Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (7): 3431-3445.DOI: 10.16085/j.issn.1000-6613.2021-1739
• Chemical processes and equipment • Previous Articles Next Articles
Received:
2021-08-13
Revised:
2021-12-24
Online:
2022-07-23
Published:
2022-07-25
Contact:
CUI Xiaoyu
通讯作者:
崔晓钰
作者简介:
汤振彪(1997—),男,硕士研究生,研究方向为强化传热传质。E-mail:CLC Number:
TANG Zhenbiao, CUI Xiaoyu. Research progress on working medium and heat transfer structure of liquid cooling plate with array jet impingement[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3431-3445.
汤振彪, 崔晓钰. 液体阵列射流冲击冷板工质与传热结构研究进展[J]. 化工进展, 2022, 41(7): 3431-3445.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1739
1 | CARLOMAGNO G M, IANIRO A. Thermo-fluid-dynamics of submerged jets impinging at short nozzle-to-plate distance: a review[J]. Experimental Thermal and Fluid Science, 2014, 58: 15-35. |
2 | WEBB B W, MA C F. Single-phase liquid jet impingement heat transfer[J]. Advances in Heat Transfer, 1995, 26: 105-217. |
3 | AMANO R S, SUNDEN B. Impingement jet cooling in gas turbines[M]. Ashurst, Southamption: WIT Press, 2014. |
4 | WAE-HAYEE M, YERANEE K, SUKSUWAN W, et al. Heat transfer enhancement in rotary drum dryer by incorporating jet impingement to accelerate drying rate[J]. Drying Technology, 2021, 39(10): 1314-1324. |
5 | CHANG S W, CHIOU S F, CHANG S F. Heat transfer of impinging jet array over concave-dimpled surface with applications to cooling of electronic chipsets[J]. Experimental Thermal and Fluid Science, 2007, 31(7): 625-640. |
6 | ANWARULLAH M, VASUDEVA RAO V, SHARMA K V. Experimental investigation for enhancement of heat transfer from cooling of electronic components by circular air jet impingement[J]. Heat and Mass Transfer, 2012, 48(9): 1627-1635. |
7 | CHAUHAN R, SINGH T, THAKUR N S, et al. Heat transfer augmentation in solar thermal collectors using impinging air jets: a comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 3179-3190. |
8 | NADDA R, KUMAR A, MAITHANI R. Efficiency improvement of solar photovoltaic/solar air collectors by using impingement jets: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 93: 331-353. |
9 | BROWNE E A, MICHNA G J, JENSEN M K, et al. Microjet array single-phase and flow boiling heat transfer with R134a[J]. International Journal of Heat and Mass Transfer, 2010, 53(23/24): 5027-5034. |
10 | SHIN J H, ROZENFELD T, SHOCKNER T, et al. Local heat transfer under an array of micro jet impingement using HFE-7000[J]. Applied Thermal Engineering, 2019, 158: 113716. |
11 | HONG F J, ZHANG C Y, HE W, et al. Confined jet array impingement boiling of subcooled aqueous ethylene glycol solution[J]. International Communications in Heat and Mass Transfer, 2014, 56: 165-173. |
12 | MA C F, ZHENG Q, KO S Y. Local heat transfer and recovery factor with impinging free-surface circular jets of transformer oil[J]. International Journal of Heat and Mass Transfer, 1997, 40(18): 4295-4308. |
13 | EASTMAN J A, CHOI U S, LI S, et al. Novel thermal properties of nanostructured materials[J]. Journal of Metastable and Nanocrystalline Materials, 1999, 2/3/4/5/6: 629-634. |
14 | CHOI S U S. Nanofluids: from vision to reality through research[J]. Journal of Heat Transfer, 2009, 131(3): 033106. |
15 | WANG X W, XU X F, CHOI S U S. Thermal conductivity of nanoparticle-fluid mixture[J]. Journal of Thermophysics and Heat Transfer, 1999, 13(4): 474-480. |
16 | EASTMAN J A, CHOI S U S, LI S, et al. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles[J]. Applied Physics Letters, 2001, 78(6): 718-720. |
17 | MODAK M, CHOUGULE S S, SAHU S K. An experimental investigation on heat transfer characteristics of hot surface by using CuO-water nanofluids in circular jet impingement cooling[J]. Journal of Heat Transfer, 2018, 140(1): 012401. |
18 | Jizu LYU, CHANG Shengnan, HU Chengzhi, et al. Experimental investigation of free single jet impingement using Al2O3-water nanofluid[J]. International Communications in Heat and Mass Transfer, 2017, 88: 126-135. |
19 | Jizu LYU, HU Chengzhi, BAI Minli, et al. Experimental investigation of free single jet impingement using SiO2-water nanofluid[J]. Experimental Thermal and Fluid Science, 2017, 84: 39-46. |
