Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (11): 6293-6309.DOI: 10.16085/j.issn.1000-6613.2023-1939
• Materials science and technology • Previous Articles
ZHANG Chao1(), SUN Jinsheng1(), LYU Kaihe1, HUANG Xianbin1, DAI Jiajun1, LI Mao2, YAO Rugang3
Received:
2023-11-03
Revised:
2023-12-25
Online:
2024-12-07
Published:
2024-11-15
Contact:
SUN Jinsheng
章超1(), 孙金声1(), 吕开河1, 黄贤斌1, 戴嘉君1, 李茂2, 姚如钢3
通讯作者:
孙金声
作者简介:
章超(1995—),男,博士研究生,研究方向为钻井液材料研发。E-mail:2249149267@qq.com。
基金资助:
CLC Number:
ZHANG Chao, SUN Jinsheng, LYU Kaihe, HUANG Xianbin, DAI Jiajun, LI Mao, YAO Rugang. Research progress and prospects of hydrophobic materials in oilfield chemistry[J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6293-6309.
章超, 孙金声, 吕开河, 黄贤斌, 戴嘉君, 李茂, 姚如钢. 疏水材料在油田化学领域研究进展与展望[J]. 化工进展, 2024, 43(11): 6293-6309.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1939
类别 | 结构/组成 | 代表物质 | 产生低表面能效应原理 | 成本及表面能对比 |
---|---|---|---|---|
有机氟(短链) | 短碳链化合物,氢部分或全部被氟替代 | 氟甲烷CH3F、四氟化碳CF4 | F原子电负性高,形成弱极性C-F键 | 成本高,降低表面能效果优 |
有机硅 | 硅原子与碳基团结合,形成硅-碳键 | 二甲基硅烷(CH3)2SiH2、乙基甲基硅氧烷CH3Si(O)C2H5 | 有机基团降低分子间作用力,Si-O键稳定 | 成本较高,降低表面能效果较优 |
长烷基链化合物 | 长直链或支链饱和碳氢化合物 | 十二烷、硬脂酸 | 长链定向减张力,低能界面稳定 | 成本最低,降低表面能效果最差 |
氟化硅氧烷 | 硅氧烷结构,部分氢被氟替代 | 三氟丙基甲基硅氧烷、全氟烷氧基硅氧烷 | 结合了有机氟侧链疏水性和硅氧链稳定性 | 成本最高,降低表面能效果最优 |
长链含氟烷基化合物 | 长碳链,部分碳原子氢被氟替代 | 全氟辛烷磺酸、全氟十二烷酸 | C-F键比C-H键更稳定,形成的低能界面更稳定 |
类别 | 结构/组成 | 代表物质 | 产生低表面能效应原理 | 成本及表面能对比 |
---|---|---|---|---|
有机氟(短链) | 短碳链化合物,氢部分或全部被氟替代 | 氟甲烷CH3F、四氟化碳CF4 | F原子电负性高,形成弱极性C-F键 | 成本高,降低表面能效果优 |
有机硅 | 硅原子与碳基团结合,形成硅-碳键 | 二甲基硅烷(CH3)2SiH2、乙基甲基硅氧烷CH3Si(O)C2H5 | 有机基团降低分子间作用力,Si-O键稳定 | 成本较高,降低表面能效果较优 |
长烷基链化合物 | 长直链或支链饱和碳氢化合物 | 十二烷、硬脂酸 | 长链定向减张力,低能界面稳定 | 成本最低,降低表面能效果最差 |
氟化硅氧烷 | 硅氧烷结构,部分氢被氟替代 | 三氟丙基甲基硅氧烷、全氟烷氧基硅氧烷 | 结合了有机氟侧链疏水性和硅氧链稳定性 | 成本最高,降低表面能效果最优 |
长链含氟烷基化合物 | 长碳链,部分碳原子氢被氟替代 | 全氟辛烷磺酸、全氟十二烷酸 | C-F键比C-H键更稳定,形成的低能界面更稳定 |
类别 | 疏水原理 | 表面水分布形态 |
---|---|---|
Young模型[ | 研究了液体在光滑基材表面的润湿性,描述固气、固液、液气界面张力γsg、γsl、γlg与接触角θ之间的关系,即γsg-γsl=γlgcosθ | |
Wenzel模型[ | 研究了液体在粗糙基材表面的润湿性,水相对表面凹槽的填充增大了水相的接触面积,若材料表面亲水,粗糙结构会增强表面的亲水性,反之,则更加疏水 | |
Cassie模型[ | 对Wenzel模型进一步研究,提出了复合接触理论[ | |
亚稳态模型[ | 基于能量势垒原则,外部干扰导致固液间气相不稳,水相浸润,呈现从Cassie到Wenzel的亚稳态 | |
荷叶态模型 | 荷叶表面含蜡状物质,产生自清洁的关键是表面结构,微米级乳突和纳米级小纤毛,能锁住空气、托起水滴,阻隔浸润 | |
壁虎态模型 | 壁虎脚掌表面有大量微米级刚毛和纳米级毛状物,形成密封和开放气囊,密封气囊与大气间的压差可产生强黏附力,开放气囊可提高表面疏水性,赋予壁虎强黏附性和超疏水性[ |
类别 | 疏水原理 | 表面水分布形态 |
---|---|---|
Young模型[ | 研究了液体在光滑基材表面的润湿性,描述固气、固液、液气界面张力γsg、γsl、γlg与接触角θ之间的关系,即γsg-γsl=γlgcosθ | |
Wenzel模型[ | 研究了液体在粗糙基材表面的润湿性,水相对表面凹槽的填充增大了水相的接触面积,若材料表面亲水,粗糙结构会增强表面的亲水性,反之,则更加疏水 | |
Cassie模型[ | 对Wenzel模型进一步研究,提出了复合接触理论[ | |
亚稳态模型[ | 基于能量势垒原则,外部干扰导致固液间气相不稳,水相浸润,呈现从Cassie到Wenzel的亚稳态 | |
荷叶态模型 | 荷叶表面含蜡状物质,产生自清洁的关键是表面结构,微米级乳突和纳米级小纤毛,能锁住空气、托起水滴,阻隔浸润 | |
壁虎态模型 | 壁虎脚掌表面有大量微米级刚毛和纳米级毛状物,形成密封和开放气囊,密封气囊与大气间的压差可产生强黏附力,开放气囊可提高表面疏水性,赋予壁虎强黏附性和超疏水性[ |
体系配方 | 条件 | AV/mPa·s | PV/mPa·s | YP/Pa | FLAPI/mL | FLHTHP/mL |
---|---|---|---|---|---|---|
配方+50g/L 10μm碳酸钙 | 老化前 | 37.5 | 16.0 | 21.5 | 3.8 | — |
150℃老化16h后 | 15.0 | 14.0 | 1.0 | 22.0 | 31.0 | |
配方+50g/L 10μm碳酸钙(STG) | 老化前 | 58.0 | 34.0 | 24.0 | 6.4 | — |
150℃老化16h后 | 20.5 | 17.0 | 3.5 | 3.8 | 12.0 |
体系配方 | 条件 | AV/mPa·s | PV/mPa·s | YP/Pa | FLAPI/mL | FLHTHP/mL |
---|---|---|---|---|---|---|
配方+50g/L 10μm碳酸钙 | 老化前 | 37.5 | 16.0 | 21.5 | 3.8 | — |
150℃老化16h后 | 15.0 | 14.0 | 1.0 | 22.0 | 31.0 | |
配方+50g/L 10μm碳酸钙(STG) | 老化前 | 58.0 | 34.0 | 24.0 | 6.4 | — |
150℃老化16h后 | 20.5 | 17.0 | 3.5 | 3.8 | 12.0 |
1 | AHMAD Darem, VAN DEN BOOGAERT Inge, MILLER Jeremey, et al. Hydrophilic and hydrophobic materials and their applications[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2018, 40(22): 2686-2725. |
2 | Satyanarayana RAJU P, SHARMA AVNL, GOPICHAND Allaka. Inexpensive production of hydrophobic and corrosion resistant titania-silica composite coatings for deep water sandwich pipe applications[J]. Australian Journal of Mechanical Engineering, 2023: 1-6. |
3 | LI Guo, YUE Jiang, GUO Chenhao, et al. Influences of modified nanoparticles on hydrophobicity of concrete with organic film coating[J]. Construction and Building Materials, 2018, 169: 1-7. |
4 | ESTEVES Carlos, AHMED Hawreen, Inês FLORSE-COLEN, et al. The influence of hydrophobic protection on building exterior claddings[J]. Journal of Coatings Technology and Research, 2019, 16(5): 1379-1388. |
5 | 罗刚, 任坤峰, 邢希金, 等. 低孔低渗储层完井改造一体化工作液的研究与应用[J]. 钻井液与完井液, 2017, 34(3): 117-121. |
LUO Gang, REN Kunfeng, XING Xijin, et al. Study and application of a composite well completion and stimulation fluid for low porosity and low permeability reservoirs[J]. Drilling Fluid & Completion Fluid, 2017, 34(3): 117-121. | |
6 | WANG Jiehao, ELSWORTH Derek, WU Yu, et al. The influence of fracturing fluids on fracturing processes: A comparison between water, oil and SC-CO2 [J]. Rock Mechanics and Rock Engineering, 2018, 51(1): 299-313. |
7 | 刘雪芬, 康毅力, 罗平亚, 等. 界面修饰对致密砂岩气藏微孔系统渗流的调控[J]. 油田化学, 2015, 32(1): 137-140. |
LIU Xuefen, KANG Yili, LUO Pingya, et al. Seepage regulation of micro-pore system in tight sandstone gas reservoirs by interfacial modification[J]. Oilfield Chemistry, 2015, 32(1): 137-140. | |
8 | YUE Ye, CHEN Shuya, WANG Ziqi, et al. Improving wellbore stability of shale by adjusting its wettability[J]. Journal of Petroleum Science and Engineering, 2018, 161: 692-702. |
9 | HUANG Xianbin, DAI Zhiwen, ZHANG Chao, et al. Improving the performance of a polyamine shale inhibitor by introducing a hydrophobic group in oil and gas development[J]. Fuel, 2024, 355: 129435. |
10 | 刘雪芬, 康毅力, 罗平亚, 等. 氟化物对致密砂岩气体渗流能力的影响[J]. 石油学报, 2015, 36(8): 995-1003. |
LIU Xuefen, KANG Yili, LUO Pingya, et al. Impact of fluoride on seepage ability of tight sandstone gas[J]. Acta Petrolei Sinica, 2015, 36(8): 995-1003. | |
11 | 刘雪芬, 康毅力, 游利军, 等. 双疏性表面处理预防致密储层水相圈闭损害实验研究[J]. 天然气地球科学, 2009, 20(2): 292-296. |
LIU Xuefen, KANG Yili, YOU Lijun, et al. Experimental study on amphiphobic surface treating to prevent reservoir from aqueous phase trapping damage[J]. Natural Gas Geoscience, 2009, 20(2): 292-296. | |
12 | 曹攀, 刘德, 刘雨晗. 船用低表面能防污材料的研究进展[J]. 化工新型材料, 2022, 50(3): 60-63. |
CAO Pan, LIU De, LIU Yuhan. Research progress on marine antifouling material with low surface energy[J]. New Chemical Materials, 2022, 50(3): 60-63. | |
13 | YAN Yongli, CAI Yuxiu, LIU Xiaochun, et al. Hydrophobic modification on the surface of SiO2 nanoparticle: Wettability control[J]. Langmuir, 2020, 36(49): 14924-14932. |
14 | 刘思辰, 徐剑莹, 王小青, 等. 纳米TiO2处理木材的表面疏水性能初探[J]. 木材工业, 2014, 28(3): 26-29. |
LIU Sichen, XU Jianying, WANG Xiaoqing, et al. Evaluation of surface hydrophobic performance of nano-TiO2 modified wood[J]. China Wood Industry, 2014, 28(3): 26-29. | |
15 | 周缘, 韩杰, 叶山富, 等. 改性二氧化硅纳米粒子超疏水整理涤纶织物及其性能[J]. 毛纺科技, 2023, 51(8): 48-53. |
ZHOU Yuan, HAN Jie, YE Shanfu, et al. Superhydrophobic finishing of polyester fabric by modified silica nanoparticles and its performance[J]. Wool Textile Journal, 2023, 51(8): 48-53. | |
16 | 徐萌, 董爱学, 王维明. 自交联型聚丙烯酸酯/聚氨酯复合乳液的疏水性能[J]. 印染, 2023, 49(3): 17-20. |
XU Meng, DONG Aixue, WANG Weiming. Hydrophobic properties of self-crosslinking polyacrylate/polyurethane composite emulsion[J]. China Dyeing & Finishing, 2023, 49(3): 17-20. | |
17 | SUN Jingyao, LI Hanwen, HUANG Yao, et al. Simple and affordable way to achieve polymeric superhydrophobic surfaces with biomimetic hierarchical roughness[J]. ACS Omega, 2019, 4(2): 2750-2757. |
18 | 许志坚, 安秋凤, 杨博文, 等. 纳米杂化耐磨超疏水环氧树脂涂层的构筑及性能[J]. 精细化工, 2023, 40(10): 2222-2230. |
XU Zhijian, AN Qiufeng, YANG Bowen, et al. Construction and properties of nano-hybrid wear-resistant superhydrophobic epoxy resin coatings[J]. Fine Chemicals, 2023, 40(10): 2222-2230. | |
19 | 马逸平, 樊武厚, 吴晋川, 等. 全水基杂化型无氟防水剂制备及其在涤/棉织物防水整理中应用[J]. 纺织学报, 2022, 43(2): 183-188. |
MA Yiping, FAN Wuhou, WU Jinchuan, et al. Preparation and application of fully aqueous organic-inorganic hybrid fluorine-free water-repellant finishing agents[J]. Journal of Textile Research, 2022, 43(2): 183-188. | |
20 | WAN Zhihao, WANG Yuan, SHEN Chao, et al. Influence of hydrophobic coatings on fouling mechanism of combined fouling in enhanced tubes[J]. Applied Thermal Engineering, 2022, 216: 119075. |
21 | ALIZADEH Azar, BAHADUR Vaibhav, KULKARNI Ambarish, et al. Hydrophobic surfaces for control and enhancement of water phase transitions[J]. MRS Bulletin, 2013, 38(5): 407-411. |
22 | 金竹, 邹守顺, 周昌林, 等. IPN型含氟聚硅氧烷/PP疏水材料的制备及性能[J]. 精细化工, 2022, 39(4): 712-718. |
JIN Zhu, ZOU Shoushun, ZHOU Changlin, et al. Preparation and properties of interpenetrating network fluoropolysiloxane/polypropylene hydrophobic materials[J]. Fine Chemicals, 2022, 39(4): 712-718. | |
23 | 鲍玖文, 胡文文, 张鹏, 等. 有机硅憎水剂对混凝土强度与毛细吸水性能的影响[J]. 硅酸盐学报, 2020, 48(10): 1644-1652. |
BAO Jiuwen, HU Wenwen, ZHANG Peng, et al. Effect of organic silicon hydrophobic agent on strength and capillary absorption of concrete[J]. Journal of the Chinese Ceramic Society, 2020, 48(10): 1644-1652. | |
24 | 丁李钰, 黄毅萍, 鲍俊杰, 等. 长烷基链对水性聚氨酯在非极性基材上附着力的影响[J]. 精细化工, 2023, 40(2): 424-429. |
DING Liyu, HUANG Yiping, BAO Junjie, et al. Effect of long alkyl side chain on adhesion of waterborne polyurethane on non-polar substrate[J]. Fine Chemicals, 2023, 40(2): 424-429. | |
25 | LAFUMA Aurélie, David QUÉRÉ. Superhydrophobic states[J]. Nature Materials, 2003, 2(7): 457-460. |
26 | LIU Kesong, ZHANG Milin, ZHAI Jin, et al. Bioinspired construction of Mg-Li alloys surfaces with stable superhydrophobicity and improved corrosion resistance[J]. Applied Physics Letters, 2008, 92(18): 183103. |
27 | YOUNG Thomas. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95: 65-87. |
28 | WENZEL Robert N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994. |
29 | CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40(0): 546-551. |
30 | 隋涛, 汪家道, 陈大融. Cassie状态到Wenzel状态转换的能量分析[J]. 化工学报, 2011, 62(5): 1352-1357. |
SUI Tao, WANG Jiadao, CHEN Darong. Energy analysis for transition from Cassie state to Wenzel state[J]. CIESC Journal, 2011, 62(5): 1352-1357. | |
31 | PATANKAR Neelesh A. Transition between superhydrophobic states on rough surfaces[J]. Langmuir, 2004, 20(17): 7097-7102. |
32 | WANG Shutao, LIU Kesong, YAO Xi, et al. Bioinspired surfaces with superwettability: New insight on theory, design, and applications[J]. Chemical Reviews, 2015, 115(16): 8230-8293. |
33 | FENG Lin, LI Shuhong, LI Yingshun, et al. Super-hydrophobic surfaces: From natural to artificial[J]. Advanced Materials, 2002, 14(24): 1857-1860. |
34 | Manohar LAL. Shale stability: Drilling fluid interaction and shale strength[C]// SPE Asia Pacific Oil and Gas Conference and Exhibition. April 20-22, 1999. Jakarta, Indonesia. SPE, 1999: SPE-54356-MS. |
35 | 沈建文, 陈军斌, 屈展. 泥页岩井壁稳定研究及在临盘地区的应用[J]. 天然气工业, 2006, 26(7): 68-70. |
SHEN Jianwen, CHEN Junbin, QU Zhan. Study on mud shale stability and its application[J]. Natural Gas Industry, 2006, 26(7): 68-70. | |
36 | 张定宇, 邓金根, 李大华, 等. 页岩储层水敏性及井壁失稳规律分析[J]. 科学技术与工程, 2013, 13(34): 10268-10271. |
ZHANG Dingyu, DENG Jingen, LI Dahua, et al. The law of wellbore instability in non-water sensitive gas shales[J]. Science Technology and Engineering, 2013, 13(34): 10268-10271. | |
37 | 刘喜亮, 由福昌, 吴素珍, 等. 页岩井壁失稳机理分析及钻井液对策研究[J]. 当代化工, 2020, 49(1): 129-133. |
LIU Xiliang, YOU Fuchang, WU Suzhen, et al. Mechanism analysis of shale wellbore instability and drilling fluid countermeasures[J]. Contemporary Chemical Industry, 2020, 49(1): 129-133. | |
38 | ZHANG Chao, Kaihe LYU, GONG Jiaqin, et al. Synthesis of a hydrophobic quaternary ammonium salt as a shale inhibitor for water-based drilling fluids and determination of the inhibition mechanism[J]. Journal of Molecular Liquids, 2022, 362: 119474. |
39 | FERREIRA Conny Cerai, TEIXEIRA Gleber Tacio, LACHTER Elizabeth Roditi, et al. Partially hydrophobized hyperbranched polyglycerols as non-ionic reactive shale inhibitors for water-based drilling fluids[J]. Applied Clay Science, 2016, 132/133: 122-132. |
40 | ZHANG Fan, SUN Jinsheng, LI Qi, et al. Mechanism of organosilicate polymer as high-temperature resistant inhibitor in water-based drilling fluids[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641: 128489. |
41 | NI Xiaoxiao, JIANG Guancheng, LI Yiying, et al. Synthesis of superhydrophobic nanofluids as shale inhibitor and study of the inhibition mechanism[J]. Applied Surface Science, 2019, 484: 957-965. |
42 | 蒋官澄, 倪晓骁, 李武泉, 等. 超双疏强自洁高效能水基钻井液[J]. 石油勘探与开发, 2020, 47(2): 390-398. |
JIANG Guancheng, NI Xiaoxiao, LI Wuquan, et al. Super-amphiphobic, strong self-cleaning and high-efficiency water-based drilling fluids[J]. Petroleum Exploration and Development, 2020, 47(2): 390-398. | |
43 | HUANG Xianbin, SUN Jinsheng, LI He, et al. Fabrication of a hydrophobic hierarchical surface on shale using modified nano-SiO2 for strengthening the wellbore wall in drilling engineering[J]. Engineering, 2022, 11: 101-110. |
44 | LI He, SUN Jinsheng, Kaihe LYU, et al. Wettability alteration to maintain wellbore stability of shale formation using hydrophobic nanoparticles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 635: 128015. |
45 | GENG Yuan, SUN Jinsheng, XIE Shuixiang, et al. Novel use of a superhydrophobic nanosilica performing wettability alteration and plugging in water-based drilling fluids for wellbore strengthening[J]. Energy & Fuels, 2022, 36(12): 6144-6158. |
46 | 李方. 改变井壁岩石和泥饼亲水通道的钻井液研究[D]. 成都: 西南石油大学, 2017. |
LI Fang. Study on changing with hydrophilic channel of wellbore rock and mud cake drilling fluid[D]. Chengdu: Southwest Petroleum University, 2017. | |
47 | Brant BENNION D. An overview of formation damage mechanisms causing a reduction in the productivity and injectivity of oil and gas producing formations[J]. Journal of Canadian Petroleum Technology, 2002, 41(11): 29-36. |
48 | 孙金声, 许成元, 康毅力, 等. 致密/页岩油气储层损害机理与保护技术研究进展及发展建议[J]. 石油钻探技术, 2020, 48(4): 1-10. |
SUN Jinsheng, XU Chengyuan, KANG Yili, et al. Research progress and development recommendations covering damage mechanisms and protection technologies for tight/shale oil and gas reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(4): 1-10. | |
49 | 安一梅, 李丽华, 赵凯强, 等. 低渗透油气藏用防水锁剂体系的制备与性能评价[J]. 油田化学, 2021, 38(1): 19-23. |
AN Yimei, LI Lihua, ZHAO Kaiqiang, et al. Preparation and performance evaluation of waterproof lock agent system for low permeability oil and gas reservoir[J]. Oilfield Chemistry, 2021, 38(1): 19-23. | |
50 | 罗红芳, 张文哲. 钻井液用防水锁剂在延长油田水平井应用技术[J]. 当代化工, 2018, 47(12): 2665-2668. |
LUO Hongfang, ZHANG Wenzhe. Application of waterproof lock agent for drilling fluid in horizontal wells in Yanchang oilfield[J]. Contemporary Chemical Industry, 2018, 47(12): 2665-2668. | |
51 | 祝琦, 蒋官澄, 杨艳明, 等. 润湿性改变对压裂液返排的影响[J]. 钻井液与完井液, 2014, 31(6): 66-69. |
ZHU Qi, JIANG Guancheng, YANG Yanming, et al. Effect of wettability alteration on backflow of fracturing fluid[J]. Drilling Fluid & Completion Fluid, 2014, 31(6): 66-69. | |
52 | 李秀红, 杨桦, 陈喜田, 等. 润湿反转提高压裂液返排技术在吉林油田新119区块的应用[J]. 钻采工艺, 2004, 27(6): 51-52. |
LI Xiuhong, YANG Hua, CHEN Xitian, et al. Application of wettability reversal technique for improving fracturing fluid flow-back in Xin 119 black of Jilin oilfield[J]. Drilling & Production Technology, 2004, 27(6): 51-52. | |
53 | 邓超, 侯宝峰, 杨熙午, 等. 表面活性剂改变油藏润湿性提高采收率的机理[J]. 当代化工, 2022, 51(4): 757-761. |
DENG Chao, HOU Baofeng, YANG Xiwu, et al. Mechanistic study on wettability alteration of reserviors and its EOR induced by surfactants[J]. Contemporary Chemical Industry, 2022, 51(4): 757-761. | |
54 | LIU Guangfeng, WANG Hengli, TANG Jiachao, et al. Effect of wettability on oil and water distribution and production performance in a tight sandstone reservoir[J]. Fuel, 2023, 341: 127680. |
55 | 黄贵花, 杨文博, 贾红娟. 纳米聚硅材料降压效果实验研究[J]. 非常规油气, 2022, 9(2): 79-84. |
HUANG Guihua, YANG Wenbo, JIA Hongjuan. Experimental research on the decompression effect of nano-polysilicon materials[J]. Unconventional Oil & Gas, 2022, 9(2): 79-84. | |
56 | 刘卫东. 低渗透油田润湿反转降压增注技术及应用[J]. 辽宁工程技术大学学报(自然科学版), 2009, 28(S1): 146-149. |
LIU Weidong. Application of depressure and increasing injection technology in low permeability oilfield[J]. Journal of Liaoning Technical University (Natural Science), 2009, 28(S1): 146-149. | |
57 | LIU Yulong, SHE Yuehui, ZHANG Fan, et al. Mechanism of nano-depressurization and injection-augmenting technology and its application in China’s oilfields: Recent advances and perspectives[J]. Energy & Fuels, 2022, 36(18): 10751-10765. |
58 | FENG Qing, LI Nanxiao, HUANG Junzi, et al. Case study on the nano-polysilicon materials’ depressurisation and injection-increasing technology in offshore Bohaibay oilfied Kl21-1[C]// Offshore Technology Conference Asia. November 2~6, 2020. Kuala Lumpur, Malaysia: Offshore Technology Conference, 2020: OTC-30407-MS. |
59 | 吴非, 狄勤丰, 顾春元, 等. 疏水纳米SiO2降低岩心流动阻力效果的室内实验研究[J]. 钻采工艺, 2008, 31(2): 102-103. |
WU Fei, DI Qinfeng, GU Chunyuan, et al. Experimental study on the reduction flowing resistance through rock microchannel with nanoparticles sio2 adsorbing method[J]. Drilling & Production Technology, 2008, 31(2): 102-103. | |
60 | 胡雪滨, 李释然, 吴华. 聚硅纳米增注技术在江陵凹陷高盐敏感性油藏中的运用[J]. 石油天然气学报, 2012, 34(7): 129-131. |
HU Xuebin, LI Shiran, WU Hua. The application of poly-silicon mano-augmented injection technology in high-salt sensitivity reservoirs in Jiangling depression[J]. Journal of Oil and Gas Technology, 2012, 34(7): 129-131. | |
61 | 任坤峰, 舒福昌, 林科雄, 等. 适合稠油油藏注水井的表面改性降压增注技术[J]. 科学技术与工程, 2016, 16(28): 70-74. |
REN Kunfeng, SHU Fuchang, LIN Kexiong, et al. Surface modification decompression and augmented injection system for water injection well in heavy oil reservoir[J]. Science Technology and Engineering, 2016, 16(28): 70-74. | |
62 | 王彦玲, 金家锋, 董红岩, 等. 用于解水锁的气润湿反转剂的合成与性能评价[J]. 西安石油大学学报(自然科学版), 2015, 30(5): 85-90. |
WANG Yanling, JIN Jiafeng, DONG Hongyan, et al. Synthesis and performance evaluation of wettability reversal agent for removing water lock effect[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2015, 30(5): 85-90. | |
63 | LI Kewen, FIROOZABADI Abbas. Phenomenological modeling of critical condensate saturation and relative permeabilities in gas/condensate systems[J]. SPE Journal, 2000, 5(2): 138-147. |
64 | WANG Yanling, JIN Jiafeng, MA Li, et al. Influence of wettability alteration to preferential gas-wetting on displacement efficiency at elevated temperatures[J]. Journal of Dispersion Science and Technology, 2015, 36(9): 1274-1281. |
65 | LIU Y, ZHENG H, HUANG G, et al. Improving production in gas/condensate reservoirs by wettability alteration to gas wetness[C]//SPE/DOE Symposium on Improved Oil Recovery. USA: SPE, 2006: SPE-99739-MS. |
66 | LIU Yijiang, ZHENG Hongwen, HUANG Guixiong, et al. Production enhancement in gas-condensate reservoirs by altering wettability to gas wetness: Field application[C]//SPE Symposium on Improved Oil Recovery. April 20~23, 2008. USA: SPE, 2008: SPE-112750-MS. |
67 | 熊邦泰. 油基钻井液乳状液稳定性机理研究[D]. 荆州: 长江大学, 2012. |
XIONG Bangtai. A study of emulsion stability mechanism of oil based drilling fluid[D]. Jingzhou: Yangtze University, 2012. | |
68 | 刘刚, 姜超, 李超, 等. 油包水型乳状液高温稳定性[J]. 钻井液与完井液, 2021, 38(4): 404-411. |
LIU Gang, JIANG Chao, LI Chao, et al. Study on high temperature stability of invert emulsion[J]. Drilling Fluid & Completion Fluid, 2021, 38(4): 404-411. | |
69 | 艾加伟, 庞敏, 陈馥, 等. DSW-S纳米颗粒对油基钻井液的稳定作用[J]. 油田化学, 2016, 33(1): 5-8. |
AI Jiawei, PANG Min, CHEN Fu, et al. Effect of DSW-S nanoparticle on the stability of oil-based drilling fluid[J]. Oilfield Chemistry, 2016, 33(1): 5-8. | |
70 | AGARWAL Sushant, PHUOC Tran X, SOONG Yee, et al. Nanoparticle-stabilised invert emulsion drilling fluids for deep-hole drilling of oil and gas[J]. The Canadian Journal of Chemical Engineering, 2013, 91(10): 1641-1649. |
71 | 罗陶涛, 段敏, 杨刚. 基于Pickering乳状液的油基钻井液乳化稳定性能研究[J]. 钻采工艺, 2015, 38(1): 99-101. |
LUO Taotao, DUAN Min, YANG Gang. Research on oil-based drilling fluid emulsion stability based on Pickering emulsion[J]. Drilling & Production Technology, 2015, 38(1): 99-101. | |
72 | HUANG Xianbin, MENG Xu, WU Leping, et al. Improvement of emulsion stability and plugging performance of nanopores using modified polystyrene nanoparticles in invert emulsion drilling fluids[J]. Frontiers in Chemistry, 2022, 10: 890478. |
73 | 杨兆中, 朱静怡, 李小刚, 等. 纳米颗粒稳定泡沫在油气开采中的研究进展[J]. 化工进展, 2017, 36(5): 1675-1681. |
YANG Zhaozhong, ZHU Jingyi, LI Xiaogang, et al. Research progresses on nanoparticle-stabilized foams in oil and gas production[J]. Chemical Industry and Engineering Progress, 2017, 36(5): 1675-1681. | |
74 | 李兆敏, 侯大炜, 鹿腾, 等. 疏水型SiO2纳米颗粒稳定泡沫机理与泡沫耐温性能评价[J]. 油田化学, 2019, 36(3): 494-500. |
LI Zhaomin, HOU Dawei, LU Teng, et al. Properties of hydrophobic SiO2 nanoparticles stabilized foam and it’s temperature resistance evaluation[J]. Oilfield Chemistry, 2019, 36(3): 494-500. | |
75 | 李强, 李志勇, 张浩东, 等. 响应面法优化纳米材料稳定的泡沫钻井液[J]. 钻井液与完井液, 2020, 37(1): 23-30. |
LI Qiang, LI Zhiyong, ZHANG Haodong, et al. Study on foam drilling fluid stabilized with nanomaterials optimized with RSM[J]. Drilling Fluid & Completion Fluid, 2020, 37(1): 23-30. | |
76 | DARDIR M M, ELSAYED AHMED Hany, FATTAH M ABD EL, et al. Propylene glycol mono and di stearates as water in oil emulsifiers for oil-well drilling fluids[J]. Egyptian Journal of Petroleum, 2018, 27(4): 1035-1041. |
77 | 马腾飞. 裂缝性地层高吸油膨胀树脂堵漏剂及作用机理研究[J]. 当代化工研究, 2021(24): 24-26. |
MA Tengfei. Study on characteristics and mechanisms of an oil-absorbing resin plugging agent used for fractured formation[J]. Modern Chemical Research, 2021(24): 24-26. | |
78 | CHEN Yanru, WU Ruonan, ZHOU Jing, et al. A novel hyper-cross-linked polymer for high-efficient fluid-loss control in oil-based drilling fluids[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626: 127004. |
79 | ZHOU Yan, PU Xiaolin. Lipophilic rheology modifier and its application in oil-based drilling fluids[J]. Journal of Applied Polymer Science, 2022, 139(3): e51502. |
[1] | WANG Kai, LUO Mingliang, LI Mingzhong, HUANG Feifei, PU Chunsheng, PU Jingyang, FAN Qiao. Research progress of polyethyleneimine crosslinked polymer gel system in water-drive reservoirs [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1506-1523. |
[2] | WANG Jinhang, HE Yong, SHI Lingli, LONG Zhen, LIANG Deqing. Progress of gas hydrate anti-agglomerants [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4587-4602. |
[3] | WU Ya, ZHAO Dan, FANG Rongmiao, LI Jingyao, CHANG Nana, DU Chunbao, WANG Wenzhen, SHI Jun. Research progress on highly efficient demulsifiers for complex crude oil emulsions and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4398-4413. |
[4] | LIU Yulong, YAO Junhu, SHU Chuangchuang, SHE Yuehui. Biosynthesis and EOR application of magnetic Fe3O4 NPs [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2464-2474. |
[5] | LI Songtao, ZHAO Jin, ZHANG Lifeng. Preparation of hyperbranched poly(amido amine) and its application to demulsification of oil-in-water emulsions [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 401-408. |
[6] | ZHANG Chuanbao, WANG Yanling, CHEN Mengxin, LIANG Shinan, SHI Wenjing. Research progress on high temperature resistant guar gum fracturing fluid and its damage mechanism to reservoirs [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5912-5924. |
[7] | ZHANG Yixi, ZHANG Fengrunze, SANG Yutong, ZHENG Jingxi, LIU Xuemin, ZHANG Hua, ZHANG Peng. Application status and thinking of clean fracturing fluid suitable for northern winter construction [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5003-5010. |
[8] | ZHANG Lifeng, ZHAN Ningning, QIN Lijuan, ZHAO Xinxing, ZHOU Lishan, TENG Houkai, FANG Wenjun. Methacrylated hyperbranched polyglycerol demulsifier for O/W emulsion [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3434-3443. |
[9] | FENG Yangyang, ZHAO Zhongcong, YANG Wenbo, HU Linqi, ZHANG Wenda, SHE Yuehui. Microbial natural synthetic metal nanoparticles and the application in heavy oil catalytic viscosity reduction [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2215-2226. |
[10] | Zhengrong YE,Hongping QUAN,Zhichao QIU,Qiangying LU,Rui WANG,Qingying JIANG,Ran YI. Synthesis and characterization of low viscosity adsorption acid retarder [J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1396-1404. |
[11] | Yuan LI,Qinfeng DI,Shuai HUA,Jingnan ZHANG,Feng YE,Wenchang WANG. Research progress of reservoirs wettability alteration by using nanofluids for enhancing oil recovery [J]. Chemical Industry and Engineering Progress, 2019, 38(08): 3612-3620. |
[12] | SU Biyun, HUANG He, HUANG Li, HAO Rong, LIU Bo, LI Bianqin, LI Qianding. Preparation of CMC-PAC composite flocculant and its application in methanol containing wastewater [J]. Chemical Industry and Engineering Progress, 2018, 37(S1): 219-222. |
[13] | CEN Chi, ZHU Ying, DUAN Ming. Stability analysis of oily wastewater produced from surface-active polymer flooding [J]. Chemical Industry and Engineering Progress, 2018, 37(10): 4074-4079. |
[14] | HAO Junhui, TIAN Yuanyu, ZHANG Jinhong, QIAO Yingyun, CHE Yuanjun. Research progress on separation technologies of oil sand bitumen [J]. Chemical Industry and Engineering Progress, 2018, 37(09): 3337-3345. |
[15] | DUAN Wenmeng, YE Qing, WANG Jinlong. Synthesis and evaluation of the oil-soluble pour-point depressant BS for crude oil [J]. Chemical Industry and Engineering Progree, 2016, 35(03): 884-889. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |