1 |
姚锡凡, 景轩, 张剑铭, 等. 走向新工业革命的智能制造[J]. 计算机集成制造系统, 2020, 26(9): 2299-2320.
|
|
YAO Xifan, JING Xuan, ZHANG Jianming, et al. Towards smart manufacturing for new industrial revolution[J]. Computer Integrated Manufacturing Systems, 2020, 26(9): 2299-2320.
|
2 |
马南峰, 姚锡凡, 王柯赛. 面向未来互联网的智慧制造研究现状与展望[J]. 中国科学: 技术科学, 2022, 52(1): 55-75.
|
|
MA Nanfeng, YAO Xifan, WANG Kesai. Current status and prospect of future internet-oriented wisdom manufacturing[J]. Scientia Sinica (Technologica), 2022, 52(1): 55-75.
|
3 |
陶飞. 工业4.0与智能制造发展趋势[J]. 中国培训, 2017(12): 36-37.
|
|
TAO Fei. Industry 4.0 and the development trend of intelligent manufacturing[J]. China Training, 2017(12): 36-37.
|
4 |
WANG Baicun, TAO Fei, FANG Xudong, et al. Smart manufacturing and intelligent manufacturing: A comparative review[J]. Engineering, 2021, 7(6): 738-757.
|
5 |
朱森第. 智能制造是一种新的先进生产方式[J]. 智能制造, 2022(1): 10-12.
|
|
ZHU Sendi. Intelligent manufacturing is a new advanced production mode[J]. Intelligent Manufacturing, 2022(1): 10-12.
|
6 |
ZHOU Ji, ZHOU Yanhong, WANG Baicun, et al. Human-cyber-physical systems (HCPSs) in the context of new-generation intelligent manufacturing[J]. Engineering, 2019, 5(4): 624-636.
|
7 |
严帅, 张紫君, 张青阳, 等. 广州市智能装备产业集群发展现状及对策[J]. 科技管理研究, 2019, 39(1): 137-148.
|
|
YAN Shuai, ZHANG Zijun, ZHANG Qingyang, et al. Development status and countermeasures of intelligent equipment industry cluster in Guangzhou[J]. Science and Technology Management Research, 2019, 39(1): 137-148.
|
8 |
孙俊杰. 九江石化智能制造实践[J]. 中国工业和信息化, 2022(4): 72-78.
|
|
SUN Junjie. Practice of intelligent manufacturing in Jiujiang Petrochemical Company[J]. China Industry & Information Technology, 2022(4): 72-78.
|
9 |
王子宗, 高立兵, 索寒生. 未来石化智能工厂顶层设计:现状、对比及展望[J]. 化工进展, 2022, 41(7): 3387-3401.
|
|
WANG Zizong, GAO Libing, SUO Hansheng. Designing petrochemical smart plant of the future: State of the art, comparison and prospects[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3387-3401.
|
10 |
World Economic Forum. The global lighthouse network playbook for responsible industry [EB/OL]. [2022-03]. .
|
11 |
袁晴棠, 殷瑞钰, 曹湘洪, 等. 面向2035的流程制造业智能化目标、特征和路径战略研究[J]. 中国工程科学, 2020, 22(3): 148-156.
|
|
YUAN Qingtang, YIN Ruiyu, CAO Xianghong, et al. Strategic research on the goals, characteristics, and paths of intelligentization of process manufacturing industry for 2035[J]. Strategic Study of CAE, 2020, 22(3): 148-156.
|
12 |
TANG Lixin, MENG Ying. Data analytics and optimization for smart industry[J]. Frontiers of Engineering Management, 2021, 8(2): 157-171.
|
13 |
刁俊武. 工业互联网赋能石化产业数字化转型[J]. 智能制造, 2022(4): 37-39.
|
|
DIAO Junwu. Industrial Internet empowers digital transformation of petrochemical industry[J]. Intelligent Manufacturing, 2022(4): 37-39.
|
14 |
郭刚, 林紫微, 杨超, 等. 工业互联网网络体系安全防护研究[J]. 信息安全与通信保密, 2022, 20(9): 9-17.
|
|
GUO Gang, LIN Ziwei, YANG Chao, et al. Research on security protection of industrial Internet network system[J]. Information Security and Communications Privacy, 2022, 20(9): 9-17.
|
15 |
吴涛, 黄健, 郭钰璐, 等. 工业互联网网络安全技术浅析[J]. 邮电设计技术, 2022(9): 9-12.
|
|
WU Tao, HUANG Jian, GUO Yulu, et al. Analysis of industrial Internet network security technology[J]. Designing Techniques of Posts and Telecommunications, 2022(9): 9-12.
|
16 |
张志飞, 王露漫. 基于机器学习的网络入侵检测算法研究[J]. 计算机应用与软件, 2022, 39(10): 336-343.
|
|
ZHANG Zhifei, WANG Luman. Network intrusion detection algorithm based on machine learning[J]. Computer Applications and Software, 2022, 39(10): 336-343.
|
17 |
LI Defang. Perspective for smart factory in petrochemical industry[J]. Computers & Chemical Engineering, 2016, 91: 136-148.
|
18 |
高立兵, 刘东庆, 高瑞. 石化行业智能制造发展现状及技术趋势[J]. 流程工业, 2021(8): 16-21.
|
|
GAO Libing, LIU Dongqing, GAO Rui. Development status and technology trend of intelligent manufacturing in petrochemical industry[J]. Process, 2021(8): 16-21.
|
19 |
NING Chao, YOU Fengqi. A data-driven multistage adaptive robust optimization framework for planning and scheduling under uncertainty[J]. AIChE Journal, 2017, 63(10): 4343-4369.
|
20 |
LI Jie, XIAO Xin, BOUKOUVALA Fani, et al. Data-driven mathematical modeling and global optimization framework for entire petrochemical planning operations[J]. AIChE Journal, 2016, 62(9): 3020-3040.
|
21 |
MOURET Sylvain, GROSSMANN Ignacio E, PESTIAUX Pierre. A new Lagrangian decomposition approach applied to the integration of refinery planning and crude-oil scheduling[J]. Computers & Chemical Engineering, 2011, 35(12): 2750-2766.
|
22 |
SU Lijie, BERNAL David E, GROSSMANN Ignacio E, et al. Modeling for integrated refinery planning with crude-oil scheduling[J]. Chemical Engineering Research and Design, 2023, 192: 141-157.
|
23 |
AL-JAMIMI Hamdi A, BINMAKHASHEN Galal M, Kalyanmoy DEB, et al. Multiobjective optimization and analysis of petroleum refinery catalytic processes: A review[J]. Fuel, 2021, 288: 119678.
|
24 |
WANG Xianpeng, HU Tenghui, TANG Lixin. A multiobjective evolutionary nonlinear ensemble learning with evolutionary feature selection for silicon prediction in blast furnace[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(5): 2080-2093.
|
25 |
WANG Xianpeng, TANG Lixin. Multiobjective operation optimization of naphtha pyrolysis process using parallel differential evolution[J]. Industrial & Engineering Chemistry Research, 2013, 52(40): 14415-14428.
|
26 |
KIRAN Kanchi Lakshmi, SELVARAJ Sankar, LEE Joseph, et al. Application of fault monitoring and diagnostic techniques and their challenges in petrochemical industries[J]. IFAC Proceedings Volumes, 2012, 45(15): 702-707.
|
27 |
XIAO Rui, ZHANG Zhanlong, DAN Yihua, et al. Multifeature extraction and semi-supervised deep learning scheme for state diagnosis of converter transformer[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-12.
|
28 |
RONG Gang, ZHANG Yi, ZHANG Jiandong, et al. Robust engineering strategy for scheduling optimization of refinery fuel gas system[J]. Industrial & Engineering Chemistry Research, 2018, 57(5): 1547-1559.
|