20 | SU Zhonggen, ZHENG Wei, ZHANG Zhendong. Study on diesel cylinder-head cooling using nanofluid coolant with jet impingement[J]. Thermal Science, 2015, 19(6): 2025-2037. |
21 | LI Qiang, XUAN Yimin, YU Feng. Experimental investigation of submerged single jet impingement using Cu-water nanofluid[J]. Applied Thermal Engineering, 2012, 36: 426-433. |
22 | LI Q, XUAN Y M, YU F, et al. Experimental investigation of submerged impinging jet using Cu-water nanofluid[C]//Proceedings of 2010 14th International Heat Transfer Conference. Washington, 2011: 469-473. |
23 | Peng TIE, LI Qiang, XUAN Yimin. Heat transfer performance of Cu-water nanofluids in the jet arrays impingement cooling system[J]. International Journal of Thermal Sciences, 2014, 77: 199-205. |
24 | SENKAL C, TORII S. Investigation on the multiple jet impingement heat transfer using Al2O3-water nanofluid[C]//Proceedings of ASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. Burlingame, 2014. |
25 | AMJADIAN M, SAFARZADEH H, BAHIRAEI M, et al. Heat transfer characteristics of impinging jet on a hot surface with constant heat flux using Cu2O-water nanofluid: an experimental study[J]. International Communications in Heat and Mass Transfer, 2020, 112: 104509. |
26 | SUN Bin, QU Yi, YANG Di. Heat transfer of single impinging jet with Cu nanofluids[J]. Applied Thermal Engineering, 2016, 102: 701-707. |
27 | MODAK M, CHOUGULE S S, SAHU S K. An experimental investigation on heat transfer characteristics of hot surface by using CuO-water nanofluids in circular jet impingement cooling[J]. Journal of Heat Transfer, 2018, 140(1): 012401. |
28 | WEBB B W, MA C F. Single-phase liquid jet impingement heat transfer[J]. Advances in Heat Transfer, 1995, 26: 105-217. |
29 | LEE J, LEE S J. The effect of nozzle configuration on stagnation region heat transfer enhancement of axisymmetric jet impingement[J]. International Journal of Heat and Mass Transfer, 2000, 43(18): 3497-3509. |
30 | STEVENS J, WEBB B W. Local heat transfer coefficients under an axisymmetric, single-phase liquid jet[J]. Journal of Heat Transfer, 1991, 113(1): 71-78. |
31 | ELISON B, WEBB B W. Local heat transfer to impinging liquid jets in the initially laminar, transitional, and turbulent regimes[J]. International Journal of Heat and Mass Transfer, 1994, 37(8): 1207-1216. |
32 | GARIMELLA S V, NENAYDYKH B. Nozzle-geometry effects in liquid jet impingement heat transfer[J]. International Journal of Heat and Mass Transfer, 1996, 39(14): 2915-2923. |
33 | GARIMELLA S V, RICE R A. Confined and submerged liquid jet impingement heat transfer[J]. Journal of Heat Transfer, 1995, 117(4): 871-877. |
34 | STEVENS J, WEBB B W. Measurements of flow structure in the radial layer of impinging free-surface liquid jets[J]. International Journal of Heat and Mass Transfer, 1993, 36(15): 3751-3758. |
35 | LEE D H, SONG J, JO M C. The effects of nozzle diameter on impinging jet heat transfer and fluid flow[J]. Journal of Heat Transfer, 2004, 126(4): 554-557. |
36 | LOU Z Q, MUJUMDAR A S, YAP C. Effects of geometric parameters on confined impinging jet heat transfer[J]. Applied Thermal Engineering, 2005, 25(17/18): 2687-2697. |
37 | O’DONOVAN T S, MURRAY D B. Jet impingement heat transfer-Part Ⅰ: Mean and root-mean-square heat transfer and velocity distributions[J]. International Journal of Heat and Mass Transfer, 2007, 50(17/18): 3291-3301. |
38 | BRIGNONI L A, GARIMELLA S V. Effects of nozzle-inlet chamfering on pressure drop and heat transfer in confined air jet impingement[J]. International Journal of Heat and Mass Transfer, 2000, 43(7): 1133-1139. |
39 | GULATI P, KATTI V, PRABHU S V. Influence of the shape of the nozzle on local heat transfer distribution between smooth flat surface and impinging air jet[J]. International Journal of Thermal Sciences, 2009, 48(3): 602-617. |
40 | LEE D H, SONG J, JO M C. The effects of nozzle diameter on impinging jet heat transfer and fluid flow[J]. Journal of Heat Transfer, 2004, 126(4): 554-557. |
41 | FABBRI M, DHIR V K. Optimized heat transfer for high power electronic cooling using arrays of microjets[J]. Journal of Heat Transfer, 2005, 127(7): 760-769. |
42 | 李超, 贺占蜀, 李大磊. 纯水射流流场分布及冲击换热数值模拟研究[J]. 机械设计与制造, 2020(8): 103-107. |
LI Chao, HE Zhanshu, LI Dalei. Numerical simulation of water jet flow field distribution and impingement heat transfer[J]. Machinery Design & Manufacture, 2020(8): 103-107. | |
43 | MARZEC K, KUCABA-PIETAL A. Heat transfer characteristic of an impingement cooling system with different nozzle geometry[J]. Journal of Physics: Conference Series, 2014, 530: 012038. |
44 | ROYNE A, DEY C J. Effect of nozzle geometry on pressure drop and heat transfer in submerged jet arrays[J]. International Journal of Heat and Mass Transfer, 2006, 49(3/4): 800-804. |
45 | WHELAN B P, ROBINSON A J. Nozzle geometry effects in liquid jet array impingement[J]. Applied Thermal Engineering, 2009, 29(11/12): 2211-2221. |
46 | POPIEL C O, BOGUSLAWSKI L. Mass or heat transfer in impinging single, round jets emitted by a bell-shaped nozzle and sharp-ended orifice[C]//Proceeding of International Heat Transfer Conference 8. Begellhouse, 1986: 1187-1192. |
47 | LEE J, LEE S J. The effect of nozzle configuration on stagnation region heat transfer enhancement of axisymmetric jet impingement[J]. International Journal of Heat and Mass Transfer, 2000, 43(18): 3497-3509. |
48 | GARIMELLA S V, NENAYDYKH B. Nozzle-geometry effects in liquid jet impingement heat transfer[J]. International Journal of Heat and Mass Transfer, 1996, 39(14): 2915-2923. |
49 | GEERS L F G, TUMMERS M J, BUENINCK T J, et al. Heat transfer correlation for hexagonal and in-line arrays of impinging jets[J]. International Journal of Heat and Mass Transfer, 2008, 51(21/22): 5389-5399. |
50 | 韩宇萌, 王新军, 仇璐珂, 等. 阵列射流冲击冷却换热特性的数值研究[J]. 汽轮机技术, 2010, 52(3): 161-164. |
HAN Yumeng, WANG Xinjun, QIU Luke, et al. Numerical study on heat transfer characteristics of jet array impingement[J]. Turbine Technology, 2010, 52(3): 161-164. | |
51 | SAN J Y, LAI Maode. Optimum jet-to-jet spacing of heat transfer for staggered arrays of impinging air jets[J]. International Journal of Heat and Mass Transfer, 2001, 44(21): 3997-4007. |
52 | 孙润鹏, 朱卫兵, 陈昌将, 等. 阵列射流冲击冷却传热特性的数值研究[J]. 热科学与技术, 2012, 11(1): 34-41. |
SUN Runpeng, ZHU Weibing, CHEN Changjiang, et al. Numerical investigation on heat transfer characteristics of jet array impingement cooling[J]. Journal of Thermal Science and Technology, 2012, 11(1): 34-41. | |
53 | XING Yunfei, WEIGAND B. Optimum jet-to-plate spacing of inline impingement heat transfer for different crossflow schemes[J]. Journal of Heat Transfer, 2013, 135(7): 072201. |
54 | SAN J Y, CHEN J J. Effects of jet-to-jet spacing and jet height on heat transfer characteristics of an impinging jet array[J]. International Journal of Heat and Mass Transfer, 2014, 71: 8-17. |
55 | 谢浩, 张靖周. 阵列射流冲击冷却换热系数的数值研究[J]. 能源研究与利用, 2005(5): 45-47. |
XIE Hao, ZHANG Jingzhou. Numerical research on jet arrayed impingement cooling heat exchange coefficient[J]. Energy Research and Utilization, 2005(5): 45-47. | |
56 | CHIU H C, JANG J H, YAN W M. Experimental study on the heat transfer under impinging elliptic jet array along a film hole surface using liquid crystal thermograph[J]. International Journal of Heat and Mass Transfer, 2009, 52(19/20): 4435-4448. |
57 | SU L M, CHANG S W. Detailed heat transfer measurements of impinging jet arrays issued from grooved surfaces[J]. International Journal of Thermal Sciences, 2002, 41(9): 823-841. |
58 | YAN W M, MEI S C. Measurement of detailed heat transfer along rib-roughened surface under arrays of impinging elliptic jets[J]. International Journal of Heat and Mass Transfer, 2006, 49(1/2): 159-170. |
59 | HSIEH S S, TSAI H H, CHAN S C. Local heat transfer in rotating square-rib-roughened and smooth channels with jet impingement[J]. International Journal of Heat and Mass Transfer, 2004, 47(12/13): 2769-2784. |
60 | JIA R G, ROKNI M, SUNDÉN B. Impingement cooling in a rib-roughened channel with cross-flow[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2001, 11(7): 642-662. |
61 | CHUNG Y S, LEE D H, LEE J S. Technical Note Heat transfer characteristics of an axisymmetric jet impinging on the rib-roughened convex surface[J]. International Journal of Heat and Mass Transfer, 1999, 42(11): 2101-2110. |
62 | YAN W M, LIU H C, SOONG C Y, et al. Experimental study of impinging heat transfer along rib-roughened walls by using transient liquid crystal technique[J]. International Journal of Heat and Mass Transfer, 2005, 48(12): 2420-2428. |
63 | CHANG H, ZHANG D, HUANG T. Impingement heat transfer from rib roughened surface within arrays of circular jet: the effect of the relative position of the jet hole to the ribs[C]//Proceedings of ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition. Orlando, 1997. |
64 | CHANG H, ZHANG J, HUANG T. Experimental investigation on impingement heat transfer from rib roughened surface within arrays of circular jet: effect of geometric parameters[C]//Proceedings of ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. Stockholm, 1998. |
65 | CHANG H P, ZHANG J Y, HUANG T P. Experimental investigation on impingement heat transfer from rib roughened surface within arrays of circular jets: Correlation[C]//Proceedings of ASME Turbo Expo 2000: Power for Land, Sea, and Air. Munich, 2000. |
66 | XING Y F, SPRING S, WEIGAND B. Experimental and numerical investigation of impingement heat transfer on a flat and micro-rib roughened plate with different crossflow schemes[J]. International Journal of Thermal Sciences, 2011, 50(7): 1293-1307. |
67 | ANDREWS G E, HUSSAIN R A A A, MKPADI M C. Enhanced impingement heat transfer: The influence of impingement X/D for interrupted rib obstacles (rectangular pin fins)[J]. Journal of Turbomachinery, 2006, 128(2): 321-331. |
68 | HONG S K, RHEE D H, CHO H H. Heat/mass transfer with circular pin fins in impingement/effusion cooling system with crossflow[J]. Journal of Thermophysics and Heat Transfer, 2006, 20(4): 728-737. |
69 | NDAO S, LEE H J, PELES Y, et al. Heat transfer enhancement from micro pin fins subjected to an impinging jet[J]. International Journal of Heat and Mass Transfer, 2012, 55(1/2/3): 413-421. |
70 | BRAKMANN R, CHEN L L, WEIGAND B, et al. Experimental and numerical heat transfer investigation of an impinging jet array on a target plate roughened by cubic micro pin Fins1[J]. Journal of Turbomachinery, 2016, 138(11): 111010. |
71 | CHANG S W, JAN Y J, CHANG S F. Heat transfer of impinging jet-array over convex-dimpled surface[J]. International Journal of Heat and Mass Transfer, 2006, 49(17/18): 3045-3059. |
72 | EKKAD S V, KONTROVITZ D. Jet impingement heat transfer on dimpled target surfaces[J]. International Journal of Heat and Fluid Flow, 2002, 23(1): 22-28. |
73 | KANOKJARUVIJIT K, MARTINEZ-BOTAS R F. Jet impingement on a dimpled surface with different crossflow schemes[J]. International Journal of Heat and Mass Transfer, 2005, 48(1): 161-170. |
74 | CALISKAN S, BASKAYA S. Experimental investigation of impinging jet array heat transfer from a surface with V-shaped and convergent-divergent ribs[J]. International Journal of Thermal Sciences, 2012, 59: 234-246. |
75 | RAO Yu, CHEN Peng, WAN Chaoyi. Experimental and numerical investigation of impingement heat transfer on the surface with micro W-shaped ribs[J]. International Journal of Heat and Mass Transfer, 2016, 93: 683-694. |
76 | XING Y F, SPRING S, WEIGAND B. Experimental and numerical investigation of impingement heat transfer on a flat and micro-rib roughened plate with different crossflow schemes[J]. International Journal of Thermal Sciences, 2011, 50(7): 1293-1307. |
77 | XING Y F, WEIGAND B. Experimental investigation on staggered impingement heat transfer on a rib roughened plate with different crossflow schemes[C]//ASME Turbo Expo 2010: Power for Land, Sea, and Air. Glasgow, 2010. |
78 | LO Y H, LIU Y H. Heat transfer of impinging jet arrays onto half-smooth, half-rough target surfaces[J]. Applied Thermal Engineering, 2018, 128: 79-91. |
79 | PERRY K P. Heat transfer by convection from a hot gas jet to a plane surface[J]. Proceedings of the Institution of Mechanical Engineers, 1954, 168(1): 775-784. |
80 | 陈欣欣, 王川, 施卫东, 等. 不同冲击角度下淹没冲击水射流的数值计算[J]. 排灌机械工程学报, 2020, 38(7): 658-662, 669. |
CHEN Xinxin, WANG Chuan, SHI Weidong, et al. Numerical simulation of submerged impinging water jet at different impact angles[J]. Journal of Drainage and Irrigation Machinery Engineering, 2020, 38(7): 658-662, 669. | |
81 | PARIDA P R, EKKAD S V, NGO K. Experimental and numerical investigation of confined oblique impingement configurations for high heat flux applications[J]. International Journal of Thermal Sciences, 2011, 50(6): 1037-1050. |
82 | DEBNATH S, KHAN M H U, AHMED Z U. Turbulent swirling impinging jet arrays: a numerical study on fluid flow and heat transfer[J]. Thermal Science and Engineering Progress, 2020, 19: 100580. |
[1] | XIAO Hui, ZHANG Xianjun, LAN Zhike, WANG Suhao, WANG Sheng. Advances in flow and heat transfer research of liquid metal flowing across tube bundles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 10-20. |
[2] | ZHAO Chen, MIAO Tianze, ZHANG Chaoyang, HONG Fangjun, WANG Dahai. Heat transfer characteristics of ethylene glycol aqueous solution in slit channel under negative pressure [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 148-157. |
[3] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[4] | ZHANG Fan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Initializing distillation column simulation based on the improved constant heat transport model [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4550-4558. |
[5] | BU Zhicheng, JIAO Bo, LIN Haihua, SUN Hongyuan. Review on computational fluid dynamics (CFD) simulation and advances in pulsating heat pipes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4167-4181. |
[6] | WANG Jiansheng, ZHANG Huipeng, LIU Xueling, FU Yuguo, ZHU Jianxiao. Analysis of flow and heat transfer characteristics in porous media reservoir [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4212-4220. |
[7] | WANG Yungang, JIAO Jian, DENG Shifeng, ZHAO Qinxin, SHAO Huaishuang. Experimental analysis of condensation heat transfer and synergistic desulfurization [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4230-4237. |
[8] | LIU Houli, GU Zhonghao, YANG Kang, ZHANG Li. Effect of groove width on pool boiling heat transfer characteristics in 3D printing groove structure [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2282-2288. |
[9] | ZHANG Chenyu, WANG Ning, XU Hongtao, LUO Zhuqing. Performance evaluation of the multiple layer latent heat thermal energy storage unit combined with nanoparticle for heat transfer enhancement [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2332-2342. |
[10] | GUO Wenjie, ZHAI Yuling, CHEN Wenzhe, SHEN Xin, XING Ming. Analysis of convective heat transfer and thermo-economic performance of Al2O3-CuO/water hybrid nanofluids [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2315-2324. |
[11] | MA Runmei, YANG Haichao, LI Zhengda, LI Shuangxi, ZHAO Xiang, ZHANG Guoqing. Influence analysis of coating on deformation and frictional wear of mechanical seal end for high-speed bearing cavity [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1688-1697. |
[12] | SHANG Yu, XIAO Man, CUI Qiufang, TU Te, YAN Shuiping. Recovery characteristics of PVDF/BN-OH flat composite membrane for waste heat of hot stripped gas in CO2 capture process [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1618-1628. |
[13] | XIE Yingchun, MA Hongting, XU Chang, MA Shuo, CHEN Mo, LIU Jun, SUN Guoqiang. Analysis of heat transfer characteristics in vertical tube of seepage falling film evaporative condenser [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1187-1194. |
[14] | ZOU Yincai, LI Qingguo, WU Hui, ZHONG Xiaobing, CHEN Xianzhi. Heat transfer simulation and optimization of missile borne phase change heat sink [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1248-1256. |
[15] | GAO Tingting, JIANG Zhen, WU Xiaoyi, HAO Tingting, MA Xuehu, WEN Rongfu. Experimental investigation on lithium-ion battery heat dissipation performance of oscillating heat pipe with micro-nano emulsion [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1167-1177. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |