Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (11): 5993-6004.DOI: 10.16085/j.issn.1000-6613.2022-2276
• Resources and environmental engineering • Previous Articles
JIAO Luchang1(), WEI Yuexing1, ZHANG Yuxun1, QIN Yuhong1(), CUI Liping1, YAN Kezhou2, GUO Shugang3, SHEN Haonan1, HE Chong1
Received:
2022-12-07
Revised:
2023-02-08
Online:
2023-12-15
Published:
2023-11-20
Contact:
QIN Yuhong
焦路畅1(), 卫月星1, 张禹洵1, 秦育红1(), 崔丽萍1, 燕可洲2, 郭舒岗3, 申浩楠1, 贺冲1
通讯作者:
秦育红
作者简介:
焦路畅(1999—),女,硕士研究生,研究方向为工业固废的资源化应用。E-mail:jiaoluchang1087@link.tyut.edu.cn。
基金资助:
CLC Number:
JIAO Luchang, WEI Yuexing, ZHANG Yuxun, QIN Yuhong, CUI Liping, YAN Kezhou, GUO Shugang, SHEN Haonan, HE Chong. Coal gasification fine slag supported CoO catalyst for the efficient degradation of bisphenol A by activating peroxymonosulfate process[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5993-6004.
焦路畅, 卫月星, 张禹洵, 秦育红, 崔丽萍, 燕可洲, 郭舒岗, 申浩楠, 贺冲. 煤气化细渣负载CoO活化PMS高效降解双酚A[J]. 化工进展, 2023, 42(11): 5993-6004.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-2276
组分 | 质量分数/% |
---|---|
SiO2 | 31.28 |
Fe2O3 | 28.15 |
Al2O3 | 15.84 |
SO3 | 4.04 |
CaO | 13.65 |
TiO2 | 1.73 |
K2O | 1.73 |
P2O5 | 1.06 |
Na2O | 0.87 |
Cl | 0.58 |
MgO | 0.59 |
ZrO2 | 0.18 |
SrO | 0.14 |
MnO | 0.09 |
ZnO | 0.07 |
组分 | 质量分数/% |
---|---|
SiO2 | 31.28 |
Fe2O3 | 28.15 |
Al2O3 | 15.84 |
SO3 | 4.04 |
CaO | 13.65 |
TiO2 | 1.73 |
K2O | 1.73 |
P2O5 | 1.06 |
Na2O | 0.87 |
Cl | 0.58 |
MgO | 0.59 |
ZrO2 | 0.18 |
SrO | 0.14 |
MnO | 0.09 |
ZnO | 0.07 |
样品 | SBET/m2·g-1 | 孔体积/cm3·g-1 | 平均孔径/nm |
---|---|---|---|
FS | 1.688 | 0.001 | 2.736 |
FSC | 32.726 | 0.026 | 3.178 |
样品 | SBET/m2·g-1 | 孔体积/cm3·g-1 | 平均孔径/nm |
---|---|---|---|
FS | 1.688 | 0.001 | 2.736 |
FSC | 32.726 | 0.026 | 3.178 |
元素 | 质量分数/% |
---|---|
N | 0.21 |
C | 21.02 |
H | 0.24 |
S | 3.44 |
元素 | 质量分数/% |
---|---|
N | 0.21 |
C | 21.02 |
H | 0.24 |
S | 3.44 |
1 | SHI Da, ZHANG Jianbo, HOU Xinjuan, et al. Adsorption mechanism of a new combined collector (PS-1) on unburned carbon in gasification slag[J]. Science of the Total Environment, 2022, 818: 151856. |
2 | LIU Xiaodong, JIN Zhengwei, JING Yunhuan, et al. Review of the characteristics and graded utilisation of coal gasification slag[J]. Chinese Journal of Chemical Engineering, 2021, 35: 92-106. |
3 | WANG Yafeng, TANG Yuegang, HUAN Binbin, et al. Mineralogical examination of the entrained-flow coal gasification residues and the feed coals from northwest China[J]. Advanced Powder Technology, 2021, 32(11): 3990-4003. |
4 | JI Wenxin, ZHANG Shiyue, ZHAO Pengde, et al. Green synthesis method and application of NaP zeolite prepared by coal gasification coarse slag from Ningdong[J]. Applied Sciences, 2020, 10(8): 2694. |
5 | YUAN Ning, ZHAO Aijing, HU Zekai, et al. Preparation and application of porous materials from coal gasification slag for wastewater treatment: A review[J]. Chemosphere, 2022, 287: 132227. |
6 | LIU Shuo, WEI Jilun, CHEN Xingtong, et al. Low-cost route for preparing carbon-silica composite mesoporous material from coal gasification slag: Synthesis, characterization and application in purifying dye wastewater[J]. Arabian Journal for Science and Engineering, 2020, 45(6): 4647-4657. |
7 | WU Yuhua, MA Yulong, SUN Yonggang, et al. Graded synthesis of highly ordered MCM-41 and carbon/zeolite composite from coal gasification fine residue for crystal violet removal[J]. Journal of Cleaner Production, 2020, 277: 123186. |
8 | ZHU Dandan, ZUO Jing, JIANG Yinshan, et al. Carbon-silica mesoporous composite in situ prepared from coal gasification fine slag by acid leaching method and its application in nitrate removing[J]. Science of the Total Environment, 2020, 707: 136102. |
9 | MA Xianyao, LI Yingxue, XU Defu, et al. Simultaneous adsorption of ammonia and phosphate using ferric sulfate modified carbon/zeolite composite from coal gasification slag[J]. Journal of Environmental Management, 2022, 305: 114404. |
10 | 徐怡婷, 柴晓利. 铁负载煤气化渣基活性炭非均相Fenton体系降解甲基橙染料废水的工艺优化及其机理研究[J]. 山东化工, 2016, 45(22): 159-164. |
XU Yiting, CHAI Xiaoli. Kinetic studies of degradation of methyl orange dye wastewater by heterogeneous Fenton-like using coal gasification slag-based activated carbon-Fe[J]. Shandong Chemical Industry, 2016, 45(22): 159-164. | |
11 | WANG Ji, KONG Lingxue, BAI Jin, et al. Characterization of slag from anthracite gasification in moving bed slagging gasifier[J]. Fuel, 2021, 292: 120390. |
12 | XU Peng, WANG Peng, LI Xiang, et al. Efficient peroxymonosulfate activation by CuO-Fe2O3/MXene composite for atrazine degradation: Performance, coexisting matter influence and mechanism[J]. Chemical Engineering Journal, 2022, 440: 135863. |
13 | MA Chenyang, GUO Yajie, ZHANG Daofang, et al. Metal-nitrogen-carbon catalysts for peroxymonosulfate activation to degrade aquatic organic contaminants: Rational design, size-effect description, applications and mechanisms[J]. Chemical Engineering Journal, 2023, 454: 140216. |
14 | ZHENG Xiaoxian, NIU Xiaojun, ZHANG Dongqing, et al. Metal-based catalysts for persulfate and peroxymonosulfate activation in heterogeneous ways: A review[J]. Chemical Engineering Journal, 2022, 429: 132323. |
15 | 田婷婷, 李朝阳, 王召东, 等. 过渡金属活化过硫酸盐降解有机废水技术研究进展[J]. 化工进展, 2021, 40(6): 3480-3488. |
TIAN Tingting, LI Chaoyang, WANG Shaodong, et al. Research progress of transition metal activated persulfate to degrade organic wastewater[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3480-3488. | |
16 | LI Di, ZHAO Qianqian, REN Qiaoxia, et al. Double activating peroxymonosulfate with g-C3N4/Fe2(MoO4)3 to enhance photocatalytic activity under visible light irradiation[J]. New Journal of Chemistry, 2021, 45(35): 15818-15830. |
17 | ZHAO Chenhui, SHAO Binbin, YAN Ming, et al. Activation of peroxymonosulfate by biochar-based catalysts and applications in the degradation of organic contaminants: A review[J]. Chemical Engineering Journal, 2021, 416: 128829. |
18 | 莫贞林, 曾鸿鹄, 林华, 等. 高锰酸钾改性桉木生物炭对Pb(Ⅱ)的吸附特性[J]. 环境科学, 2021, 42(11): 5440-5449. |
MO Zhenlin, ZENG Honghu, LIN Hua, et al. Adsorption characteristics of Pb(Ⅱ) on eucalyptus biochar modified by potassium permanganate[J]. Environmental Science, 2021, 42(11): 5440-5449. | |
19 | SAMIR Brahim, BAKHTA Soumia, BOUAZIZI Nabil, et al. TBO degradation by heterogeneous Fenton-like reaction using Fe supported over activated carbon[J]. Catalysts, 2021, 11(12): 1456. |
20 | LI Chunquan, WANG Sidi, ZHANG Xiangwei, et al. In-situ preparation of coal gangue-based catalytic material for efficient peroxymonosulfate activation and phenol degradation[J]. Journal of Cleaner Production, 2022, 374: 133926. |
21 | GIANNAKIS S, LIN K Y, GHANBARI F. A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes(SR-AOPs)[J]. Chemical Engineering Journal, 2021, 406: 127083. |
22 | MORADI Mona, KAKAVANDI Babak, BAHADORAN Ashkan, et al. Intensification of persulfate-mediated elimination of bisphenol A by a spinel cobalt ferrite-anchored g-C3N4 S-scheme photocatalyst: Catalytic synergies and mechanistic interpretation[J]. Separation and Purification Technology, 2022, 285: 120313. |
23 | LI Hongchao, SHAN Chao, PAN Bingcai. Fe(Ⅲ)-doped g-C3N4 mediated peroxymonosulfate activation for selective degradation of phenolic compounds via high-valent iron-oxo species[J]. Environmental Science and Technology, 2018, 52(4): 2197-2205. |
24 | XU Siyu, WEN Liangtao, YU Chen, et al. Activation of peroxymonosulfate by MnFe2O4@BC composite for bisphenol A degradation: The coexisting of free-radical and non-radical pathways[J]. Chemical Engineering Journal, 2022, 442: 136250. |
25 | GAN Lu, WANG Linjie, XU Lijie, et al. Fe3C-porous carbon derived from Fe2O3 loaded MOF-74(Zn) for the removal of high concentration BPA: The integrations of adsorptive/catalytic synergies and radical/non-radical mechanisms[J]. Journal of Hazardous Materials, 2021, 413: 125305. |
26 | JIANG Zhuorui, LI Yuxin, ZHOU Yuxiao, et al. Co3O4-MnO2 nanoparticles moored on biochar as a catalyst for activation of peroxymonosulfate to efficiently degrade sulfonamide antibiotics[J]. Separation and Purification Technology, 2022, 281: 119935. |
27 | LI Bo, WANG Yunfei, ZHANG Lu, et al. Enhancement strategies for efficient activation of persulfate by heterogeneous cobalt-containing catalysts: A review[J]. Chemosphere, 2022, 291: 132954. |
28 | 马爱玲, 黄光许, 耿乾浩, 等. 硼/氮共掺杂多孔碳纳米片的制备及其电化学性能[J]. 化工进展, 2021, 40(8): 4388-4396. |
MA Ailing, HUANG Guangxu, GENG Qianhao, et al. Preparation and electrochemical properties of B/N Co-doped porous carbon nanosheets[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4388-4396. | |
29 | DOU Ruyan, CHENG Hao, MA Jianfeng, et al. Catalytic degradation of methylene blue through activation of bisulfite with CoO nanoparticles[J]. Separation and Purification Technology, 2020, 239: 116561. |
30 | XI Tianhao, LI Xiaodan, ZHANG Qihui, et al. Enhanced catalytic oxidation of 2,4-dichlorophenol via singlet oxygen dominated peroxymonosulfate activation on CoOOH@ Bi2O3 composite[J]. Frontiers of Environmental Science & Engineering, 2021, 15(4): 55. |
31 | MIAO Zekai, WU Jianjun, ZHANG Yixin, et al. Chemical characterizations of different sized mineral-rich particles in fine slag from Entrained-flow gasification[J]. Advanced Powder Technology, 2020, 31(9): 3715-3723. |
32 | HOU Jifei, HE Xiudan, ZHANG Shengqi, et al. Recent advances in cobalt-activated sulfate radical-based advanced oxidation processes for water remediation: A review[J]. Science of the Total Environment, 2021, 770: 145311. |
33 | LI Kai, MA Shuanglong, XU Shengjun, et al. The mechanism changes during bisphenol A degradation in three iron functionalized biochar/peroxymonosulfate systems: The crucial roles of iron contents and graphitized carbon layers[J]. Journal of Hazardous Materials, 2021, 404: 124145. |
34 | LUO Haoyu, FU Hengyi, YIN Hua, et al. Carbon materials in persulfate-based advanced oxidation processes: The roles and construction of active sites[J]. Journal of Hazardous Materials, 2022, 426: 128044. |
35 | 祁元, 徐欣蓉, 阮玮, 等. 改性活性碳纤维对苯胺吸附特性分析[J]. 化工进展, 2022, 41(S1): 622-630. |
QI Yuan, XU Xinrong, RUAN Wei, et al. Characterization of aniline adsorption by modified activated carbon fiber[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 622-630. | |
36 | TANG Juntao, WANG Jianlong. Metal organic framework with coordinatively unsaturated sites as efficient Fenton-like catalyst for enhanced degradation of sulfamethazine[J]. Environmental Science & Technology, 2018, 52(9): 5367-5377. |
37 | 白明华, 李一迪, 刘锐, 等. 水热法制备氧化钴/泡沫镍材料及电容性能分析[J]. 化工进展, 2020, 39(10): 4111-4118. |
BAI Minghua, LI Yidi, LIU Rui, et al. Preparation and properties of cobalt oxide/nickel foam materials by hydrothermal method[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4111-4118. | |
38 | LIN Xueming, YANG Xingjian, HU Zheng, et al. Highly effective removal of bisphenol A by greigite/persulfate in spiked soil: Heterogeneous soil/water system balance and degradation[J]. Chemosphere, 2021, 280: 130655. |
39 | MARYAM M A, NEZAMADDIN M. Catalytic degradation of mefenamic acid by peroxymonosulfate activated with MWCNTs-CoFe2O4: Influencing factors, degradation pathway, and comparison of activation processes[J]. Environmental Science and Pollution Research, 2020, 27(36): 45324-45335. |
40 | CHEN Chen, JIANG Caiyun, CAO Wang, et al. Insight into the difference in activation of peroxymonosulfate with nitrogen-doped and non-doped carbon catalysts to degrade bisphenol A[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105492. |
41 | KAKAVANDI Babak, ALAVI Saba, GHANBARI Farshid, et al. Bisphenol A degradation by peroxymonosulfate photo-activation coupled with carbon-based cobalt ferrite nanocomposite: Performance, upgrading synergy and mechanistic pathway[J]. Chemosphere, 2022, 287: 132024. |
42 | LUO Yuye, LIU Cheng, MEHMOOD Tariq, et al. Activation of permonosulfate by Co-Fe3O4 composite catalyst for amino acid removal: Performance and mechanism of Co-Fe3O4 nanoparticles[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106036. |
43 | TAN Jianke, XU Chengji, ZHANG Xiaodan, et al. MOFs-derived defect carbon encapsulated magnetic metallic Co nanoparticles capable of efficiently activating PMS to rapidly degrade dyes[J]. Separation and Purification Technology, 2022, 289: 120812. |
44 | YU Yaqun, JI Yuefei, LU Junhe, et al. Degradation of sulfamethoxazole by Co3O4-palygorskite composites activated peroxymonosulfate oxidation[J]. Chemical Engineering Journal, 2021, 406: 126759. |
45 | LI Yinghao, ZHU Wenjie, GUO Qian, et al. Highly efficient degradation of sulfamethoxazole (SMX) by activating peroxymonosulfate (PMS) with CoFe2O4 in a wide pH range[J]. Separation and Purification Technology, 2021, 276: 119403. |
46 | KLU P K, NASIR KHAN M A, WANG C, et al. Mechanism of peroxymonosulfate activation and the utilization efficiency using hollow (Co, Mn)3O4 nanoreactor as an efficient catalyst for degradation of organic pollutants[J]. Environmental Research, 2022, 207: 112148. |
47 | PAN Cong, FU Libin, DING Yaobin, et al. Homogeneous catalytic activation of peroxymonosulfate and heterogeneous reductive regeneration of Co2+ by MoS2: The pivotal role of pH[J]. Science of the Total Environment, 2020, 712: 136447. |
48 | 张燕, 王淼, 赵佳辉, 等. 氮掺杂石墨烯/碳纳米管/无定形炭复合材料制备及其电化学性能[J]. 化工进展, 2022, 41(10): 5501-5509. |
ZHANG Yan, WANG Miao, ZHAO Jiahui, et al. Preparation and electrochemical properties of nitrogen-doped graphene/carbon nanotubes/amorphous carbon composites[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5501-5509. | |
49 | CHENG Weiwei, GUAN Weijiang, LIN Yanjun, et al. Rapid discrimination of adsorbed oxygen and lattice oxygen in catalysts by the cataluminescence method[J]. Analytical Chemistry, 2022, 94(2): 1382-1389. |
50 | REN Hejun, LIU Hongwei, CUI Tingchen, et al. Boosting the activation of Peroxymonosulfate and the degradation of metronidazole over FeCo2O4 quantum dots anchored on β-FeOOH Nanosheets: Inspired from octahedral Co(Ⅱ) with missing angle[J]. Chemical Engineering Journal, 2022, 431: 133803. |
51 | ZHAO Lele, ZHANG Jiaming, ZHANG Zhiping, et al. Co3O4 crystal plane regulation to efficiently activate peroxymonosulfate in water: The role of oxygen vacancies[J]. Journal of Colloid and Interface Science, 2022, 623: 520-531. |
52 | LI Min, ZHANG Hao, LIU Zhiliang, et al. Surface lattice oxygen mobility inspired peroxymonosulfate activation over Mn2O3 exposing different crystal faces toward bisphenol A degradation[J]. Chemical Engineering Journal, 2022, 450: 138147. |
53 | CHEN Hanxiao, XU Yin, ZHU Kangmeng, et al. Understanding oxygen-deficient La2CuO4-δperovskite activated peroxymonosulfate for bisphenol A degradation: The role of localized electron within oxygen vacancy[J]. Applied Catalysis B: Environmental, 2021, 284: 119732. |
54 | LI Yi, MA Shuanglong, XU Shengjun, et al. Novel magnetic biochar as an activator for peroxymonosulfate to degrade bisphenol A: Emphasizing the synergistic effect between graphitized structure and CoFe2O4 [J]. Chemical Engineering Journal, 2020, 387: 124094. |
55 | REZAEI S S, KAKAVANDI B, NOORISEPEHR M, et al. Photocatalytic oxidation of tetracycline by magnetic carbon-supported TiO2 nanoparticles catalyzed peroxydisulfate: Performance, synergy and reaction mechanism studies[J]. Separation and Purification Technology, 2021, 258: 117936. |
56 | LIN K A, ZHANG Z Y. Degradation of Bisphenol A using peroxymonosulfate activated by one-step prepared sulfur-doped carbon nitride as a metal-free heterogeneous catalyst[J]. Chemical Engineering Journal, 2017, 313: 1320-1327. |
[1] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[2] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[3] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[4] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[5] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[6] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[7] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[8] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[9] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[10] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[11] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[12] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[13] | ZHANG Yaojie, ZHANG Chuanxiang, SUN Yue, ZENG Huihui, JIA Jianbo, JIANG Zhendong. Application of coal-based graphene quantum dots in supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4340-4350. |
[14] | GUO Lixing, PANG Weiying, MA Keyao, YANG Jiahan, SUN Zehui, ZHANG Pan, FU Dong, ZHAO Kun. Hierarchically multilayered TiO2 with spatial pore-structure for efficient photocatalytic CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3643-3651. |
[15] | CHU Tiantian, LIU Runzhu, DU Gaohua, MA Jiahao, ZHANG Xiao’a, WANG Chengzhong, ZHANG Junying. Preparation and chemical degradability of organoguanidine-catalyzed dehydrogenation type RTV silicone rubbers [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3664-3673. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |