Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (5): 2451-2459.DOI: 10.16085/j.issn.1000-6613.2021-1186
• Industrial catalysis • Previous Articles Next Articles
YANG Tao(), WANG Xiaosheng(), LI Ranjia, YU Changchun()
Received:
2021-06-03
Revised:
2021-08-17
Online:
2022-05-24
Published:
2022-05-05
Contact:
WANG Xiaosheng,YU Changchun
通讯作者:
王晓胜,余长春
作者简介:
杨韬(1996—),男,硕士研究生,研究方向为工业催化。E-mail:基金资助:
CLC Number:
YANG Tao, WANG Xiaosheng, LI Ranjia, YU Changchun. Advances in the modification of mordenite catalysts for the carbonylation of dimethyl ether[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2451-2459.
杨韬, 王晓胜, 李然家, 余长春. 用于二甲醚羰基化反应的丝光沸石催化剂改性研究进展[J]. 化工进展, 2022, 41(5): 2451-2459.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1186
1 | 王恒生, 王志会, 聂涛, 等. 羰基化反应研究与应用[J]. 化工科技, 2011, 19(2): 49-54. |
WANG Hengsheng, WANG Zhihui, NIE Tao, et al. Study and application of carbonylation[J]. Science & Technology In Chemical Industry, 2011, 19(2): 49-54. | |
2 | 刘建华, 陈静, 夏春谷. 羰基化反应新技术研究进展[J]. 石油化工, 2010, 39(11): 1189-1197. |
LIU Jianhua, CHEN Jing, XIA Chungu. Progress of new techniques for carbonylation reactions[J]. Petrochemical Technology, 2010, 39(11): 1189-1197. | |
3 | László KOLLÁR. Modern carbonylation methods[M]. Weinheim: Wiley‐VCH Verlag GmbH & Co. KGaA., 2008. |
4 | 王辉, 吴志连, 邰志军, 等. 合成气经二甲醚羰基化及乙酸甲酯加氢制无水乙醇的研究进展[J]. 化工进展, 2019, 38(10): 4497-4503. |
WANG Hui, WU Zhilian, TAI Zhijun, et al. Advances in synthesis of anhydrous ethanol from syngas via carbonylation of dimethyl ether and hydrogenation of methyl acetate[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4497-4503. | |
5 | CHEUNG Patricia, BHAN Aditya, SUNLEY Glenn J, et al. Selective carbonylation of dimethyl ether to methyl acetate catalyzed by acidic zeolites[J]. Angew. Chem. Int. Ed. Engl., 2006, 45(10): 1617-20. |
6 | BHAN Aditya, ALLIAN Ayman D, SUNLEY Glenn J, et al. Specificity of sites within eight-membered ring zeolite channels for carbonylation of methyls to acetyls[J]. Journal of the American Chemical Society, 2007, 129(16): 4919-4924. |
7 | BHAN Aditya, IGLESIA Enrique. A link between reactivity and local structure in acid catalysis on zeolites[J]. Accounts of Chemical Research, 2008, 41(4): 559-567. |
8 | CHEUNG Patricia, BHAN Aditya, SUNLEY Glenn J, et al. Site requirements and elementary steps in dimethyl ether carbonylation catalyzed by acidic zeolites[J]. Journal of Catalysis, 2007, 245(1): 110-123. |
9 | BORONAT Mercedes, Cristina MARTÍNEZ-SÁNCHEZ, David LAW, et al. Enzyme-like specificity in zeolites: a unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO[J]. Journal of the American Chemical Society, 2008, 130(48): 16316-16323. |
10 | BORONAT Mercedes, MARTINEZ Crisitna, CORMA Avelino. Mechanistic differences between methanol and dimethyl ether carbonylation in side pockets and large channels of mordenite[J]. Phys.Chem. Chem. Phys., 2011, 13(7): 2603-12. |
11 | LI Bojie, XU Jun, HAN Bing, et al. Insight into dimethyl ether carbonylation reaction over mordenite zeolite from in-situ solid-state NMR spectroscopy[J]. The Journal of Physical Chemistry C, 2013, 117(11): 5840-5847. |
12 | HE Ting, REN Pengju, LIU Xianchun, et al. Direct observation of DME carbonylation in the different channels of H-MOR zeolite by continuous-flow solid-state NMR spectroscopy[J]. Chemical Communications, 2015, 51(94): 16868-16870. |
13 | HE Ting, LIU Xianchun, XU Shutao, et al. Role of 12-ring channels of mordenite in DME carbonylation investigated by solid-state NMR[J]. The Journal of Physical Chemistry C, 2016, 120(39): 22526-22531. |
14 | CHU Yueying, An-Ya LO, WANG Chao, et al. Origin of high selectivity of dimethyl ether carbonylation in the 8-membered ring channel of mordenite zeolite[J]. The Journal of Physical Chemistry C, 2019, 123(25): 15503-15512. |
15 | RASMUSSEN D B, CHRISTENSEN J M, TEMEL B, et al. Ketene as a reaction intermediate in the carbonylation of dimethyl ether to methyl acetate over mordenite[J]. Angew. Chem. Int. Ed. Engl., 2015, 54(25): 726104. |
16 | ZHOU Hui, ZHU Wenliang, SHI Lei, et al. In situ DRIFT study of dimethyl ether carbonylation to methyl acetate on H-mordenite[J]. Journal of Molecular Catalysis A: Chemical, 2016, 417: 1-9. |
17 | WANG Xiaosheng, LI Ranjia, YU Changchun, et al. Study on the deactivation process of dimethyl ether carbonylation reaction over Mordenite catalyst[J]. Fuel, 2021, 286:119480. |
18 | CHENG Zaizhe, HUANG Shouying, LI Ying, et al. Role of Brønsted acid sites within 8-MR of mordenite in the deactivation roadmap for dimethyl ether carbonylation[J]. ACS Catalysis, 2021, 11(9): 5647-5657. |
19 | LIU Junlong, XUE Huifu, HUANG Xiumin, et al. Stability enhancement of H-mordenite in dimethyl ether carbonylation to methyl acetate by pre-adsorption of pyridine[J]. Chinese Journal of Catalysis, 2010, 31(7): 729-738. |
20 | XUE Huifu, HUANG Xiumin, ZHAN Ensheng, et al. Selective dealumination of mordenite for enhancing its stability in dimethyl ether carbonylation[J]. Catalysis Communications, 2013, 37: 75-79. |
21 | CAI Kai, HUANG Shouying, LI Ying, et al. Influence of acid strength on the reactivity of dimethyl ether carbonylation over H-MOR[J]. ACS Sustainable Chemistry & Engineering, 2018, 7(2): 2027-2034. |
22 | LI Ying, SUN Qi, HUANG Shouying, et al. Dimethyl ether carbonylation over pyridine-modified MOR: enhanced stability influenced by acidity[J]. Catalysis Today, 2018, 311: 81-88. |
23 | ZHAO Na, CHENG Qingpeng, Shuaishuai LYU, et al. Promoting dimethyl ether carbonylation over hot-water pretreated H-mordenite[J]. Catalysis Today, 2020, 339: 86-92. |
24 | WANG Xiaosheng, LI Ranjia, YU Changchun, et al. Enhancing the dimethyl ether carbonylation performance over mordenite catalysts by simple alkaline treatment[J]. Fuel, 2019, 239: 794-803. |
25 | WANG Xiaosheng, LI Ranjia, YU Changchun, et al. Influence of acid site distribution on dimethyl ether carbonylation over mordenite[J]. Industrial & Engineering Chemistry Research, 2019, 58(39): 18065-18072. |
26 | HUANG Xiumin, MA Meng, LI Mingrun, et al. Regulating the location of framework aluminium in mordenite for the carbonylation of dimethyl ether[J]. Catalysis Science & Technology, 2020, 10(21): 7280-7290. |
27 | LIU Shiping, FANG Xudong, LIU Yong, et al. Dimethyl ether carbonylation over mordenite zeolite modified by alkyimidazolium ions[J]. Catalysis Communications, 2020, 147. |
28 | LIU Shiping, LIU Hongchao, MA Xiangang, et al. Identifying and controlling the acid site distributions in mordenite zeolite for dimethyl ether carbonylation reaction by means of selective ion-exchange[J]. Catalysis Science & Technology, 2020, 10(14): 4663-4672. |
29 | WANG Xiaosheng, LI Ranjia, YU Changchun, et al. Enhanced activity and stability over hierarchical porous mordenite (MOR) for carbonylation of dimethyl ether: influence of mesopores[J]. Journal of Fuel Chemistry and Technology, 2020, 48(8): 960-969. |
30 | LIU Shuaipeng, CHENG Zaizhe, LI Ying, et al. Improved catalytic performance in dimethyl ether carbonylation over hierarchical mordenite by enhancing mass transfer[J]. Industrial & Engineering Chemistry Research, 2020, 59(31): 13861-13869. |
31 | SHENG Haibing, QIAN Weixin, ZHANG Haitao, et al. Synthesis of hierarchical porous H-mordenite zeolite for carbonylation of dimethyl ether[J]. Microporous and Mesoporous Materials, 2020, 295:109950. |
32 | XUE Huifu, HUANG Xiumin, DITZEL Evert, et al. Coking on micrometer- and nanometer-sized mordenite during dimethyl ether carbonylation to methyl acetate[J]. Chinese Journal of Catalysis, 2013, 34(8): 1496-1503. |
33 | XUE Huifu, HUANG Xinmin, DITZEL Evert, et al. Dimethyl ether carbonylation to methyl acetate over nanosized mordenites[J]. Industrial & Engineering Chemistry Research, 2013, 52(33): 11510-11515. |
34 | MA Meng, HUANG Xiumin, ZHAN Ensheng, et al. Synthesis of mordenite nanosheets with shortened channel lengths and enhanced catalytic activity[J]. Journal of Materials Chemistry A, 2017, 5(19): 8887-8891. |
35 | LIU Yahua, ZHAO Na, XIAN Hui, et al. Facilely synthesized H-mordenite nanosheet assembly for carbonylation of dimethyl ether[J]. ACS Appl. Mater. Interfaces, 2015, 7(16): 8398-8403. |
36 | YAO Jie, FENG Xiaobo, FAN Jiaqi, et al. Effects of mordenite zeolite catalyst synthesis conditions on dimethyl ether carbonylation[J]. Microporous and Mesoporous Materials, 2020, 306:110431. |
37 | LI Lingyun, WANG Quanyi, LIU Hongchao, et al. Preparation of spherical mordenite zeolite assemblies with excellent catalytic performance for dimethyl Ether carbonylation[J]. ACS Appl. Mater. Interfaces, 2018, 10(38): 32239-32246. |
38 | LI Ying, LI Zehua, HUANG Shouying, et al. Morphology-dependent catalytic performance of mordenite in carbonylation of dimethyl ether: enhanced activity with high c/b ratio[J]. ACS Appl. Mater. Interfaces, 2019, 11(27): 24000-24005. |
39 | HE Pei, LI Ying, CAI Kai, et al. Nano-assembled mordenite zeolite with tunable morphology for carbonylation of dimethyl ether[J]. ACS Applied Nano Materials, 2020, 3(7): 6460-6468. |
40 | WEN Fuli, DING Xiangnong, FANG Xudong, et al. Crystal size sensitivity of HMOR zeolite in dimethyl ether carbonylation[J]. Catalysis Communications, 2021, 154:106309. |
41 | LU Peng, YANG Guohui, TANAKA Yuki, et al. Ethanol direct synthesis from dimethyl ether and syngas on the combination of noble metal impregnated zeolite with Cu/ZnO catalyst[J]. Catalysis Today, 2014, 232: 22-26. |
42 | WANG Shurong, GUO Wenen, ZHU Lingjun, et al. Methyl acetate synthesis from dimethyl ether carbonylation over mordenite modified by cation exchange[J]. The Journal of Physical Chemistry C, 2014, 119(1): 524-533. |
43 | REULE Allen A C, SEMAGINA Natalia. Zinc hinders deactivation of copper-mordenite: dimethyl ether carbonylation[J]. ACS Catalysis, 2016, 6(8): 4972-4975. |
44 | REULE Allen A C, PRASAD Vinay, SEMAGINA Natalia. Effect of Cu and Zn ion-exchange locations on mordenite performance in dimethyl ether carbonylation[J]. Microporous and Mesoporous Materials, 2018, 263: 220-230. |
45 | ZHOU Hui, ZHU Wenliang, SHI Lei, et al. Promotion effect of Fe in mordenite zeolite on carbonylation of dimethyl ether to methyl acetate[J]. Catalysis Science & Technology, 2015, 5(3): 1961-1968. |
46 | MA Meng, ZHAN Ensheng, HUANG Xiumin, et al. Carbonylation of dimethyl ether over Co-HMOR[J]. Catalysis Science & Technology, 2018, 8(8): 2124-2130. |
47 | ZHANG Zhitao, ZHAO Na, MA Kui, et al. Isolated zinc in mordenite stabilizing carbonylation of dimethyl ether to methyl acetate[J]. Chinese Chemical Letters, 2019, 30(02): 513-516. |
48 | LI Shiyue, CAI Kai, LI Ying, et al. Identifying the active silver species in carbonylation of dimethyl ether over Ag-HMOR[J]. ChemCatChem, 2020, 12(12): 3290-3297. |
49 | ZHAO Peng, QIAN Weixin, MA Hongfang, et al. Effect of Zr incorporation on mordenite catalyzed dimethyl ether carbonylation[J]. Catalysis Letters, 2020. |
50 | BLASCO Teresa, BORONAT Mercedes, CONCEPCION Patricia, et al. Carbonylation of methanol on metal-acid zeolites: evidence for a mechanism involving a multisite active center[J]. Angew Chem. Int. Ed. Engl., 2007, 46(21): 3938-3941. |
51 | ZHAN Huimin, HUANG Shouying, LI Ying, et al. Elucidating the nature and role of Cu species in enhanced catalytic carbonylation of dimethyl ether over Cu/H-MOR[J]. Catalysis Science & Technology, 2015, 5(9): 4378-4389. |
52 | LI Ying, HUANG Shouying, CHENG Zaizhe, et al. Synergy between Cu and Brønsted acid sites in carbonylation of dimethyl ether over Cu/H-MOR[J]. Journal of Catalysis, 2018, 365: 440-449. |
53 | CHENG Zaizhe, HUANG Shouying, LI Ying, et al. Carbonylation of dimethyl ether over MOR and Cu/H-MOR catalysts: comparative investigation of deactivation behavior[J]. Applied Catalysis A: General, 2019, 576: 1-10. |
54 | LI Ying, HUANG Shouying, CHENG Zaiche, et al. Promoting the activity of Ce-incorporated MOR in dimethyl ether carbonylation through tailoring the distribution of Brønsted acids[J]. Applied Catalysis B: Environmental, 2019, 256:117777. |
[1] | SHENG Weiwu, CHENG Yongpan, CHEN Qiang, LI Xiaoting, WEI Jia, LI Linge, CHEN Xianfeng. Operating condition analysis of the microbubble and microdroplet dual-enhanced desulfurization reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 142-147. |
[2] | HUANG Yiping, LI Ting, ZHENG Longyun, QI Ao, CHEN Zhenglin, SHI Tianhao, ZHANG Xinyu, GUO Kai, HU Meng, NI Zeyu, LIU Hui, XIA Miao, ZHU Kai, LIU Chunjiang. Hydrodynamics and mass transfer characteristics of a three-stage internal loop airlift reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 175-188. |
[3] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[4] | XU Chenyang, DU Jian, ZHANG Lei. Chemical reaction evaluation based on graph network [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 205-212. |
[5] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[6] | WANG Jiaqing, SONG Guangwei, LI Qiang, GUO Shuaicheng, DAI Qingli. Rubber-concrete interface modification method and performance enhancement path [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 328-343. |
[7] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[8] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[9] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[10] | ZHU Jie, JIN Jing, DING Zhenghao, YANG Huipan, HOU Fengxiao. Modification of CaSO4 oxygen carrier by Zhundong coal ash in chemical looping gasification and its mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4628-4635. |
[11] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[12] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[13] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[14] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[15] | LI Xuejia, LI Peng, LI Zhixia, JIN Dunshang, GUO Qiang, SONG Xufeng, SONG Peng, PENG Yuelian. Experimental comparation on anti-scaling and anti-wetting ability of hydrophilic and hydrophobic modified membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4458-4464. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |