopeng, et al. Nanopatterned electroactive polylactic acid nanofibrous MOFilters for efficient PM0.3 filtration and bacterial inhibition[J]. ACS Applied Materials & Interfaces, 2023, 15(40): 47145-47157. |
| [47] | WANG Hang, ZHANG Xingmao, YAO Ruxin, et al. In situ rapid versatile method for the preparation of zirconium metal-organic framework filters[J]. Science China Chemistry, 2022, 65(12): 2462-2467. |
| [48] | CHEN Saisai, LI Miaoqing, ZHANG Ming, et al. Metal organic framework derived one-dimensional porous Fe/N-doped carbon nanofibers with enhanced catalytic performance[J]. Journal of Hazardous Materials, 2021, 416: 126101. |
| [49] | ZHANG Chuanling, LU Bingrong, CAO Fuhu, et al. Electrospun metal-organic framework nanoparticle fibers and their derived electrocatalysts for oxygen reduction reaction[J]. Nano Energy, 2019, 55: 226-233. |
| [50] | ZHANG Chuanling, LU Bingrong, CAO Fuhu, et al. Hierarchically structured Co3O4@carbon porous fibers derived from electrospun ZIF-67/PAN nanofibers as anodes for lithium ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(27): 12962-12968. |
| [51] | ZHANG Yifei, CHEN Zihao, TIAN Jin, et al. Nitrogen doped CuCo2O4 nanoparticles anchored on beaded-like carbon nanofibers as an efficient bifunctional oxygen catalyst toward zinc-air battery[J]. Journal of Colloid and Interface Science, 2022, 608: 1105-1115. |
| [52] | WU Caiqin, LONG Zhiwen, DAI Han, et al. Flexible self-supporting MOF-based bean pod cube hollow nanofibers for ultralong cycling and high rate Na storage[J]. ACS Applied Materials & Interfaces, 2024, 16(8): 10545-10555. |
| [53] | WU Yingxiao, CHENG Jinqian, LIANG Zibin, et al. Construction of CoS-encapsulated in ultrahigh nitrogen doped carbon nanofibers from energetic metal-organic frameworks for superior sodium storage[J]. Carbon, 2022, 198: 353-363. |
| [54] | TIAN Di, CHEN Sihui, ZHU Wendong, et al. Metal-organic framework derived hierarchical Ni/Ni3S2 decorated carbon nanofibers for high-performance supercapacitors[J]. Materials Chemistry Frontiers, 2019, 3(8): 1653-1660. |
| [55] | HUANG Zhaoxia, LIU Xiaoxiao, ZHANG Xu, et al. Electrospun polyvinylidene fluoride containing nanoscale graphite platelets as electret membrane and its application in air filtration under extreme environment[J]. Polymer, 2017, 131: 143-150. |
| [56] | DENG Nanping, HE Hongsheng, YAN Jing, et al. One-step melt-blowing of multi-scale micro/nano fabric membrane for advanced air-filtration[J]. Polymer, 2019, 165: 174-179. |
| [57] | GUO Jiaxin, HANIF Aamir, SHANG Jin, et al. PAA@ZIF-8 incorporated nanofibrous membrane for high-efficiency PM2.5 capture[J]. Chemical Engineering Journal, 2021, 405: 126584. |
| [58] | BIAN Ye, NIU Zhuolun, WANG Shijie, et al. Removal of size-dependent submicron particles using metal-organic framework-based nanofiber air filters[J]. ACS Applied Materials & Interfaces, 2022,14(20): 23570-23576. |
| [59] | PAN Wei, WANG Jinping, SUN Xiaobo, et al. Ultra uniform metal-organic framework-5 loading along electrospun chitosan/polyethylene oxide membrane fibers for efficient PM2.5 removal[J]. Journal of Cleaner Production, 2021, 291: 125270. |
| [60] | ZHANG Yongqiang, SHAO Shuai, YE Pingwei, et al. In situ synthesis of hierarchical porous Zr-MOFs on columnar activated carbon and application in toxic gas adsorption[J]. Inorganic Chemistry, 2022, 61(46): 18355-18364. |
| [61] | DOU Yibo, ZHANG Wenjing, KAISER Andreas. Electrospinning of metal-organic frameworks for energy and environmental applications[J]. Advanced Science, 2020, 7(3): 1902590. |
| [62] | WANG Xiaoyu, XU Wenshi, GU Jin’ge, et al. MOF-based fibrous membranes adsorb PM efficiently and capture toxic gases selectively[J]. Nanoscale, 2019, 11(38): 17782-17790. |
| [63] | KIM Minbeom, YANG Eunmok, LIANG Yejin, et al. Rational design of a necklace-like ZIF-67/poly(vinylidene fluoride) electrospun nanofiber hybrid membrane for simultaneous removal of PM0.3 and SO2 [J]. ACS Applied Materials & Interfaces, 2024, 16(12): 15348-15361. |
| [64] | ZHAO Junjie, GONG Bo, NUNN William T, et al. Conformal and highly adsorptive metal-organic framework thin films via layer-by-layer growth on ALD-coated fiber mats[J]. Journal of Materials Chemistry A, 2015, 3(4): 1458-1464. |
| [65] | CUSTELCEAN Radu. Direct air capture of CO2 using solvents[J]. Annual Review of Chemical and Biomolecular Engineering, 2022, 13: 217-234. |
| [66] | HE Xiang, CHEN Daren, WANG Weining. Bimetallic metal-organic frameworks (MOFs) synthesized using the spray method for tunable CO2 adsorption[J]. Chemical Engineering Journal, 2020, 382: 122825. |
| [67] | AKINOLA Toluleke Emmanuel, Eni OKO, WANG Meihong. Study of CO2 removal in natural gas process using mixture of ionic liquid and MEA through process simulation[J]. Fuel, 2019, 236: 135-146. |
| [68] | Eni OKO, ZACCHELLO Baptiste, WANG Meihong, et al. Process analysis and economic evaluation of mixed aqueous ionic liquid and monoethanolamine (MEA) solvent for CO2 capture from a coke oven plant[J]. Greenhouse Gases: Science and Technology, 2018, 8(4): 686-700. |
| [69] | GAIKWAD Ranjit, GAIKWAD Sanjit, HAN Sangil. Piperazine-loaded electrospun fiber mats with MIL-101(Cr, Mg) metal organic framework for CO2 capture[J]. Journal of Environmental Chemical Engineering, 2023, 11(6): 111592. |
| [70] | JIAMJIRANGKUL Phendaow, INPRASIT Thitirat, INTASANTA Varol, et al. Metal organic framework-integrated chitosan/poly(vinyl alcohol) (PVA) nanofibrous membrane hybrids from green process for selective CO2 capture and filtration[J]. Chemical Engineering Science, 2020, 221: 115650. |
| [71] | GU Guangqin, HAN Changbao, LU Cunxin, et al. Triboelectric nanogenerator enhanced nanofiber air filters for efficient particulate matter removal[J]. ACS Nano, 2017, 11(6): 6211-6217. |
| [72] | ZHOU Huixian, ZENG Yiqing, Zexian LOW, et al. Core-dual-shell structure MnO2@Co-C@SiO2 nanofiber membrane for efficient indoor air cleaning[J]. Journal of Membrane Science, 2023, 677: 121644. |
| [73] | ZHOU Huixian, ZHONG Hui, ZENG Yiqing, et al. A strategy for constructing highly efficient Co3O4-C@SiO2 nanofibers catalytic membrane for NH3-SCR of NO and dust filtration[J]. Separation and Purification Technology, 2022, 292: 120997. |
| [74] | CHU Shaoqi, WANG Enlai, FENG Fushan, et al. A review of noble metal catalysts for catalytic removal of VOCs[J]. Catalysts, 2022, 12(12): 1543. |
| [75] | MU Yibing, WILLIAMS Paul T. Recent advances in the abatement of volatile organic compounds (VOCs) and chlorinated-VOCs by non-thermal plasma technology: A review[J]. Chemosphere, 2022, 308: 136481. |
| [76] | HUANG Yu, Steven Sai Hang HO, LU Yanfeng, et al. Removal of indoor volatile organic compounds via photocatalytic oxidation: A short review and prospect[J]. Molecules, 2016, 21(1): 56. |
| [77] | YANG Xing, WU Xianghua, CHEN Zhaoyang, et al. Hierarchically porous N-doped carbon nanofibers derived from ZIF-8/PAN composites for benzene adsorption[J]. Journal of Applied Polymer Science, 2021, 138(20): 50431. |
| [78] | 冯宇, 张鑫, 张曼, 等. 静电纺丝纤维对煤基气体污染物脱除研究进展[J]. 化工学报, 2021, 72(8): 3933-3945. |
| FENG Yu, ZHANG Xin, ZHANG Man, et al. Research progress on the removal of coal based gas pollutants by electrospun fibers[J]. CIESC Journal, 2021, 72(8): 3933-3945. |
| [1] | CHENG Qiwen, LI Qinghua, WANG Haofan, CAO Yonghai, WANG Hongjuan, YU Hao. Preparation and tribological properties of oleylamine-modified carbon coated molybdenum disulfide composites [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 400-412. |
| [2] | BAO Xinde, LIU Biye, HUANG Renwei, HONG Yuhao, GUAN Xin, LIN Jinguo. Preparation of biomass-based@CuNiOS composite catalysts for the reduction of organic dye [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 185-196. |
| [3] | LIU Wenlong, MA Xiuqing, LI Changjin, HE Dongyang, GAO Jixing, ZHANG Yang, LI Manyi, YANG Weimin, LI Haoyi. LDPE/ PEW melt-blown microfiber and its nonwovens performance [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4032-4038. |
| [4] | FENG Sanzhe, KUANG Tangqing, LIU Hesheng, YANG Fan, CHEN Hao. Effect of projectile diameter on the quality of water projectile assisted co-injection molding fittings of short glass fiber reinforced polypropylene [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4061-4069. |
| [5] | CHEN Dongjian, SUN Yuqian, YIN Fengxiang. Preparation of FeNi3-Fe3O4/CN electrocatalysts and their electrocatalytic oxygen evolution performance [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3928-3937. |
| [6] | LI Peiyi, SUN Bolong, LIU Ruiyan, ZHOU Xinyao, LIU Ruilin, HU Yuanyuan, XU Gongtao, LI Xinping. Preparation of sodium alginate/titanium dioxide composite porous material and its application in oil-water separation [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3053-3061. |
| [7] | ZHOU Meimei, HE Jiahui, XIANG Wanting, SHANG Jiaxin, WEI Xinyu, SUN Mimi, ZOU Wei, LUO Pingping. Electrospun PVA/SiO2 nanofibers loaded with A-TiO2/BiOBr for enhanced visible light photocatalytic activity [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3084-3092. |
| [8] | WU Yali, ZHANG Xiaolin, GAO Limin, HUANG Maocai, CAI Bin, ZHANG Jibing. Technical progress in resource utilization of straw powder/fiber [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3509-3523. |
| [9] | WANG Linyan, ZHOU Pingde, ZHANG Yiduo, LIU Yuxi, HAO Mingzheng, LIANG Yurong. Preparation and performance of high thermal conductivity boron nitride/natural rubber nanocomposites [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3541-3549. |
| [10] | FU Yu, LI Xiaoyu, WU Yue, TAO Chunhui, DUAN Ran, ZHANG Wenxiang, MA Heping. Removal of trace NF3 impurities from electronic grade CF4 by adsorption [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3570-3578. |
| [11] | HAN Pei, LI Jinjian, KE Tian, ZHANG Zhiguo, BAO Zongbi, REN Qilong, YANG Qiwei. Advances in adsorption separation of sulfur hexafluoride/nitrogen by novel porous materials [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3592-3617. |
| [12] | ZHANG Shuxi, CHEN Peiting, PU Jianbo, WANG Yuzuo, RUAN Dianbo, QIAO Zhijun. Effect of air inlet on secondary particle size and electrochemical properties of silicon/carbon anode materials [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2196-2201. |
| [13] | AN Mingze, ZHANG Bingbing, WANG Sheng, CHEN Weijie, LIU Shiwang, XUE Bin, XU Guomin, QIN Shuhao. Research progress on carbon-based stereotyped composite phase change materials [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2102-2118. |
| [14] | SHAN Xueying, LI Lingyu, ZHANG Meng, ZHANG Jiafu, LI Jinchun. Preparation and properties of flame retardant epoxy resin/low molecular weight polyphenylene ether materials [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1533-1541. |
| [15] | MA Xiaoyu, ZHANG Yan, ZHOU Awu, LI Hanbing, YANG Feihua, LI Jianrong. Research progress on preparation and photocatalytic performance of MOF-on-MOF heterojunctions [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1417-1431. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |