Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (12): 6576-6588.DOI: 10.16085/j.issn.1000-6613.2023-0113
• Resources and environmental engineering • Previous Articles
CHEN Yuting1(), BAI Yuchen1,2()
Received:
2023-01-30
Revised:
2023-03-24
Online:
2024-01-08
Published:
2023-12-25
Contact:
BAI Yuchen
通讯作者:
白宇辰
作者简介:
陈禹婷(1993—),女,硕士研究生,研究方向为生物质资源转化利用。E-mail:2030301018@st.btbu.edu.cn。
基金资助:
CLC Number:
CHEN Yuting, BAI Yuchen. Research process of preparation of aromatic aldehyde by oxidative depolymerization of lignin[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6576-6588.
陈禹婷, 白宇辰. 木质素氧化解聚制备芳香醛研究进展[J]. 化工进展, 2023, 42(12): 6576-6588.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0113
底物 | 氧化剂 | 溶剂 | 反应条件 | 芳香醛主要产物 | 参考文献 |
---|---|---|---|---|---|
异子丁香酚 | H2O2 | 乙腈 | 现制0.5Fe/Al-SBA-15, 90℃ | 香草醛 | [ |
有机溶剂木质素 | O2 | 甲醇 | Pd/CeO2 | 香草醛,对羟基苯甲醛 | [ |
碱木质素 | 空气 | 水 | 150~200℃ | 香草醛,对羟基苯甲醛 | [ |
有机溶剂木质素 | 硝基苯 | 水 | NaOH,170℃ | 香草醛,丁香醛 | [ |
有机溶剂木质素 | — | 丙酮 | 300℃,40min | 对羟基苯甲醛 | [ |
有机溶剂木质素 | — | 乙醇 | 300℃,41min | 丁香醛 | [ |
底物 | 氧化剂 | 溶剂 | 反应条件 | 芳香醛主要产物 | 参考文献 |
---|---|---|---|---|---|
异子丁香酚 | H2O2 | 乙腈 | 现制0.5Fe/Al-SBA-15, 90℃ | 香草醛 | [ |
有机溶剂木质素 | O2 | 甲醇 | Pd/CeO2 | 香草醛,对羟基苯甲醛 | [ |
碱木质素 | 空气 | 水 | 150~200℃ | 香草醛,对羟基苯甲醛 | [ |
有机溶剂木质素 | 硝基苯 | 水 | NaOH,170℃ | 香草醛,丁香醛 | [ |
有机溶剂木质素 | — | 丙酮 | 300℃,40min | 对羟基苯甲醛 | [ |
有机溶剂木质素 | — | 乙醇 | 300℃,41min | 丁香醛 | [ |
原料 | 催化剂 | 溶剂 | 氧化剂 | 反应条件 | 芳香醛主要产物 | 转化率/% | 产率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
酶水解蒸汽爆破玉米秆 | LaCoO3 | 氢氧化钠水溶液 | O2 | 120℃,2MPa,0~3h | 香草醛 | 8~60 | 3.9~4.55 | [ |
对羟基苯甲醛 | 0.85~2.23 | |||||||
丁香醛 | 2.1~9.99 | |||||||
酶水解蒸汽爆破玉米秆 | LaFe1-x Cu x O3 (x=0、0.1、0.2) | 氢氧化钠水溶液 | O2 | 120℃,2MPa,0~3h | 香草醛 | 0~70 | 2.4~4.6 | [ |
对羟基苯甲醛 | 0.4~2.5 | |||||||
丁香醛 | 0~11.5 | |||||||
有机溶剂木质素 | Pd/CeO2 | 甲醇 | O2 | 185℃,0.1MPa | 香草醛 | — | 5.2 | [ |
对羟基苯甲醛 | 2.4 | |||||||
有机溶剂木质素 | La/SBA-15 | 氢氧化钠水溶液 | H2O2 | 60℃,5~1440min | 香草醛 | — | 0.38~9.94 | [ |
丁香醛 | 0.52~15.66 | |||||||
香草醇 | Co3O4 | H2O | O2 | 140℃,0.689~4MPa | 香草醛 | 86 | — | [ |
香草醇 | MnCo-MO | 乙腈 | 空气 | 140℃,2.1MPa,2h | 香草醛 | 62 | 51 | [ |
藜芦醇 | Co-ZIF-9 | 甲苯/氢氧化钠 | O2 | 150℃,0.5MPa,0~4h | 藜芦醛 | 0~45 | 46 | [ |
香草醇 | 香草醛 | 90 | [ | |||||
异子丁香酚 | CH3ReO3 | 叔丁醇 | H2O2 | 70℃,4h | 香草醛 | 90.3 | [ |
原料 | 催化剂 | 溶剂 | 氧化剂 | 反应条件 | 芳香醛主要产物 | 转化率/% | 产率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
酶水解蒸汽爆破玉米秆 | LaCoO3 | 氢氧化钠水溶液 | O2 | 120℃,2MPa,0~3h | 香草醛 | 8~60 | 3.9~4.55 | [ |
对羟基苯甲醛 | 0.85~2.23 | |||||||
丁香醛 | 2.1~9.99 | |||||||
酶水解蒸汽爆破玉米秆 | LaFe1-x Cu x O3 (x=0、0.1、0.2) | 氢氧化钠水溶液 | O2 | 120℃,2MPa,0~3h | 香草醛 | 0~70 | 2.4~4.6 | [ |
对羟基苯甲醛 | 0.4~2.5 | |||||||
丁香醛 | 0~11.5 | |||||||
有机溶剂木质素 | Pd/CeO2 | 甲醇 | O2 | 185℃,0.1MPa | 香草醛 | — | 5.2 | [ |
对羟基苯甲醛 | 2.4 | |||||||
有机溶剂木质素 | La/SBA-15 | 氢氧化钠水溶液 | H2O2 | 60℃,5~1440min | 香草醛 | — | 0.38~9.94 | [ |
丁香醛 | 0.52~15.66 | |||||||
香草醇 | Co3O4 | H2O | O2 | 140℃,0.689~4MPa | 香草醛 | 86 | — | [ |
香草醇 | MnCo-MO | 乙腈 | 空气 | 140℃,2.1MPa,2h | 香草醛 | 62 | 51 | [ |
藜芦醇 | Co-ZIF-9 | 甲苯/氢氧化钠 | O2 | 150℃,0.5MPa,0~4h | 藜芦醛 | 0~45 | 46 | [ |
香草醇 | 香草醛 | 90 | [ | |||||
异子丁香酚 | CH3ReO3 | 叔丁醇 | H2O2 | 70℃,4h | 香草醛 | 90.3 | [ |
催化剂类型 | 催化剂 | 溶剂 | 氧化剂 | 反应时间 | 底物(木质素/木质素 模型化合物) | 芳香醛 主要产物 | 转化率 /% | 产率 /% | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
金属卟啉催化剂 | CoTBrPP | 氢氧化钠水溶液 | H2O2 | 150℃,30min | 1-(3,4-二甲氧基苯基)-2- (2-甲氧基苯氧基)乙烷-1-醇 | 藜芦醛 | 86 | 20.4 | [ |
TPPFeCl | — | 叔丁酸 | 过夜 | β-1木质素模型化合物 | 藜芦醛 | — | 50 | [ | |
TSPCMnCI | 磷酸盐水溶液 | 叔丁酸 | 室温 | 藜芦醇 | 藜芦醛 | — | 16 | [ | |
金属-席夫碱配合物 | Co(salen) | 甲醇 | O2 | 室温,40min | 丁香醇 | 丁香醛 | 98 | 36 | [ |
Co(salen) | 氢氧化钠水溶液 | O2 | 80℃,28h | 藜芦醇 | 藜芦醛 | — | 43 | [ | |
多金属氧酸盐 | H5PV2Mo10O40 | [HC4im][HSO4] | O2 | 100℃,5h | 硬木木质素 | 丁香醛 | — | 5 | [ |
H3PMo12O40 | 水/甲醇 | O2 | 170℃,0.33h | 硫酸盐木质素 | 香草醛 | — | 5.18 | [ | |
K6[SiV2W10O40] | 水/甲醇 | O2 | 150℃,2MPa | 酶解木质素 | 香草醛 | — | 5.46 | [ | |
简单金属盐催化剂 | Cu(OH)2 | — | O2 | 160℃ | 香草醛丙酮 | 丁香醛 | — | 60 | [ |
FeCl3 | — | O2 | 160℃ | Clason&酸解木质素 | 香草醛 | — | 8.8 | [ | |
丁香醛 | — | 0.7 |
催化剂类型 | 催化剂 | 溶剂 | 氧化剂 | 反应时间 | 底物(木质素/木质素 模型化合物) | 芳香醛 主要产物 | 转化率 /% | 产率 /% | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
金属卟啉催化剂 | CoTBrPP | 氢氧化钠水溶液 | H2O2 | 150℃,30min | 1-(3,4-二甲氧基苯基)-2- (2-甲氧基苯氧基)乙烷-1-醇 | 藜芦醛 | 86 | 20.4 | [ |
TPPFeCl | — | 叔丁酸 | 过夜 | β-1木质素模型化合物 | 藜芦醛 | — | 50 | [ | |
TSPCMnCI | 磷酸盐水溶液 | 叔丁酸 | 室温 | 藜芦醇 | 藜芦醛 | — | 16 | [ | |
金属-席夫碱配合物 | Co(salen) | 甲醇 | O2 | 室温,40min | 丁香醇 | 丁香醛 | 98 | 36 | [ |
Co(salen) | 氢氧化钠水溶液 | O2 | 80℃,28h | 藜芦醇 | 藜芦醛 | — | 43 | [ | |
多金属氧酸盐 | H5PV2Mo10O40 | [HC4im][HSO4] | O2 | 100℃,5h | 硬木木质素 | 丁香醛 | — | 5 | [ |
H3PMo12O40 | 水/甲醇 | O2 | 170℃,0.33h | 硫酸盐木质素 | 香草醛 | — | 5.18 | [ | |
K6[SiV2W10O40] | 水/甲醇 | O2 | 150℃,2MPa | 酶解木质素 | 香草醛 | — | 5.46 | [ | |
简单金属盐催化剂 | Cu(OH)2 | — | O2 | 160℃ | 香草醛丙酮 | 丁香醛 | — | 60 | [ |
FeCl3 | — | O2 | 160℃ | Clason&酸解木质素 | 香草醛 | — | 8.8 | [ | |
丁香醛 | — | 0.7 |
阳极材料 | 溶剂 | 反应条件 | 底物(木质素/木质素模型化合物) | 芳香醛主要产物 | 转化率/% | 产率/% | 参考文献 |
---|---|---|---|---|---|---|---|
PbO2 | 氢氧化钠水溶液 | 室温 | 硫酸盐木质素 | 香草醛 | 17 | 64 | [ |
PbO2 | 氢氧化钠水溶液 | 50℃,50mA/cm2 | 白杨木木质素 | 香草醛,丁香醛 | — | 30.4/13.75 | [ |
Ni | — | 80℃,恒定电流,1.9mA/cm2 | 硫酸盐木质素 | 香草醛 | — | 0.7 | [ |
Co | — | 80℃,恒定电流,1.9mA/cm2 | 硫酸盐木质素 | 香草醛 | — | 1.4 | [ |
钨铬钴合金 | — | 80℃,恒定电流,1.9mA/cm2 | 硫酸盐木质素 | 香草醛 | — | 1.8 | [ |
阳极材料 | 溶剂 | 反应条件 | 底物(木质素/木质素模型化合物) | 芳香醛主要产物 | 转化率/% | 产率/% | 参考文献 |
---|---|---|---|---|---|---|---|
PbO2 | 氢氧化钠水溶液 | 室温 | 硫酸盐木质素 | 香草醛 | 17 | 64 | [ |
PbO2 | 氢氧化钠水溶液 | 50℃,50mA/cm2 | 白杨木木质素 | 香草醛,丁香醛 | — | 30.4/13.75 | [ |
Ni | — | 80℃,恒定电流,1.9mA/cm2 | 硫酸盐木质素 | 香草醛 | — | 0.7 | [ |
Co | — | 80℃,恒定电流,1.9mA/cm2 | 硫酸盐木质素 | 香草醛 | — | 1.4 | [ |
钨铬钴合金 | — | 80℃,恒定电流,1.9mA/cm2 | 硫酸盐木质素 | 香草醛 | — | 1.8 | [ |
编号 | 底物 | 催化剂 | 溶剂/反应时间 | 芳香醛单体/% | ||
---|---|---|---|---|---|---|
对羟基苯甲醛 | 香草醛 | 丁香醛 | ||||
1 | 桦木木质素 | VO(OiPr)3 | 乙腈/24h | — | 0.34 | 0.3 |
2 | 秸秆木质素 | VO(OiPr)2 | 0.21 | 0.23 | 0.1 | |
3 | 桦木木质素 | VO(acac)2 | — | 0.22 | 0.18 | |
4 | 秸秆木质素 | VO(acac)3 | — | 0.24 | 0.07 | |
5 | 桦木木质素 | VO(OiPr)2 | 丙酮∶甲醇=9∶1 | — | 0.35 | 0.57 |
6 | 桦木木质素 | VO(acac)2 | — | 0.6 | 0.79 | |
7 | 秸秆木质素 | VO(acac)2 | /24h | — | 0.25 | 0.28 |
8 | 白杨木质素 | VO(acac)2 | — | 0.2 | 0.26 |
编号 | 底物 | 催化剂 | 溶剂/反应时间 | 芳香醛单体/% | ||
---|---|---|---|---|---|---|
对羟基苯甲醛 | 香草醛 | 丁香醛 | ||||
1 | 桦木木质素 | VO(OiPr)3 | 乙腈/24h | — | 0.34 | 0.3 |
2 | 秸秆木质素 | VO(OiPr)2 | 0.21 | 0.23 | 0.1 | |
3 | 桦木木质素 | VO(acac)2 | — | 0.22 | 0.18 | |
4 | 秸秆木质素 | VO(acac)3 | — | 0.24 | 0.07 | |
5 | 桦木木质素 | VO(OiPr)2 | 丙酮∶甲醇=9∶1 | — | 0.35 | 0.57 |
6 | 桦木木质素 | VO(acac)2 | — | 0.6 | 0.79 | |
7 | 秸秆木质素 | VO(acac)2 | /24h | — | 0.25 | 0.28 |
8 | 白杨木质素 | VO(acac)2 | — | 0.2 | 0.26 |
催化剂 | 溶剂 | 反应条件 | 原料(木质素/木质素模型化合物) | 芳香醛主要产物 | 转化率/% | 产率/% | 参考文献 |
---|---|---|---|---|---|---|---|
TiO2 | 乙醇 | UV,300W | 有机溶剂木质素 | 香草醛,丁香醛 | — | 0.9/14.2 | [ |
TiO2 | 水 | UV,125W,高压水银灯 | TiO2-木质素混合物 | 香草醛,丁香醛 | — | — | [ |
Bi1%/Pt1%-TiO2 | — | 太阳能灯,300W,1h | 磺酸盐木质素 | 香草醛 | 62 | 1.5 | [ |
VO(OiPr)3 | 乙腈 | 6W,LEDs(455nm±5nm),O2,6h | β-1木质素模型化合物 | 丁香醛 | 100 | 61 | [ |
VO(OiPr)3 | 乙腈 | 6W,LEDs(455nm±5nm),O2,24h | 二𫫇英木质素 | 香草醛 | — | 0.23 | [ |
丁香醛 | 0.1 | ||||||
对羟基苯甲醛 | 0.21 |
催化剂 | 溶剂 | 反应条件 | 原料(木质素/木质素模型化合物) | 芳香醛主要产物 | 转化率/% | 产率/% | 参考文献 |
---|---|---|---|---|---|---|---|
TiO2 | 乙醇 | UV,300W | 有机溶剂木质素 | 香草醛,丁香醛 | — | 0.9/14.2 | [ |
TiO2 | 水 | UV,125W,高压水银灯 | TiO2-木质素混合物 | 香草醛,丁香醛 | — | — | [ |
Bi1%/Pt1%-TiO2 | — | 太阳能灯,300W,1h | 磺酸盐木质素 | 香草醛 | 62 | 1.5 | [ |
VO(OiPr)3 | 乙腈 | 6W,LEDs(455nm±5nm),O2,6h | β-1木质素模型化合物 | 丁香醛 | 100 | 61 | [ |
VO(OiPr)3 | 乙腈 | 6W,LEDs(455nm±5nm),O2,24h | 二𫫇英木质素 | 香草醛 | — | 0.23 | [ |
丁香醛 | 0.1 | ||||||
对羟基苯甲醛 | 0.21 |
1 | WENG Caihong, PENG Xiaowei, HAN Yejun. Depolymerization and conversion of lignin to value-added bioproducts by microbial and enzymatic catalysis[J]. Biotechnology for Biofuels, 2021, 14(1): 84. |
2 | BAGHEL Swati, ANANDKUMAR J. Biodepolymerization of Kraft lignin for production and optimization of vanillin using mixed bacterial culture[J]. Bioresource Technology Reports, 2019, 8: 100335. |
3 | 沈晓骏, 黄攀丽, 文甲龙, 等. 木质素氧化还原解聚研究现状[J]. 化学进展, 2017, 29(1): 162-178. |
SHEN Xiaojun, HUANG Panli, WEN Jialong, et al. Research status of lignin oxidative and reductive depolymerization[J]. Progress in Chemistry, 2017, 29(1): 162-178. | |
4 | LIU Wujun, JIANG Hong, YU Hanqing. Thermochemical conversion of lignin to functional materials: A review and future directions[J]. Green Chemistry, 2015, 17(11): 4888-4907. |
5 | LENG Erwei, GUO Yilin, CHEN Jingwei, et al. A comprehensive review on lignin pyrolysis: Mechanism, modeling and the effects of inherent metals in biomass[J]. Fuel, 2022, 309: 122102. |
6 | 张雷, 王海英, 韩洪晶, 等. 木质素催化热解用催化剂的研究进展[J]. 化工进展, 2022, 41(5):2429-2440. |
ZHANG Lei, WANG Haiying, HAN Hongjing, et al. Development of catalysts for catalytic pyrolysis of lignin[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2429-2440. | |
7 | LIU Zhihua, LE Rosemary K, KOSA Matyas, et al. Identifying and creating pathways to improve biological lignin valorization[J]. Renewable and Sustainable Energy Reviews, 2019, 105: 349-362. |
8 | MA Hongwei, LI Haowei, ZHAO Weijie, et al. Selective depolymerization of lignin catalyzed by nickel supported on zirconium phosphate[J]. Green Chemistry, 2019, 21(3): 658-668. |
9 | LIU Chao, WU Shiliang, ZHANG Huiyan, et al. Catalytic oxidation of lignin to valuable biomass-based platform chemicals: A review[J]. Fuel Processing Technology, 2019, 191: 181-201. |
10 | CIRIMINNA Rosaria, FIDALGO Alexandra, MENEGUZZO Francesco, et al. Vanillin: The case for greener production driven by sustainability megatrend[J]. ChemistryOpen, 2019, 8(6): 660-667. |
11 | BANERJEE Goutam, CHATTOPADHYAY Pritam. Vanillin biotechnology: The perspectives and future[J]. Journal of the Science of Food and Agriculture, 2019, 99(2): 499-506. |
12 | TARABANKO V E, CHELBINA Yu V, KUDRYASHEV A V, et al. Separation of vanillin and syringaldehyde produced from lignins[J]. Separation Science and Technology, 2013, 48(1): 127-132. |
13 | 彭建军, 张学铭, 陈雪梅, 等. 基于生物质精炼的木质素分离及结构研究进展[C]//中国造纸学会第十九届学术年会论文集. 郑州, 2020: 339-347. |
WU Miao, PENG Jianjun, ZHANG Xueming, et al. Research progress on lignin separation and structure based on biomass refining[C]//Proceedings of the 19th academic annual meeting of the china paper industry association. Zhengzhou, 2020: 339-347. | |
14 | LI Changzhi, ZHAO Xiaochen, WANG Aiqin, et al. Catalytic transformation of lignin for the production of chemicals and fuels[J]. Chemical Reviews, 2015, 115(21): 11559-11624. |
15 | ZHANG Chaofeng, WANG Feng. Catalytic lignin depolymerization to aromatic chemicals[J]. Accounts of Chemical Research, 2020, 53(2): 470-484. |
16 | SUN Zhuohua, Bálint FRIDRICH, DE SANTI Alessandra, et al. Bright side of lignin depolymerization: Toward new platform chemicals[J]. Chemical Reviews, 2018, 118(2): 614-678. |
17 | 邱学青, 楼宏铭, 杨东杰, 等. 工业木质素的改性及其作为精细化工产品的研究进展[J]. 精细化工, 2005, 22(3): 161-167, 197. |
QIU Xueqing, LOU Hongming, YANG Dongjie, et al. Research progress of industrial lignin modification and its utilization as fine chemicals[J]. Fine Chemicals, 2005, 22(3): 161-167, 197. | |
18 | BOARINO Alice, KLOK Harm-Anton. Opportunities and challenges for lignin valorization in food packaging, antimicrobial, and agricultural applications[J]. Biomacromolecules, 2023, 24(3): 1065-1077. |
19 | 赵丽莎. 木质素结构及加氢解聚对其抗氧化活性的影响[D]. 广州: 华南理工大学, 2020. |
ZHAO Lisha. Effect of lignin structure and hydrogenolysis on its antioxidant activity[D]. Guangzhou: South China University of Technology, 2020. | |
20 | Alexander STÜCKER, Fokko SCHÜTT, SAAKE Bodo, et al. Lignins from enzymatic hydrolysis and alkaline extraction of steam refined poplar wood: Utilization in lignin-phenol-formaldehyde resins[J]. Industrial Crops and Products, 2016, 85: 300-308. |
21 | Mikel OREGUI-BENGOECHEA, AGIRRE Ion, IRIONDO Aitziber, et al. Heterogeneous catalyzed thermochemical conversion of lignin model compounds: An overview[J]. Topics in Current Chemistry, 2019, 377(6): 1-75. |
22 | PANDEY M P, KIM C S. Lignin depolymerization and conversion: A review of thermochemical methods[J]. Chemical Engineering & Technology, 2011, 34(1): 29-41. |
23 | DEEPAK Raikwar, SAPTARSHI Majumdar, DEBAPRASAD Shee. Effects of solvents in the depolymerization of lignin into value-added products: A review[J]. Biomass Conversion and Biorefinery, 2023, 13(13): 11383-11416. |
24 | CHIO Chonlong, SAIN Mohini, QIN Wensheng. Lignin utilization: A review of lignin depolymerization from various aspects[J]. Renewable and Sustainable Energy Reviews, 2019, 107: 232-249. |
25 | KUMAR Avnish, BISWAS Bijoy, KAUR Ramandeep, et al. Hydrothermal oxidative valorisation of lignin into functional chemicals: A review[J]. Bioresource Technology, 2021, 342: 126016. |
26 | YAMAMURA Masaomi, HATTORI Takefumi, SUZUKI Shiro, et al. Microscale alkaline nitrobenzene oxidation method for high-throughput determination of lignin aromatic components[J]. Plant Biotechnology, 2010, 27(4): 305-310. |
27 | 周姚红, 张晓华, 熊万明. 木质素催化氧化制备芳香醛研究进展[J]. 精细化工, 2022, 39(3): 442-453. |
ZHOU Yaohong, ZHANG Xiaohua, XIONG Wanming. Research progress of preparation of aromatic aldehydes by catalytic oxidation of lignin[J]. Fine Chemicals, 2022, 39(3): 442-453. | |
28 | DENG Weiping, ZHANG Hongxi, WU Xuejiao, et al. Oxidative conversion of lignin and lignin model compounds catalyzed by CeO2-supported Pd nanoparticles[J]. Green Chemistry, 2015, 17(11): 5009-5018. |
29 | IRMAK Sibel, KANG Juhyon, WILKINS Mark. Depolymerization of lignin by wet air oxidation[J]. Bioresource Technology Reports, 2020, 9: 100377. |
30 | ERDOCIA Xabier, PRADO Raquel, Javier FERNÁNDEZ-RODRÍGUEZ, et al. Depolymerization of different organosolv lignins in supercritical methanol, ethanol, and acetone to produce phenolic monomers[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1373-1380. |
31 | 马春慧, 孙晋德, 李伟, 等. 离子液体在木质素解聚领域的应用进展[J]. 林业工程学报, 2021, 6(5): 14-26. |
MA Chunhui, SUN Jinde, LI Wei, et al. Application progress of ionic liquids in the field of lignin depolymerization[J]. Journal of Forestry Engineering, 2021, 6(5): 14-26. | |
32 | PENG Mingming, NAKABAYASHI Manaka, KIM Kihoon, et al. Lignin depolymerization with alkaline ionic liquids and ethylene glycol in a continuous flow reactor [J]. Fuel, 2023, 335: 126960. |
33 | 候其东, 鞠美庭, 李维尊, 等. 基于离子液体的生物质组分分离研究进展[J]. 化工进展,2016,35(10):3022-3031. |
HOU Qidong, JU Meiting, LI Weizun,et al. Research progress on biomass fractionation using ionic liquids[J]. Chemical Industry and Engineering Progress, 2016, 35(10):3022-3031. | |
34 | FRANCO Ana, DE Sudipta, BALU Alina M, et al. Selective oxidation of isoeugenol to vanillin over mechanochemically synthesized aluminosilicate supported transition metal catalysts[J]. ChemistrySelect, 2017, 2(29): 9546-9551. |
35 | ZAKZESKI Joseph, BRUIJNINCX Pieter C A, JONGERIUS Anna L, et al. The catalytic valorization of lignin for the production of renewable chemicals[J]. Chemical Reviews, 2010, 110(6): 3552-3599. |
36 | 刘思洁. 过渡金属(Co, Ni, Mo)催化木质素解聚研究[D]. 广州: 华南理工大学, 2019. |
LIU Sijie. Catalytic depolymerization of lignin using the transition metal(Co, Ni, Mo) catalysts[D]. Guangzhou: South China University of Technology, 2019. | |
37 | SALES Fernando G, MARANHÃO Laísse C A, FILHO Nelson M Lima, et al. Experimental evaluation and continuous catalytic process for fine aldehyde production from lignin[J]. Chemical Engineering Science, 2007, 62(18/19/20): 5386-5391. |
38 | SALES Fernando G, MARANHÃO Laísse C A, LIMA FILHO Nelson M, et al. Kinetic evaluation and modeling of lignin catalytic wet oxidation to selective production of aromatic aldehydes[J]. Industrial & Engineering Chemistry Research, 2006, 45(20): 6627-6631. |
39 | 安宏宇. 钙钛矿催化剂的掺杂改性及其催化热解木质素制备含氧化合物[D]. 大庆: 东北石油大学, 2018. |
AN Hongyu. The doping of perovskite catalyst and its catalytic pyrolysis lignin to prepare the oxygenation[D]. Daqing: Northeast Petroleum University, 2018. | |
40 | DENG Haibo, LIN Lu, SUN Yong, et al. Activity and stability of perovskite-type oxide LaCoO3 catalyst in lignin catalytic wet oxidation to aromatic aldehydes process[J]. Energy & Fuels, 2009, 23(1): 19-24. |
41 | ZHANG Junhua, DENG Haibo, LIN Lu. Wet aerobic oxidation of lignin into aromatic aldehydes catalysed by a perovskite-type oxide: LaFe(1-x)Cu(x)O3 (x=0, 0.1, 0.2)[J]. Molecules, 2009, 14(8): 2747-2757. |
42 | Ajay JHA, PATIL Kashinath R, RODE Chandrashekhar V. Mixed Co-Mn oxide-catalysed selective aerobic oxidation of vanillyl alcohol to vanillin in base-free conditions[J]. ChemPlusChem, 2013, 78(11): 1384-1392. |
43 | ZAKZESKI Joseph, Agnieszka DĘBCZAK, BRUIJNINCX Pieter C A, et al. Catalytic oxidation of aromatic oxygenates by the heterogeneous catalyst Co-ZIF-9[J]. Applied Catalysis A: General, 2011, 394(1/2): 79-85. |
44 | HERRMANN Wolfgang A, WESKAMP Thomas, ZOLLER Jochen P, et al. Methyltrioxorhenium: Oxidative cleavage of CC-double bonds and its application in a highly efficient synthesis of vanillin from biological waste[J]. Journal of Molecular Catalysis A: Chemical, 2000, 153(1/2): 49-52. |
45 | GU Xiaoli, CHENG Kanghua, MING He, et al. La-modified SBA-15/H2O2 systems for the microwave assisted oxidation of organosolv beech wood lignin[J]. Maderas Ciencia y Tecnología, 2012, 14(1): 31-41. |
46 | MATE V R, JHA A, JOSHI U D, et al. Effect of preparation parameters on characterization and activity of Co3O4 catalyst in liquid phase oxidation of lignin model substrates[J]. Applied Catalysis A: General, 2014, 487: 130-138. |
47 | 何金义, 朱凯. 甲基三氧化铼催化过氧化氢氧化异丁香酚合成香兰素的研究[J]. 应用化工, 2019, 48(3): 550-553. |
HE Jinyi, ZHU Kai. Synthesis of vanillin by catalytic hydrogen peroxide oxidation of iso-eugenol catalyzed by methyl-trioxide[J]. Applied Chemical Industry, 2019, 48(3): 550-553. | |
48 | XU Wenbiao, LI Xiangyu, SHI Junyou. Oxidative depolymerization of cellulolytic enzyme lignin over silicotungvanadium polyoxometalates[J]. Polymers, 2019, 11(3): 564. |
49 | XIE Jinfeng, MA Guanfeng, OUYANG Xinping, et al. Metalloporphyrin as a biomimetic catalyst for the catalytic oxidative degradation of lignin to produce aromatic monomers[J]. Waste and Biomass Valorization, 2020, 11(8): 4481-4489. |
50 | FANG Zhen, MEIER Mark S. Toward the oxidative deconstruction of lignin: Oxidation of β-1 and β-5 linkages[J]. Organic & Biomolecular Chemistry, 2018, 16(13): 2330-2341. |
51 | 林泽英. 杂多酸离子液体催化木质素选择性氧化研究[D]. 广州: 华南理工大学, 2020. |
LIN Zeying. Selective oxidation of lignin catalyzed by polyoxometalate ionic liquids[D]. Guangzhou: South China University of Technology, 2020. | |
52 | CANEVALI Carmen, ORLANDI Marco, PARDI Luca, et al. Oxidative degradation of monomeric and dimeric phenylpropanoids: Reactivity and mechanistic investigation[J]. Journal of the Chemical Society, Dalton Transactions, 2002(15): 3007-3014. |
53 | ZULETA Ernesto C, GOENAGA Gabriel A, ZAWODZINSKI Thomas A, et al. Deactivation of Co-Schiff base catalysts in the oxidation of para-substituted lignin models for the production of benzoquinones[J]. Catalysis Science & Technology, 2020, 10(2): 403-413. |
54 | KERVINEN Kaisa, KORPI Heikki, GERBRAND MESU J, et al. Mechanistic insights into the oxidation of veratryl alcohol with Co(salen) and oxygen in aqueous media: An in situ spectroscopic study[J]. European Journal of Inorganic Chemistry, 2005, 2005(13): 2591-2599. |
55 | 李一鸣. 多金属氧酸盐的设计合成及在木质纤维素转化中的性能研究[D]. 长春: 东北师范大学, 2020. |
LI Yiming. Design and synthesis of polyoxometalates and their activities in lignocellulose conversion[D]. Changchun: Northeast Normal University, 2020. | |
56 | 张俊旺. 多金属氧酸盐-离子液体氧化解聚木质素的研究[D]. 大连: 大连工业大学, 2020. |
ZHANG Junwang. Study on oxidative depolymerization of lignin by polyoxometalates-ionic liquids[D]. Dalian: Dalian Polytechnic University, 2020. | |
57 | KIM Yong Sik, CHANG Houmin, KADLA John F. Polyoxometalate (POM) oxidation of lignin model compounds[J]. Holzforschung, 2008, 62(1): 38-49. |
58 | VOITL Tobias, VON ROHR Philipp Rudolf. Oxidation of lignin using aqueous polyoxometalates in the presence of alcohols[J]. ChemSusChem, 2008, 1(8/9): 763-769. |
59 | DE GREGORIO Gilbert F, PRADO Raquel, VRIAMONT Charles, et al. Oxidative depolymerization of lignin using a novel polyoxometalate-protic ionic liquid system[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(11): 6031-6036. |
60 | CUI Futong, DOLPHIN David. Metallophthalocyanines as possible lignin peroxidase models[J]. Bioorganic & Medicinal Chemistry, 1995, 3(5): 471-477. |
61 | TARABANKO V E, PETUKHOV D V, SELYUTIN G E. New mechanism for the catalytic oxidation of lignin to vanillin[J]. Kinetics and Catalysis, 2004, 45(4): 569-577. |
62 | XIANG Q, LEE Y Y. Production of oxychemicals from precipitated hardwood lignin[J]. Applied Biochemistry and Biotechnology, 2001, 91/92/93: 71-80. |
63 | PARTENHEIMER W. Methodology and scope of metal/bromide autoxidation of hydrocarbons[J]. Catalysis Today, 1995, 23(2): 69-158. |
64 | 马春慧, 张继芳, 李伟, 等. 电化学催化木质素解聚的研究进展[J]. 林产化学与工业, 2022, 42(1): 110-122. |
MA Chunhui, ZHANG Jifang, LI Wei, et al. Research progress in electrochemically catalyzed depolymerization of lignin[J]. Chemistry and Industry of Forest Products, 2022, 42(1): 110-122. | |
65 | YANG C, MALDONADO S, STEPHENSON C R J. Electrocatalytic lignin oxidation[J]. ACS Catalysis, 2021, 11(16): 10104-10114. |
66 | FANG Zhiyong, LI Fuhua, WANG Mei, et al. Selective electrocatalytic upgrading of lignin to aryl aldehydes and carboxylic acids over dodecyl sulfate-intercalated CoS nanocones[J]. Applied Catalysis B: Environmental, 2023, 323: 122149. |
67 | DU Xu, ZHANG Haichuan, SULLIVAN Kevin P, et al. Electrochemical lignin conversion[J]. ChemSusChem, 2020, 13(17): 4318-4343. |
68 | SCHMITT Dominik, REGENBRECHT Carolin, HARTMER Marius, et al. Highly selective generation of vanillin by anodic degradation of lignin: A combined approach of electrochemistry and product isolation by adsorption[J]. Beilstein Journal of Organic Chemistry, 2015, 11: 473-480. |
69 | PARPOT P, BETTENCOURT A P, CARVALHO A M, et al. Biomass conversion: Attempted electrooxidation of lignin for vanillin production[J]. Journal of Applied Electrochemistry, 2000, 30(6): 727-731. |
70 | WANG Yongsheng, YANG Fang, LIU Zhihua, et al. Electrocatalytic degradation of aspen lignin over Pb/PbO2 electrode in alkali solution[J]. Catalysis Communications, 2015, 67: 49-53. |
71 | TOLBA Rasha, TIAN Min, WEN Jiali, et al. Electrochemical oxidation of lignin at IrO2-based oxide electrodes[J]. Journal of Electroanalytical Chemistry, 2010, 649(1/2): 9-15. |
72 | 许仃仃. 针叶木硫酸盐木素的电化学降解及改性研究[D]. 济南: 齐鲁工业大学, 2019. |
XU Dingding. Electrochemical degradation and modification of softwood kraft lignin[D]. Jinan: Qilu University of Technology, 2019. | |
73 | UĞURLU M, KARAOĞLU M H. TiO2 supported on sepiolite: Preparation, structural and thermal characterization and catalytic behaviour in photocatalytic treatment of phenol and lignin from olive mill wastewater[J]. Chemical Engineering Journal, 2011, 166(3): 859-867. |
74 | CAO Yang, CHEN Season S, ZHANG Shicheng, et al. Advances in lignin valorization towards bio-based chemicals and fuels: Lignin biorefinery[J]. Bioresource Technology, 2019, 291: 121878. |
75 | PRADO Raquel, ERDOCIA Xabier, LABIDI Jalel. Effect of the photocatalytic activity of TiO2 on lignin depolymerization[J]. Chemosphere, 2013, 91(9): 1355-1361. |
76 | GONG Jianyu, IMBAULT Alexander, FARNOOD Ramin. The promoting role of bismuth for the enhanced photocatalytic oxidation of lignin on Pt-TiO2 under solar light illumination[J]. Applied Catalysis B: Environmental, 2017, 204: 296-303. |
77 | LIU Huifang, LI Hongji, LUO Nengchao, et al. Visible-light-induced oxidative lignin C-C bond cleavage to aldehydes using vanadium catalysts[J]. ACS Catalysis, 2020, 10(1): 632-643. |
78 | NAIR Vaishakh, DHAR Piyali, VINU R. Production of phenolics via photocatalysis of ball milled lignin-TiO2 mixtures in aqueous suspension[J]. RSC Advances, 2016, 6(22): 18204-18216. |
79 | 王晶, 倪金荧, 王利群, 等. 一株木质素降解细菌的筛选及其降解途径[J]. 化工进展,2021,40(7): 4021-4026. |
WANG Jing, NI Jinying, WANG Liqun, et al. Screening of a lignin degrading bacterium and its degradation pathway[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 4021-4026. | |
80 | SAINSBURY Paul D, MINEYEVA Yelena, MYCROFT Zoe, et al. Chemical intervention in bacterial lignin degradation pathways: Development of selective inhibitors for intradiol and extradiol catechol dioxygenases[J]. Bioorganic Chemistry, 2015, 60: 102-109. |
81 | 梁丛颖, 林璐. 环境微生物介导的木质素代谢及其资源化利用研究进展[J]. 微生物学通报, 2020, 47(10): 3380-3392. |
LIANG Congying, LIN Lu. Environmental microorganisms driven lignin biodegradation and their roles in lignin utilization[J]. Microbiology China, 2020, 47(10): 3380-3392. | |
82 | 唐亮, 廖强, 夏奡, 等. 仿生酶菌协同体系预处理木质素机理及特性[J]. 化工进展,2021,40(10): 5378-5387. |
TANG Liang, LIAO Qiang, XIA Ao, et al. Mechanism and characteristics of nature inspired enzyme-fungi synergistic system for lignin pretreatment[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5378-5387. | |
83 | 徐杰. 光催化材料结构调控和解聚木质素研究[D]. 南京: 南京林业大学, 2021. |
XU Jie. Study on the structure regulation of photocatalytic materials and the depolymerization of lignin[D]. Nanjing: Nanjing Forestry University, 2021. | |
84 | Lucía PENÍN, GIGLI Matteo, SABUZI Federica, et al. Biomimetic vanadate and molybdate systems for oxidative upgrading of iono- and organosolv hard- and softwood lignins[J]. Processes, 2020, 8(9): 1161. |
85 | CRESTINI Claudia, JURASEK Lubo, ARGYROPOULOS Dimitris S. On the mechanism of the laccase-mediator system in the oxidation of lignin[J]. Chemistry—A European Journal, 2003, 9(21): 5371-5378. |
86 | BOHLIN Christina, PERSSON Per, GORTON Lo, et al. Product profiles in enzymic and non-enzymic oxidations of the lignin model compound erythro-1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)-1,3-propanediol[J]. Journal of Molecular Catalysis B: Enzymatic, 2005, 35(4/5/6): 100-107. |
[1] | DAI Huantao, CAO Lingyu, YOU Xinxiu, XU Haoliang, WANG Tao, XIANG Wei, ZHANG Xueyang. Adsorption properties of CO2 on pomelo peel biochar impregnated by lignin [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 356-363. |
[2] | GUAN Hongling, YANG Hui, JING Hongquan, LIU Yuqiong, GU Shouyu, WANG Haobin, HOU Cuihong. Lignin-based controlled release materials and application in drug delivery and fertilizer controlled-release [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3695-3707. |
[3] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
[4] | REN Jianpeng, WU Caiwen, LIU Huijun, WU Wenjuan. Preparation of lignin-polyaniline composites and adsorption of Congo red [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3087-3096. |
[5] | FAN Siqiang, PENG Shaozhong, PENG Chong, HU Yongkang. Research progress in high value-added utilization technology of waste plastics [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1020-1027. |
[6] | YANG Chengruixue, HUANG Qiyuan, RAN Jiansu, CUI Yuntong, WANG Jianjian. Palladium nanoparticles supported by phosphoric acid-modified SiO2 as efficient catalysts for low-temperature hydrodeoxygenation of vanillin in water [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5179-5190. |
[7] | ZHANG Peng, WANG Shaoqing, LI Zhihe, ZHANG Andong, GAO Liang, WAN Zhen, SONG Ning. Preparation and properties of composite adsorbents by co-pyrolysis of red mud and lignin [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 407-414. |
[8] | PU Fulong, WU Shangwei, ZHENG Yingling, ZHENG Yuyi, HOU Xuedan. Effect of lignin extracted by lactic acid-based deep eutectic solvent from rice straw on cellulase hydrolysis efficiency [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4937-4945. |
[9] | LONG Yinying, YANG Jian, GUAN Min, YANG Yiluo, CHENG Zhengbai, CAO Haibing, LIU Hongbin, AN Xingye. Research progress of lignin-based materials in electrode materials for hybrid supercapacitors [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4855-4865. |
[10] | WANG Xing, ZHAO Zilong, ZHANG Xiaoshan, WANG Hongjie, DONG Wenyi, CHEN Huihui. Influence of preparation conditions of biochar-supported iron catalyst on its decomplexation of Ni-EDTA and iron-leaching [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4831-4839. |
[11] | ZHANG Wei, AN Xingye, LIU Liqin, LONG Yinying, ZHANG Hao, CHENG Zhengbai, CAO Haibing, LIU Hongbin. Preparation and electrochemical performance of lignin nanoparticles/natural fiber based activated carbon fiber materials [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3770-3783. |
[12] | ZHANG Lizhu, WANG Huan, LI Qiong, YANG Dongjie. Research progress on the preparation of lignin-derived adsorption materials and their application in wastewater treatment [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3731-3744. |
[13] | LOU Rui, LIU Yu, TIAN Jie, ZHANG Yanan. Preparation of LNP-based hierarchical porous carbon and its electrochemical properties [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3170-3177. |
[14] | SHEN Qi, XUE Yuyuan, YANG Taowei, ZHANG Yan, LI Shengren. Research progress of lignin fluorescence [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2672-2685. |
[15] | WANG Luyuan, JIN Chunjiang, CHEN Huimin, CHENG Xingxing, AN Donghai, ZHANG Xingyu, SUN Rongfeng, GENG Wenguang. Preparation of nano-lignin-based porous carbon materials by one-step pyrolysis activation method [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2582-2592. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |